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ABSTRACT

This paper deals with multi-class classification problems.

Many methods extend binary classifiers to operate a multi-

class task, with strategies such as the one-vs-one and the one-

vs-all schemes. However, the computational cost of such

techniques is highly dependent on the number of available

classes. We present a method for multi-class classification,

with a computational complexity essentially independent of

the number of classes. To this end, we exploit recent devel-

opments in multifunctional optimization in machine learning.

We show that in the proposed algorithm, labels only appear in

terms of inner products, in the same way as input data emerge

as inner products in kernel machines via the so-called the ker-

nel trick. Experimental results on real data show that the

proposed method reduces efficiently the computational time

of the classification task without sacrificing its generalization

ability.

1. INTRODUCTION

Many challenging classification tasks are multi-class prob-

lems, often shown to be more difficult than the binary clas-

sification. They imply classifying a data observation into one

of a set of possible classes. Multi-class problems are encoun-

tered in most applications in signal and image processing, for

instance for optical character recognition, speech application

[1], face recognition [2], and classification of urban structures

in an image [3].

Multi-class classification methods can be roughly divided

into two categories. The first one consists of a single ma-

chine strategy, where a single optimization problem is solved

in order to determine the multi-class classifier. These tech-

niques require specific optimization algorithms, often with

high computational cost [4, 5]. The second category attempts

to take advantage of the performance of binary classifiers such

as state-of-the-art least squares classifiers and support vector

machines. To this end, the multi-class classification problem

is decomposed into a number of binary classification subprob-

lems. The goal is to solve these subproblems, then combine
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their results to determine the multi-class solution (see for in-

stance [6]). Two strategies exist to extend binary classifiers to

multi-class, the one-versus-all strategy where binary classi-

fiers are constructed to separate one class from all the other

classes, and the one-versus-one when separating one class

from another (see [7] and references therein). For a problem

of m classes, these strategies require solving and combining

m binary classifiers for the former, and m(m − 1)/2 for the

latter. From the quantitative and comparative study given in

[7] with least squares binary classifiers, the one-vs-all strategy

gives at least similar, if not better, results than other methods,

including the single machines. Still, this requires m binary

classifiers, each constructed using the whole available train-

ing data.

In this paper, we show that one can solve a multi-class

classification problem, with essentially the same computa-

tional complexity as a binary classifier. To this end, we take

advantage of recent work in multifunctional optimization in

machine learning [8]. We recast the multi-class problem as

the estimation of a vector of outputs defining the class mem-

bership. By using a least squares formalism, the resulting

optimization problem is roughly similar to the one given by a

binary classifier. It turns out that its computational complex-

ity is essentially independent of the number of classes, in the

same sense as the computational cost in kernel-machines is

independent of the dimensionality of the input data, thanks to

the so-called kernel trick.

The rest of the paper is organized as follows. Section 2

outlines the least squares approach for a binary classification

problem. We describe the proposed multi-class least squares

algorithm in Section 3. Section 4 illustrates results obtained

with our algorithm, with an image classification problem.

Conclusions and further directions are given in Section 5.

2. LEAST SQUARES BINARY CLASSIFICATION

In supervised learning, one seeks a function that predicts well

some output from a given input, based on a set of training

input-output data, (xk, yk), for k = 1, 2, . . . , N . To measure

the excellence of the learned function f(·), a loss function is



considered, such as the commonly used square error, namely,

ℓ(f(xk), yk) = |f(xk) − yk|
2. The minimization of this

square error is considered for binary classification problems

in [9, 10] (with connections to the Fisher discriminant analy-

sis, however beyond the scope of this work). In this case, the

output corresponds to the label, in practice yk = ±1.

While this loss function is minimized over all the train-

ing data, one also imposes regularity to the function, using

for instance the Tikhonov regularization [11]. This gives the

following least squares optimization problem:

min
f

N
∑

j=1

|f(xj)− yj |
2 + γ ‖ f ‖2,

where γ is some positive tradeoff parameter. Moreover, in a

kernel-based formalism [12], one seeks a function of the form

f(·) =

N
∑

j=1

αj yj κ(xj , ·), (1)

with κ(·, ·) being a positive semi-definite function, such as

the linear kernel κ(xi,xj) = xT
i xj and the Gaussian ker-

nel κ(xi,xj) = exp( 1

2σ2 ‖xi − xj‖
2) with some bandwidth

parameter σ. It is work noting that, since one often sets

yj = ±1 for a binary classification task, one may inject its

sign into αj with βj = yjαj , and take the equivalent expan-

sion f(·) =
∑N

j=1
βj κ(xj , ·) (see for instance [9]).

