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ABSTRACT

Non-parametric change-point detection in streaming time se-
ries data is a long-standing challenge in signal processing.
Recent advancements in statistics and machine learning have
increasingly addressed this problem for data residing on Rie-
mannian manifolds. One prominent strategy involves mon-
itoring abrupt changes in the center of mass of the time se-
ries. Implemented in a streaming fashion, this strategy, how-
ever, requires careful step size tuning when computing the
updates of the center of mass. In this paper, we propose to
leverage robust centroid on manifolds from M-estimation the-
ory to address this issue. Our proposal consists of comparing
two centroid estimates: the classical Karcher mean (sensitive
to change) versus one defined from Huber’s function (robust
to change). This comparison leads to the definition of a test
statistic whose performance is less sensitive to the underly-
ing estimation method. We propose a stochastic Riemannian
optimization algorithm to estimate both robust centroids effi-
ciently. Experiments conducted on both simulated and real-
world data across two representative manifolds demonstrate
the superior performance of our proposed method.

Index Terms— Non-parametric, change point detec-
tion, Riemannian manifolds, robust centroid estimation, M-
estimator, online, stochastic optimization.

1. INTRODUCTION

Parametric and non-parametric CPD: The change-point
detection (CPD) problem aims to identify abrupt changes in
the statistical distribution of time series data. CPD has an ex-
tensive history within the statistics literature, with diverse ap-
plications ranging from medical [1] and speech processing [2]
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to image analysis [3]. Various CPD algorithms have been pro-
posed depending on the level of prior information available.
Classical CPD approaches typically utilize parametric strate-
gies, requiring knowledge of the specific form of the prob-
ability density function (PDF) before and after the change
point. Notable parametric CPD algorithms include the cu-
mulative sum (CUSUM) [4], designed for detecting shifts in
either the mean or variance, and the generalized likelihood ra-
tio test (GLRT) [5], which models the data PDF using a linear
state-space representation.

While strategies based on parametric statistical models
can offer strong performance guarantees, non-parametric set-
tings have been the subject of increasing interest since they do
not make strict assumptions on the data distribution that could
make the algorithm sensitive to modeling errors [6]. Notable
approaches include the Exponentially Weighted Moving Av-
erage (EWMA) [7] and kernel Maximum Mean Discrepancy
(MMD) [8]. Recently, the NEWMA algorithm [9] was intro-
duced. It detects change points by comparing two EWMAs
streaming statistics [7], each computed with different forget-
ting factors. The kernel MMD statistic, originally introduced
for hypothesis testing in [8], has also found extensive appli-
cation in kernel CPD [10]. Another kernel-based algorithm,
which makes use of adaptive density ratio estimation, was de-
veloped in [11]. Finally, the potential of neural networks was
investigated in [12].

CPD on manifolds: The extension of nonparametric CPD
algorithms to handle data defined on non-Euclidean spaces,
such as Riemannian manifolds, has been the subject of recent
research [13–15]. Formally, given a time series of indepen-
dent random variables {xt}t∈N lying on a Riemannian man-
ifold M, the Riemannian CPD problem [14, 15] consists of
detecting a time index tr ∈ N at which the distribution of the
data abruptly changes:

t < tr : xt ∼ P1(x) , t ≥ tr : xt ∼ P2(x), (1)

where P1(x) and P2(x) denote the probability measure of
the data xt ∈ M before and after the change point tr, re-



spectively. A generalization of problem (1) is the multiple
CPD problem, where one aims to estimate not a single but a
set of change points {tr1 , tr2 , . . . } ⊂ N∗, meaning that xt is
allowed to change at multiple locations.

Existing algorithms and contribution: Because they do
not account for the geometry of the data residing on M,
particularly the absence of a vector space structure, standard
nonparametric algorithms are not suitable for addressing the
problem (1). For manifold-valued data, recent works have
proposed to monitor abrupt changes in the Karcher mean [16]
on M, defined as:

m∗ = argmin
m∈M

f(m) , (2)

which is the point that minimizes the Karcher variance:

f(m) = Ex∼P (x)

{
1

2
d2M(m,x)

}
.

For example, an offline technique monitoring changes in m∗

before and after change points was proposed in [13]. More
recently, an online algorithm [14, 15] extended NEWMA to
general manifolds by comparing two recursive estimates of
m∗ computed via stochastic gradient algorithms. However,
none of these methods considered a more general alternative:
recursively monitoring two different statistics of the data xt

constructed to be similar in the absence of a change point and
significantly different after a change point occurs.

