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Université de Technologie de Troyes
LM2S

12 rue Marie Curie
BP 2060, 10010 Troyes cedex - France

P. Gonçalvès
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ABSTRACT

In this paper, we propose an extension of the adaptive diffu-
sion technique for time-frequency representations proposed
by Payot and Gonçalvès in 1998. Instead of processing
time-frequency representations and keeping the covariance
with respect to time and frequency shifts untouched, our
adaptive filtering technique processes time-scale represen-
tations of the affine class while preserving the covariance
properties of such representations. In order to obtain rep-
resentations with improved readability, we aim at remov-
ing cumbersome interference terms while not blurring the
signal terms. We show that the association of a conduc-
tance function to our diffusion scheme can make significant
improvement toward reaching this goal. Indeed a conduc-
tance function provides a way to adapt locally the amount
of smoothing to the representation. Note that the adaptiv-
ity of this affine technique is not based on any waveform
dictionary as matching pursuit algorithms.

1. INTRODUCTION

Depending on the analyzed signal and on the application
in sight, one must choose an appropriate representation.
In time-frequency/time-scale analysis, representations are
grouped by their ability to reflect the application of a dis-
placement operator on the signal. For example, the Cohen
class encloses time-frequency representations that are co-
variant with respect to time shifts and frequency modula-
tions while the affine class consists of representations co-
variant with respect to time shifts and dilations [1]. In this
paper, we deal with bilinear representations of the affine
class. We present a way to adaptively and iteratively smooth
affine representations, while preserving its covariance prop-
erties. It consists of a diffusion-based technique [2, 3] ex-
tending the work presented in [4] for the Cohen class of TF
representations. Indeed, our scheme is an alternative to the
reassignment method [5] and to methods based on decom-
position of signals on waveform dictionaries [6] that also
preserve covariance properties with respect to time shifts

and dilations. Since it is an iterative approach, it enables to
control the amount of processing of the representation while
its adaptivity provides an action that is locally adapted to the
analyzed signal.

In a first part we briefly present the affine class and the
covariance properties of representations that belong to it.
In a second part we describe the adaptive smoothing tech-
nique presented by Gonçalvès and Payot in [4]. As it does
not preserve the affine covariance properties, we present an
evolution of it that preserves membership of processed rep-
resentations to the affine class. Following [4], we next pro-
pose to locally adapt smoothing to the analyzed signal using
a conductance function, and we show how it can be used to
improve the readability of affine class representations.

2. AFFINE OPERATOR AND AFFINE CLASS

In order to clarify the problem at hand we first review the
concepts of operators and covariance with respect to these
operators. The time shift and frequency modulation oper-
ators underlie the Cohen class. In other words this class
encompasses all the distributions that reflect the application
of these operators to the signal. Similarily, the affine class is
based on the affine operator [1], here denoted as A, whose
action on the set L2(IR) is as follows:

Ax(t) = |a0|
−1/2x

(

t− t0
a0

)

, (1)

where t0 is the amount of time shifting and a0 the amount
of dilatation of the signal. A time-frequency representation
Ωx is covariant with respect to this operator if it obeys the
following relation:

ΩAx(t, f) = Ωx

(

t− t0
a0

, a0.f

)

. (2)

As an example, the well-known Wigner distribution,

Wx(t, f) =

∫ ∞

−∞

x
(

t+
τ

2

)

x∗
(

t−
τ

2

)

e−i2πfτdτ ,



is covariant with respect to the affine operator. As shown
in [1], any members of the affine class can be expressed as
an affine convolution of a Wigner distribution Wx with a
signal-independent kernel Π as follows

Ωx(t, a) =

∫ ∞

−∞

∫ ∞

0

Π

(

s− t

a
, aξ

)

Wx(s, ξ) ds dξ. (3)

Note that conventionally, in many cases we can use the a =
f0/f equivalence, with f0 a constant, to relate frequency
and scale [1].

3. SMOOTHING VIA DIFFUSION

Bilinear time-frequency or time-scale distributions allow for
a sharper representation of a signal than linear-based ap-
proaches (e.g. scalogram), but a the cost of undesirable
cross terms inherent to their quadratic form. One main goal
of time-frequency or time-scale smoothing is to improve
this readability by removing the cumbersome cross terms
while preserving the sharpness of signal terms. Because of
the oscillating nature of interference terms, a usual scheme
consists in using low pass kernels Π.