By substituting this expansion into the least squares opti-

mization problem, we obtain a classical matrix formulation,

which can be solved using off-the-shelf linear algebra tech-

niques. The resulting coefficients are used in the decision for

any x, by comparing f(x) to the threshold, often set to zero,

according to the rule

f(x) =
N
∑

j=1

αj yj κ(xj ,x)
y=+1

≷
y=−1

0.

Binary classifiers can be easily extended to operate for

a multi-class classification task. Let m be the number of

classes. In a one-vs-one strategy, one constructs m(m −
1)/2 binary classifiers by taking only data from each pair of

classes, while in a one-vs-all strategy, m binary classifiers are

considered with all training data. Each binary classifier is de-

fined by the decision function, of the form

fk(·) =

N
∑

j=1

αj,k yj κ(xj , ·). (2)

Therefore, one needs to estimate m × N coefficients for the

one-vs-all strategy. Next, we propose to estimate only N un-

known variables by imposing some relation between these

functions, f1(·), f2(·), . . . , fm(·).

3. MULTI-CLASS LEAST SQUARES

CLASSIFICATION

In a multi-class classification problem, we consider a set of N
training data, belonging to any of the m available classes. We

propose to encode1 the class membership using a m-column

label vector yk, with its t-th entry given by

[yk]t =

{

1 if data xk belongs to class t;
0 otherwise

for t = 1, 2, . . . ,m. We propose to estimate all the functions

in (2), using a single optimization problem, by requiring some

relation between them. We regroup the m functions in the

form f (·) = [f1(·) f2(·) · · · fm(·)]T . By analogy with (1)

and following [13], we propose the following expansion for

f(·)

f (·) =

N
∑

j=1

αjyjκ(xj , ·).

In the proposed expression, all the functions in f(·) share the

same scalar value αj κ(xj ,x), for some j. This allows us

to have only N unknowns, the αj’s, in the same way as a

single binary classifier. Next, we show how to estimate these

coefficients.

In a least squares sense, we consider the following opti-

mization problem

min
f

N
∑

j=1

‖f(xj)− yj‖
2 + γ R(f),

where the regularization term is given by

R(f) =

N
∑

i,j=1

αiαjy
T
i yjκ(xi,xj).

By substituting the expression of f(·) in this optimization

problem, we get

min
α

N
∑

i=1

yT
i yi − 2

N
∑

i=1

yT
i

N
∑

j=1

αjκ(xi,xj)yj

+

N
∑

i=1

N
∑

j,k=1

αjαkκ(xi,xj)κ(xi,xk)y
T
j yk

+ γ
N
∑

i,j=1

αiαj y
T
i yj κ(xi,xj).

We drop the first term, since it is independent of α. In matrix

form, this optimization problem can be written as

min
α

−2dα+αTGα+ γαT
Ωα, (3)

1In this paper, we do not discuss the issue of optimal coding.



where G is a matrix whose (j, k)-th entry is

[G]j,k = yT
j ykK

2(j, k)

d is a vector whose j-th entry is

[d]j =

N
∑

i=1

κ(xi,xj)y
T
i yj ,

and Ω is a matrix whose (i, j)-th entry is

[Ω]i,j = yT
i yj κ(xi,xj).

By taking the gradient of the objective function in (3) with

respect to α, namely

−d+Gα+ γΩα,

and setting it to zero, we obtain the final solution

(G+ γΩ)α = d. (4)

We conclude that a multi-class regularized least squares clas-

sifier can be obtained by solving a single system of N linear

equations with N unknowns. This requires the inversion of

a N -by-N matrix, G + γΩ. The computational complexity

of this algorithm is cubic in the number of training data, N ,

but independent of the number of classes m. This is made

possible here thanks to the fact that the label vectors only ap-

pear in terms of inner products, with yT
i yj in Ω, G and d.

