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ABSTRACT
This work proposes to solve the unmixing problem in a graph setting.
The hyperspectral image is mapped to a weighted graph where every
pixel spectrum is represented by a node, and similar nodes are con-
nected by weighted edges. A graph-based Total Variation framework
is incorporated within the unmixing problem. The graph topology al-
lows to promote smoothness over similar data in arbitrary neighbor-
hood structures, while the weights allow to preserve details in the re-
constructed image. The resulting constrained optimization problem
is convex and is solved using an Alternating Direction Method of
Multipliers (ADMM). The particular variable splitting allows to ob-
tain closed form solutions for each ADMM sub-problem and avoids
encountering more complicated Sylvester equations. Finally, exper-
iments are conducted using synthetic and real hyperspectral data to
demonstrate the effectiveness of the proposed algorithm.

Index Terms— Hyperspectral images, sparse unmixing, non-
local Total Variation, graph regularization.

1. INTRODUCTION

Hyperspectral sensors provide hundreds of spectrally contiguous
measurements of a scene over the visible, near infrared and short
wave infrared bands [1]. Each pixel is described by a thorough sam-
pled spectrum allowing to identify its composition. Hyperspectral
images usually have low spatial resolution, in the sense that a pixel
covers a large spatial area. It is very probable that the area covered
by the pixel contains more than one material. Linear unmixing [2]
assumes that the observed pixel spectrum is a convex combina-
tion of some constituent material spectra. The constituent material
spectra are known as the endmembers, and their proportions as the
abundances.

We propose to generate a weighted graph from the hyperspectral
data that encodes spatial and spectral similarities between the pixels.
Each pixel in the hyperspectral image is represented by a node, and
edges are used to connect spatially and spectrally similar nodes. We
then perform sparse unmixing [3] while taking into account the addi-
tional relational information provided by the graph topology. More
precisely, if two pixels are connected by an edge then it is assumed
that their reconstructed spectra should be similar. Using tools of dis-
crete calculus on graphs [4], we penalize the discrepancies between
the estimated spectra of connected pixels via a graph-based Total
Variation. The idea of Graph-based regularization has been widely
used in the literature. Sometimes it is referred to as the Laplacian
regularization when it is performed with the `2-norm. It has been
successfully applied in many fields such as non-local image denois-
ing [5–7], and semi-supervised learning [8–11].
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The proposed strategy is closely related to the work in [12]
where the authors use a Total Variation (TV) regularization for
sparse `1-norm regularized unmixing. Similarly, this communica-
tion advocates the use of the graph TV regularization to perform
`2,1-norm regularized unmixing [3, 13]. However, TV is restricted
to the assumption of local spatial similarity, and only relates a pixel
to its four neighbors. In addition to this, TV penalizes all high
variations between connected spectra despite their natural presence
in real images (for example contours). We use an arbitrary graph
which makes it possible to use the spatial and spectral information
to make better decisions about the links between pixels and thus
improve the prior at each pixel. Very recently, the authors of [14]
and [15] used the graph Laplacian regularization for sparse `1/2-
norm regularized Non negative Matrix Factorization (NMF) within
the context of blind unmixing. Their algorithm performs alternate
minimization in order to simultaneously estimate the endmembers
and the abundances. In this work, we use the ADMM algorithm [16]
which allows to take into account the sum-to-one and positivity
constraints for the abundances, and a Group lasso regularizer fre-
quently incorporated in unmixing to allow the use of large libraries
of endmembers. Finally, unlike the two previous approaches, Total
Variation in this paper is imposed on the reconstructed spectra rather
than on the abundances. This choice, which is more intuitive in
our case since the graph is constructed using the image itself, is
validated in the experiments. The resulting optimization problem
can be solved efficiently using the ADMM. For a review of methods
that incorporate other spatial or spectral-spatial information in the
unmixing problem, the reader is referred to [17].

The paper is organized as follows. Section 2 introduces the
graph Total Variation regularization within the unmixing problem.
Section 3 is devoted to the ADMM solution. Finally, section 4
presents experiments using synthetic and real hyperspectral images.

2. GRAPH-BASED UNMIXING

Let us first introduce the linear mixing model which can be expressed
in matrix form as

S = RA+E (1)

withS = (s1, . . . , sN ),R = (r1, . . . , rM ),A = (a1, . . . ,aM )>.
Here, sj is the L-dimensional spectrum of the j-th pixel, L is the
number of frequency bands, ri is L-dimensional spectrum of the
i-th endmember, M denotes the number of endmembers, ai is the
M -dimensional abundance map of the i-th endmember, N is the
number of pixels in the image, and E is an additive Gaussian noise.
All vectors are column vectors. Model (1) means that the (i, j)-th
entry Aij of A is the abundance of endmember ri in pixel sj . As
mentioned previously, two constraints are usually imposed on the
abundances, the non-negativity and sum-to-one constraints: Aij ≥ 0