A key concept in our work is to leverage a robust centroid
estimator on M. Based on the theory of M-estimators, a class
of robust centroid estimators arises from the so-called Huber
function [17,18] and covers the concept of Karcher mean. Ro-
bust centroid estimation has recently been applied to various
tasks in manifolds [19, 20]. The primary contribution of this
paper is the introduction of robust centroid estimation into
Riemannian CPD. We specially explore two special cases of
the Huber centroid, one prioritizing adaptability and the other
emphasizing robustness. The comparison between these two
centroids forms the basis for our test statistic, which notably
reduces the dependence on the convergence of the estima-
tion algorithm. Additionally, we propose an online estimation
method for the Huber centroid using a Riemannian stochas-
tic optimization algorithm. Our methodology is tailored ex-
plicitly for two commonly encountered manifolds: the sym-
metric positive definite (SPD) manifold and the Grassmann
manifold. Numerical experiments on both synthetic and real-
world datasets validate the effectiveness of our Riemannian
CPD approach.

2. BACKGROUND

This section briefly introduces concepts of Riemannian ge-
ometry and optimization on manifolds [21, 22].

A Riemannian manifold (M, g) is a constrained set M
endowed with a Riemannian metric gx(·, ·) : TxM×TxM →
R, defined for every point x ∈ M, with TxM the so-called
tangent space of M at x. A geodesic γv : [0, 1] → M is
the minimal length curve linking two points x, y ∈ M such
that x = γv(0) and y = γv(1), with v ∈ TxM the ve-
locity of γv at 0 denoted by γ̇v(0). The geodesic distance
dM(· , ·) : M × M → R is defined as the length of the
geodesic that connects two points x, y ∈ M. The exponen-
tial map w = expx(v) is defined as the point w ∈ M lo-
cated on the unique geodesic γv(t) with endpoints x = γv(0),
w = γv(1) and velocity v = γ̇v(0). Calculating the ex-
ponential map can be computationally demanding. In prac-
tice, it is common to employ a retraction Rx : TxM →
M instead, defined at every x ∈ M, which consists of a
second-order approximation to the exponential map, satis-
fying dM(Rx(tv), expx(tv)) = O(t3). Consider a smooth
function f : M → R. The Riemannian gradient of f at
x ∈ M is defined as the unique tangent vector ∇f(x) ∈
TxM satisfying d

dt

∣∣
t=0

f(expx(tv)) = ⟨∇f(x), v⟩x, for all
v ∈ TxM.

3. METHODOLOGY

In the online setting, samples xt in the Riemannian mani-
fold M are observed sequentially over time. Thus, at each
time instant t′ ∈ N∗ it is necessary to determine whether to
flag t′ as a changepoint based on previously measured data,
{x1, . . . ,xt′}. Considering the signal model (1) in which a
change point occurs at time tr, the detection problem in our
setting involves two distinct objectives, the first being to min-
imize the mean detection delay (MDD) E{t̂r − tr}, with t̂r
being the first detection after the true change point tr, while
the second is to maximize the average run time (ARL) E{t̂r},
where t̂r < tt denotes the time at which the first false alarm
is flagged.

3.1. Robust centroid estimation

To detect change points on M, we propose monitoring the
robust centroid of the data stream xt ∈ M, extending the
framework of the Karcher mean defined in (2). Based on the
theory of M-estimation, the robust centroid can be obtained
by minimizing the following cost function:

m∗
ρ = argmin

mρ∈M
fρ(mρ) , (3)

where

fρ(mρ) = Ex∼P (x)

{
1

2
ρ(dM(mρ,x))d

2
M(mρ,x)

}
,

with ρ : R → R a function that ensures the robustness to
outliers.



Depending on ρ, various robust centroid estimators can be
defined [20]. For example, the Huber’s estimator [17] can be
considered with a specific Huber function defined as

ρ(a) = min

(
1,

A

a

)
, (4)

where A > 0 is a fixed parameter.
In [14, 15], the authors consider only the Karcher mean

estimator defined in (2). In this work, we extend this strategy
by viewing the Karcher mean estimator as a special instance
of the robust centroid estimator in (3) corresponding to the
choice of A = ∞ in (4). We further compare this adaptive
centroid estimator with another special case of the robust cen-
troid estimator obtained by setting A ∈ (0,∞) in (4), which
provides enhanced robustness in the presence of outliers – in
our context, the post-change samples.