3.1. Diffusion for the Wheyl Group

Homogenous diffusion

Among Cohen’s class, the spectrogram is a widely used
tool. Square modulus of the short time Fourier transform,
it can also be written as a convolution between the Wigner
distribution of the signal and the Wigner distribution of the
analyzing window. Note that the Wigner distribution of a
gaussian window is a gaussian kernel.
In [4], authors remind that the gaussian kernel is the Green
function of the heat diffusion. Indeed the use of the heat
diffusion on a Wigner distribution is equivalent to convolv-
ing it with a gaussian kernel whose variance depends on the
diffusion time τ . Authors then suggest to use an iterative
diffusion process inspired by [2] to smooth bilinear time-
frequency representations. Such a scheme reads







Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ = divt,f (∇t,fDx(t, f ; τ)),

(4)

where Wx is the representation to be processed, here the
Wigner distribution, and Dx(t, f ; τ) the smoothed repre-
sentation at the time instant τ . This diffusion is called ho-
mogeneous. At a certain diffusion time τ , a representation
smoothed via this diffusion is equivalent to a gaussian win-
dow spectrogram.

Adaptive diffusion

As we deal with non-stationary signals, we need to locally
adapt the diffusion process to the signal. Following the idea
of Perona and Malik in [2], Payot and Gonçalvès propose
to use a conductance function cx(t, f) to locally control the
action of the diffusion. Adaptive diffusion can be written as
follows






Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ = divt,f (cx(t, f)∇t,fDx(t, f ; τ)).

(5)

The choice of the conductance function depends on the ap-
plication on sight and on available a priori information. In
a context of signal analysis, it can be used to selectively
smooth cross terms while preserving signal terms [4]. For
the use of diffusion in a decision making context, one should
refer to [7].

3.2. Covariant affine diffusions

Homogeneous affine smoothing

As covariance with respect to time shifts and dilations is
central for representations of the affine class, we shall now
propose a diffusion scheme preserving this property.

Similarly with the spectrogram within the Cohen class,
the scalogram plays a preponderant role within the affine
class. It is the square modulus of a continuous wavelet trans-
form. Using a gaussian wavelet, one can interpret it as the
convolution in time of the analyzed signal with a gaussian
window whose width is increasing with the scale of anal-
ysis, whereas it is affine convolved in frequency. Such an
adaptation of the width of the kernel with the scale of anal-
ysis can also be observed in (3). We then propose to adapt
the diffusion strength with the scale as follows 1,







Ax(t, a; τ = 0) = Ωx(t, a)

∂Ax(t,a;τ)
∂τ = divt,a(a2∇t,aAx(t, a; τ)),

(6)

where Ax is the time-scale smoothed representation and Ωx

the representation to be processed. This diffusion will be
called homogeneous as it does not adapt to the analyzed
signal.
Due to the linear nature of the differential operators in-
volved in this diffusion scheme, the resulting distribution
remains bilinear. In addition, it is covariant with respect to
affine operator as it si shown below. As stated in [1], such a
distribution belongs to the affine class and therefore can be
written as an affine convolution of the type (3) with some

1This diffusion acts on time-scale distributions. The construction of an
affine diffusion for time-frequency representations is possible but requires
different treatments. One can use an affine tensor instead of the scalar term
a
2 as presented in [3] for image processing.



specific kernel corresponding to the Green solution of the
diffusion equation (6).
We now prove that it preserves the affine covariance prop-
erty. It is clear that, at diffusion step τ = 0, the smoothed
representation is covariant with the affine operator. There-
fore, we just have to verify that the divergence term is also
covariant to prove that A(t, a; τ) belongs to the affine class
for any positive τ . The diffusion term can be developed as
follows:

∂Ax(t, a; τ)

∂τ

= divt,a(a2∇t,aAx(t, a; τ))

= divt,a
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For a shifted and scaled signal Ax(t), the diffusion reads
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Therefore, using recurrence, the relation

AAx(t, a; τ) = Ax

(

t− t0
a0

,
a

a0
; τ

)

,

holds and the processed representation is covariant with re-
spect to the affine operator. Note that (6) is not the only
diffusion scheme yielding bilinear representation covariant
with respect to affine changes. Due to the affine affine in-
variance of the differential operator a∂/∂a, it can be factor-
ized in other ways, leading to different diffusion equations,
among which

∂Ax(t, a; τ)

∂τ
= a2 divt,a(∇t,aAx(t, a; τ)),

∂Ax(t, a; τ)

∂τ
= a divt,a(a∇t,aAx(t, a; τ)).