for all (i, j), and
∑M
i=1Aij = 1 for all j, respectively. WhenR is a



large dictionary of endmembers, it is also required that A only has
a few rows different from zero, those corresponding to the actual
endmembers present in S. To summarize, the unmixing problem
requires that RA matches S, and that A only has a few rows dif-
ferent from zero, in addition to the non-negativity and sum-to-one
constraints. This leads to the following optimization problem,

minA
1
2
‖S −RA‖2F + µ

∑M
k=1 ‖ak‖2

subject to Aij ≥ 0 ∀ i, j∑M
i=1Aij = 1 ∀ j

(2)

where µ is a tuning parameter controlling the strength of the sparse
group-lasso regularization. Before introducing the graph-based prior
into problem (2), we first give some notations and describe the strat-
egy used for generating a meaningful graph from the hyperspec-
tral image. Let G = (V, E ,W ) be the image graph where V =
{v1, · · · , vN} is the set of vertices, W ∈ RN×N is the affinity ma-
trix, and E = {eij |i ∼ j} is the set of (undirected) edges where
i ∼ j means that vertices vi and vj are connected. Every vertex in
V is associated with a pixel in the image, and the non negative en-
tries Wij of W are a measure of the similarity between the spectra
corresponding to vi and vj . If two vertices vi and vj are similar, i.e.
Wij 6= 0, then they are connected by an edge denoted denoted by
eij . There exists different techniques for generating a meaningful
set of weighted edges to connect the nodes (see for example [18],
chapter 4). Two straightforward options for defining the topology
are either building a four neighborhood regular graph, as in classi-
cal TV, or a fully connected graph. The former seems like a natural
possibility, however, it is not adapted to the underlying image. The
latter is the most thorough choice, it takes advantage of all pairwise
relationships. However, the number of edges can become prohibitive
for large N . As a compromise, we connect each pixel to its first or-
der spatial neighbors in addition to its k nearest neighbors among
the other pixels in the image w.r.t. the spectral distance. Afterwards,
a monotonically decreasing function of the spectral distance is used
to assign a weight to each edge. Given G, the gradient at vi and band
` is defined as

∇`viS = (Wij |Sli − Slj |)j ∈ RN . (3)

The TV of the hyperspectral image w.r.t. the graph is then given by
the sum over all bands and all nodes of the gradient norms

JG(S) =
∑
vi∈V

L∑
`=1

‖∇`viS‖1 =
∑
eij∈E

Wij‖si − sj‖1. (4)

This regularizer was used by [5] and [18] under different forms. The
former defines it for univariate data and considers the `2 norm of
the gradient. The latter considers any `p-norm and refers to it as the
Basic Energy Model. In both references, it is used to perform image
filtering by solving:

minŜ
1
2
‖S − Ŝ‖2F + λJG(Ŝ), (5)

where λ controls the strength of the graph TV regularization. Prob-
lem (5) aims at finding a smooth version Ŝ of S. When G is a
weighted non-local graph, the advantage over regular TV is two-
fold. The weights, which are proportional to the similarity between
the two corresponding nodes, allow to smooth more over similar data
and smooth less over dissimilar data. When two nodes are connected
and similar, Wij takes large values, preventing high variations be-
tween their estimates. Conversely, when Wij is equal to zero or
small, high variations are allowed. Instead of only using the local

neighborhood of a pixel, spectrally similar pixels provided by a k
nearest neighbor algorithm can also help improve the estimation [6].
This promotes collaborative unmixing between pixels located in sim-
ilar regions across the image. Combining (2) and (5) yields

minA
1
2
‖S −RA‖2F + µ

∑M
k=1 ‖ak‖2 + λJG(RA)

subject to Aij ≥ 0 ∀ i, j∑M
i=1Aij = 1 ∀ j.

(6)
Unlike classical TV, the spatial regularization is imposed on the
reconstructed spectra rather than directly on the abundances. The
graph is intended to capture the features of the image. Thus, it seems
more appropriate to impose this graph on the reconstructed image
at each spectral band rather than on the abundance maps. In what
follows, we use the matrix form to express (4):

JG(RA) = ‖Γ(RA)>‖1 (7)

where Γ> ∈ RN×|E| is graph incidence matrix [18]. Each row
of Γ is indexed by an edge and has two nonzero elements, namely
Γeij ,i = Wij and Γeij ,j = −Wij , encoding which vertices are
incident at the edge and its corresponding weight.

3. ADMM ALGORITHM

It is possible to efficiently solve problem (6) with the ADMM [16].
The solution is found by solving small sub-problems which in our
case reduce to solving a set of linear equations or estimating prox-
imity operators. We adopt the following variable splitting scheme:

min
X,Y 1→3,Z

1
2
‖S −RX‖2F + µ

∑M
k=1 ‖zk‖2 + I(Z) + λ‖Y 3‖1

subject to BX +CZ = F
Y 1 =X>

Y 2 = Y 1R
>

Y 3 = ΓY 2

(8)
where

B =

(
I
1>

)
, C =

(
−I
0>

)
, F =

(
0
1>

)
.