Although other robust centroid estimators employing
different forms of ρ exist, such as ℓ1-norm, Cauchy–Lorentz-
type and Geman-McClure-type [20], we restrict our analysis
to Huber-type estimators. This choice preserves geodesic
convexity and smoothness of the cost function on specific
manifolds, notably the SPD manifold. This allows us to
leverage the powerful Riemannian stochastic gradient de-
scent (SGD) [23, 24] algorithm, whose convergence proper-
ties strongly rely on these characteristics of the cost function.

3.2. Riemannian SGD-based estimates

As discussed above, the proposed Riemannian CPD strat-
egy monitors abrupt changes in the robust centroid of the
data stream. A key requirement is that change points must
be detected online, relying solely on past data. In [14, 15],
within the Riemannian geometry framework, Karcher mean
estimates were computed using two Riemannian SGD with
distinct step sizes. However, this approach can be restrictive,
as these step sizes must be selected within a limited range to
ensure the convergence of the Riemannian SGD (see Theo-
rem 4.1 in [15]). To address this issue, we propose comparing
two estimates derived from two distinct special cases of the
robust centroid estimator, both computed using the same step
size, as follows.

On the one hand, when choosing A = ∞ in (4), the robust
centroid estimator in (3) reduces to the Karcher mean defined
in (2). Therefore, for this case, we consider the following
iterative update using Riemannian SGD [23, 24]:

mt+1 = Rmt

(
− αH(mt,xt)

)
, (5)

where α is the step size and H(mt,xt) is the stochastic Rie-
mannian gradient of f(mt), approximated using the stream-
ing data xt. This yields a baseline estimator that, according
to the theory of M-estimation, is less robust to outliers and,
consequently, to change points in an online setting.

On the other hand, when A ∈ (0,∞), the robust centroid
estimator defined in (3) can be computed using Riemannian

Algorithm 1: Riemannian CPD with robust cen-
troid estimates

Input: {xt}, step sizes α, threshold ξ.
1 Initialization: m0 = mρ,0 = x0 ;
2 for t = 1, 2, 3, . . . do
3 Update the adaptive and robust centroid estimates mt

and mρ,t using (5) and (6);
4 Compute the test statistic gt = dM(mt,mρ,t) ;
5 if gt > ξ then
6 Flag t as a change point;
7 end
8 end

SGD through the following iterative update:

mρ,t+1 = Rmρ,t

(
− αHρ(mρ,t,xt)

)
, (6)

where Hρ(mρ,t,xt) is the stochastic Riemannian gradient of
fρ(mt) approximated using the streaming data xt. Using
the Huber function defined in (4), the relationship between
Hρ(mρ,t,xt) and H(mρ,t,xt) can be derived as follows:

Hρ(mρ,t,xt) ={
H(mρ,t,xt), dM(mρ,t,xt) ≤ A,

A
dM(mρ,t,xt)

H(mρ,t,xt), dM(mρ,t,xt) > A.
(7)

This result indicates that the stochastic gradient matches that
of the Karcher mean estimator when data points are close to
the current centroid estimator (i.e., dM(mρ,t,xt) ≤ A), but
it is scaled down for distant ones (i.e., dM(mρ,t,xt) > A).
Thus, the gradient becomes more robust against outliers and,
consequently, less sensitive to abrupt changes in the online
setting.

3.3. An adaptive CPD statistic

Using these two estimates mt and mρ,t, we can define an
adaptive CPD statistic by comparing them with geodesic dis-
tance on M as:

gt = dM(mt,mρ,t) . (8)

CPD is then performed by comparing gt to a threshold ξ. The
full CPD procedure is summarized in Algorithm 1.

The statistic gt can be interpreted as a metric for detecting
abrupt changes in streaming data on the manifold M. Specif-
ically, mt and mρ,t serve as adaptive estimators tracking the
standard and robust centroids, respectively.

When a change point occurs within sequence {1, . . . , T},
the underlying data distribution shifts, causing measurements
{x1, . . . , xT } to include data points drawn from a different
distribution P2(x) which can be viewed as outliers. The non-
robust estimator mt+1 adapts gradually to this new regime. In
contrast, the robust estimator mρ,t+1 remains stable against
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Fig. 1. ARL versus MDD for the compared algorithms on
synthetic data on both S++

p (left) and Gk
p (right)..
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Fig. 2. ARL versus MDD for the compared algorithms on
real data on both S++

p (left) and Gk
p (right).

transient shifts and exhibits significant adaptation only when
the contamination surpasses its robustness threshold. This
behavior highlights the benefit of robust centroid estimation
for Riemannian CPD, as lower sensitivity to abrupt changes
makes the robust estimator an ideal baseline in constructing
effective test statistic.