This reflects an analogy with the kernel trick in kernel ma-

chines, where data are involved only in terms of inner prod-

ucts, namely xT
i xj .

To predict the class membership of any x, the decision

rule compares the output f (x) with the set of label vectors

y1,y2, . . .ym, with

d(x) = argmax
t

yT
t f(x).

This decision rule can also be written using inner products

between label vectors, namely

d(x) = argmax
t

N
∑

i=1

αi y
T
t yi κ(xi,x). (5)

4. EXPERIMENTATIONS

Two experiments were conducted to illustrate the pertinence

of the proposed approach. First, an illustrative application is

considered, with the IRIS data from the UCI Machine Learn-

ing Repository, often used as a benchmark for classification

algorithms. It consists of samples of flowers representing

m = 3 iris species. Each species consists of 50 observa-

tions, four features were measured from each sample, they

are the length and the width of sepale and petale. For illustra-

tion, only sepale length and petale width were used. A set of
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Fig. 1. Illustration of the IRIS classification task, with the

separating boundaries (−) and the decision rule taking values

1, 2 and 3.

N = 120 training data was used for learning the multi-class

classifier. Some preliminary experiments were conducted to

tune the parameters, leading to γ = 100 and σ = 0.60 for

the Gaussian kernel. Figure 1 illustrates the resulting sepa-

rating boundaries, and shows the decision rule given in (5)

in the third dimension. For a comparative study, we consid-

ered the least squares one-vs-all strategy, as given in Section

2. Using the remaining set of 30 data, both multiclass classi-

fication methods gave essentially similar classification error,

equal to 3%. In an attempt to provide a measure of computa-

tional requirements2, the one-vs-all classifier was trained with

a (average ) total CPU time of up to 0.011 seconds, while the

proposed algorithm required only 0.003 seconds.

For the second application, we considered a multi-class

classification task, where the number of available data is not

2To offer a comparative study, both algorithms were implemented on a

MATLAB running on a Windows.

Table 1. The 7 classes with the ratio of train/test samples in

the hyperspectral image.

Class-name #train #test

� Asphalt 210 3 088
� Meadows 236 5 216
� Trees 196 1 279
� Metal sheets (painted) 256 1 345
� Bare soil 332 1 264
� Self-blocking bricks 225 1 693
� Shadow 28 215

1492 14100



Fig. 2. The hyperspectral image (slice at mid spectral-band) (left), with the spatial distribution of the training (middle) and test

(right) data. The legend of the 7 classes is given in Table 1.

the same for all classes. Recently adopted in remote sensing,

hyperspectral images are cubes of data, measuring spectral

composition within a spatial view. As opposed to the conven-

tional 3-color system, the spectral information over a hundred

of bands provides greater analysis of the composition of ob-

jects in an image scene. In monitoring urban structures with

airborne or satellite images, one is often confronted with a

large number of classes.

The hyperspectral image, provided by the HySenS

project, is of the University of Pavia, Italy, with a 300-by-300
pixels and 103 frequency bands, illustrated in Figure 2 (left).

Ground truth information about 7 classes were included to

train and test the classifiers, as given in Table 1 illustrated in

Figure 2 (middle and right) (see [3] for more details). The

Gaussian kernel was used, with its bandwidth value set to

the maximum value in the training data. Both the proposed

method and the one-vs-all method give almost similar results,

with an overall error of 8% for both. It is worth noting that

our algorithm estimates N = 1 492 coefficients by the inver-

sion of a 1 492-by-1 492 matrix, independent of the number

of classes, while the one-vs-all strategy estimates 7 × 1 492
coefficients for the m = 7 classes, thus operates the inversion

of a 10 444-by-10 444matrix.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the multi-class least squares clas-

sification, and showed that one can do multi-class classifi-

cation at binary-classification complexity. While the idea is

simple, its relevance was illustrated on real data, showing that

our approach reduces efficiently the computational complex-

ity without sacrificing its accuracy. In future work, we exploit

further the proposed approach, by incorporating a nonlinear

measure of similarity between label vectors, i.e., the use of a

kernel on labels as opposed to the (linear) one in this paper.
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