We chose this scheme because of the preservation of the en-
ergy it ensures. Renouncing to the bilinearity and thus to the
affine class, one can also use the affine diffusion described
in [8].

Figure (1) illustrates our approach on a signal made of
two gaussian atoms. One can see that the shape of the
smoothing kernel for the affine diffusion depends on the fre-
quency, and therefore on the scale, whereas it is constant for
Wheyl diffusion. One can also notice the similarity between
the scalogram and the affine diffusion for this signal. Note
that these are time-frequency representations.
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Fig. 1. Comparaison of different smoothings of two atoms.

3.3. Adaptive affine diffusion

Let us now use a conductance function cx(t, a) depending
on both time-scale location and the analyzed signal to lo-
cally control the amount of smoothing. The general form
for an adaptive affine diffusion is:






Ax(t, a; τ = 0) = Ωx(t, a)

∂Ax(t,a;τ)
∂τ = divt,a(a2cx(t, a)∇t,aAx(t, a; τ)),

(7)

where Ax is the smoothed representation and Ωx the rep-
resentation to be processed. The divergence term can be
expanded as follows

∂Ax(t, a; τ)

∂τ

= divt,a(c(t, a)a2∇t,aAx(t, a; τ))

= divt,a

(

a2cx(t, a)

[

∂Ax

∂t
(t, a). ~ut +

∂Ax

∂a
(t, a). ~ua

])

= a2cx(t, a)
∂2Ax

∂t2
(t, a) + a2 ∂cx

∂t
(t, a)

∂Ax

∂t
(t, a)

+a2cx(t, a)
∂2Ax

∂a2
(t, a) + 2a cx(t, a)

∂Ax

∂a
(t, a)

+a2 ∂cx
∂a
(t, a)

∂Ax

∂a
(t, a).

Conductance function cx(t, a) such that

∂

∂t
cAx(t, a) = a−1

0

∂cx
∂t

(

t− t0
a0

,
a

a0

)

, (8)



∂

∂a
cAx(t, a) = a−1

0

∂cx
∂a

(

t− t0
a0

,
a

a0

)

, (9)

then ensures that the processed distribution satisfies the co-
variance property. One can check that conductance func-
tions of the form cx(t, a) = c(Ix(t, a)) where Ix denotes
any representation of the affine class fulfill these require-
ments.

For the application in sight, namely increasing the read-
ablity of time-scale representations, we can use the a pri-
ori information according to which spectrograms and scalo-
grams usually do not suffer from cumbersome interferences.
This idea was proposed in [4] for Wheyl diffusion: areas
taking on high values in such distributions are associated
with signal terms and have to be preserved during the dif-
fusion, while areas taking on low values are likely to be
interference terms and are to be smoothed. This technique
will be referred to as adaptive diffusion because the action is
different depending on the time-scale area to be processed.
One can also use the a priori information according to which
noise and interference generally tend to have no structure or
thin structure compared to signal terms. Therefore, one can
identify structures as areas taking on high values. Protecting
these areas favors structured patterns while less structured
ones are smoothed by the diffusion. It will be referred to as
self controlled diffusion.

For both schemes, we can design a conductance func-
tion as follows

cx(t, a; τ) =

(

1 +

(

Bx(t, a)

δ

)α)−1

. (10)

Depending on the chosen scheme, Bx(t, a) is either a scalo-
gram or the processed diffusion itself at iteration τ . Parame-
ters δ and α can be used to tune the behavior of the conduc-
tance function. Figure (2) illustrates the ability of adaptive
affine diffusion to improve readability of a representation.

As for the Wheyl diffusion, one has to find a stopping
criterion to stop this iterative process. Because the criterion
proposed in [4], relying of the entropy of the diffused rep-
resentations, does not depend on covariance properties, we
suggest referring to this paper for the question.

4. CONCLUSION

We have presented an adaptive and iterative smoothing
scheme for time-scale representations of the affine class.
We have shown that it preserves the covariance property
in homogeneous and non-homogeneous cases, providing a
locally adapted smoothing for the affine class. In the ho-
mogeneous case, the bilinearity of the processed distribu-
tion ensures it can be written as an affine convolution (3).
Because of the versatility of the conductance function tech-
nique, this diffusion scheme can be used within many con-
texts. We have presented an example aiming at improving
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Fig. 2. The two conductance functions succeed in providing
a sharp, concentrated and clean representation for this signal
composed of two power laws.

the readability of representations. We have provided two
conductance functions and illustrated their efficiency.
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