4. APPLICATIONS AND EXPERIMENTS

In this section, we apply Algorithm 1 to tackle two common
instances of manifolds: the SPD manifold of p × p matrices,
denoted by S++

p , and the Grassmann manifold, representing
the set of k-dimensional linear subspaces of Rp, denoted by
Gk
p . The implementation of Algorithm 1 on these manifolds

requires manifold-specific definitions of the geodesic distance
dM(m,x), the stochastic Riemannian gradients H(m,x)
and Hρ(m,x), and a second-order retraction operator Rm.
The definitions of dM(m,x), H(m,x) and Rm for S++

p

and Gk
p are provided in Section 5 of [15]. The corresponding

robust gradient Hρ(m,x) can be derived using the relation
defined in (7) based on H(m,x).

We shall now illustrate the performance of Algorithm 1
for Riemannian CPD on both manifolds S++

p and Gk
p . For Al-

gorithm 1, the step size was set to α = 0.05, and the parame-
ter A was set to 1 for S++

p and 0.05 for Gk
p . We selected a non-

parametric online algorithm for Riemannian CPD [14, 15] as
a baseline for comparison with Algorithm 1. To compare the

detection performance of these algorithms, 104 Monte Carlo
simulations were performed to estimate the MDD and ARL
for both synthetic and real data. Open-source code to repro-
duce the results is available on https://github.com/
xiuheng-wang/CPD_RCE_release.

4.1. Experiment with synthetic data:

We first present results obtained from synthetically generated
sequences of i.i.d. data on S++

p and Gk
p .

SPD Manifold: We sampled matrices Σt ∈ S++
p with p =

10 from a Wishart distribution with scaling matrix V and p+2
degrees of freedom. A total of 2000 samples were generated,
with a change point at tr = 1500, where V was reset.

Grassmann Manifold: The data π(Ut) ∈ Gk
p with p = 20

and k = 5 was generated in two steps. First, we sampled ma-
trices Zt from a random matrix Gaussian distribution. Then,
the orthonormal matrices Ut were obtained as the left singu-
lar vectors corresponding to the k largest singular values of
Zt. A total of 2000 samples was generated, with a change
point at tr = 1500, where the mean of the matrix Gaussian
distribution of Zt was reset.

Results: The MDD as a function of ARL for all methods
is depicted in Fig. 1 for both manifolds. It is evident that
Algorithm 1 results in a lower MDD for a fixed ARL when
compared to the baseline.

4.2. Experiment with real data:

We now present results obtained from real data on both
S++
p and Gk

p , focusing on the task of detecting speech seg-
ments within noisy backgrounds. We first combined 4 sec-
onds of real speech from the TIMIT database [25] with 15
seconds of background noise recorded in real street envi-
ronments from the QUT-NOISE database [26], ensuring a
Signal-to-Noise Ratio (SNR) of -3 dB. Next, we applied the
Short-Time Fourier Transform (STFT) [27] to the resulting
one-dimensional audio signal, thereby obtaining frequency-
domain representations as a d = 128 dimensional time series,
st ∈ Rd. Finally, we averaged neighboring frequency chan-
nels of st to produce a downsampled representation with
reduced dimensionality of 16 channels.

SPD Manifold: We generated data points Σt ∈ S++
p with

p = 16 by computing covariance matrices from sliding win-
dows, each containing 32 consecutive samples.

Grassmann Manifold: We applied truncated singular
value decomposition (SVD), retaining only the first singu-
lar vector (k = 1), to the samples within each sliding win-
dow. This yielded orthonormal matrices Ut that define the
subspaces π(Ut) ∈ Gk

p .

https://github.com/xiuheng-wang/CPD_RCE_release
https://github.com/xiuheng-wang/CPD_RCE_release


Results: The performance curves for all methods are repre-
sented in Fig. 2. It is important to emphasize that this prob-
lem setting is particularly challenging due to the complex-
ity of real acoustic signals and the non-i.i.d. nature of the
extracted features. Nevertheless, Algorithm 1 consistently
demonstrates superior performance in terms of MDD versus
ARL compared to the baseline methods.

5. CONCLUSION

In this paper, we introduced a robust centroid estimation
approach for Riemannian CPD. We proposed an adaptive
test statistic comparing two specialized robust centroid es-
timators computed via Riemannian SGD: one emphasizing
adaptability to new data, and the other enhancing robustness
against abrupt changes. Importantly, our CPD statistic re-
quires selecting only a single step size, a crucial advantage
given that Riemannian SGD convergence is guaranteed only
within a limited step-size range. Experimental results on
both SPD and Grassmann manifolds confirm that our method
consistently outperforms the previous approach based on two
Karcher mean estimators.
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