X,Y 1,Y 2,Y 3,Z are the ADMM variables. The constraints are
imposed to ensure that problem (8) is equivalent to problem (6). The
augmented Lagrangian for problem (8) is given by

Lρ(X,Y 1→3,Z,Λ,V 1→3) =
1

2
‖S −RX‖2F + µ

M∑
k=1

‖zk‖2

+I(Z)+λ‖Y 3‖1+tr(Λ>(BX+CZ−F ))+tr(V >1 (Y 1−X>))

+tr(V >2 (Y 2−Y 1R
>))+tr(V 3(Y 3−ΓY 2))+

ρ

2
‖BX+CZ−F ‖2F

+
ρ

2
‖Y 1 −X>‖2F +

ρ

2
‖Y 2 − Y 1R

>‖+ ρ

2
‖Y 3 − ΓY 2‖2F

where Λ,V 1,V 2,V 3 are the Lagrange multipliers and ρ is the
penalty parameter. At each ADMM iteration, the augmented La-
grangian is minimized w.r.t. each variable and the Lagrange multi-
pliers are updated until a stopping criterion is satisfied.

X minimization step: After discarding the terms independent of
X in the augmented Lagrangian, minimizing the augmented La-
grangian w.r.t. X reduces to a Least squares problem. The solution
is obtained by solving a set of linear equations:

(R>R+ ρB>B + ρI)X =

R>S −B>Λ + V >1 − ρB>(CZ − F ) + ρY >1 .



Y 1 and Y 2 minimization step: Similarly to the first step, the Y 1

and Y 2 minimizations amount to solving sets of linear equations:

Y 1(I +R>R) = −1

ρ
V 1 +

1

ρ
V 2R+X> + Y 2R, (9)

(I + Γ>Γ)Y 2 = −1

ρ
V 2 +

1

ρ
Γ>V 3 + Y 1R

> + Γ>Y 3. (10)

Note that (9) and (10) are seperable row and colomn-wise respec-
tively. Another variable splitting choice could lead to a more com-
plex Sylvester equation non-seperable w.r.t. the unknown variables.

Y 3 minimization step: Minimizing the augmented Lagrangian
w.r.t. Y 3 reduces to the well known lasso problem. The solution is
obtained using soft thresholding:

Y 3 = softλ
ρ
(ΓY 2 −

1

ρ
V 3) (11)

where softα(·) = sign(·)(| · | − α)+ is applied element wise and
(·)+ = max(0, ·).

Z minimization step: Minimizing the augmented Lagrangian w.r.t.
Z reduces to solving the positively constrained group lasso problem:{

z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise (12)

where v = x + ρ−1λ, α = ρ−1µ, λ, x and z correspond to a row
in Λ,X and Z respectively.

Update the Lagrange multipliers: The last step at each ADMM
iteration consists of updating the Lagrange multipliers

Λk+1 = Λk + ρ(BX +CZ − F )
V k+1

1 = V k
1 + ρ(Y 1 −X>)

V k+1
2 = V k

2 + ρ(Y 2 − Y 1R
>)

V k+1
3 = V k

3 + ρ(Y 3 − ΓY 2).

(13)

Note that at each step, the most recent estimate of the variables and
Lagrange multipliers is used.

4. EXPERIMENTS

The performance of the proposed approach was first evaluated using
the synthetic data set described in [12]. It consist of a 75×75×224
image with 25 homogeneous squares disposed in a grid fashion and
lying on a homogeneous background. The data set was generated
using 5 endmembers extracted from the USGS library which will be
used in the simulations. As explained in section 2, we define the
edge set of the graph by connecting a pixel to its four neighbors and
to its 10 nearest neighbors where the spectral distance is measured
with the `2-norm. We then use binary weights according to (14):{

Wij = 1 if ‖si − sj‖22 < d2min

Wij = 0 otherwise, (14)

where d2min represents the maximum squared spectral distance al-
lowed between connected pixels. The performance of the proposed
approach denoted by Graph TV is compared with FCLS, SUn-
SAL TV [12] and a TV regularized Collaborative unmixing [3]
obtained by setting Y 2 = Y 1 in the third constraint of (8) and
d2min = ∞ in (14). The penalty parameter was set to 0.05,
and the maximum number of iterations to 200. Table 1 reports

Table 1. RMSE obtained with different values of SNR, with the
optimal couple (µ; λ), ρ being set to 0.05.

SNR 20 dB SNR 30 dB SNR 40 dB
FCLS 0.0262 0.0173 0.0101

SUnSAL 0.0156 0.0075 0.0034
TV (0.05; 0.05) (5 10−3; 0.01) (10−3; 5 10−3)

Collaborative 0.0151 0.0071 0.0028
TV (0.5; 0.05) (0.1; 0.01) (0.1; 5 10−3)

Graph 0.0101 0.0028 0.0010
TV (0.3; 0.01) (0.1; 0.005) (0.05; 10−3)

d2min = 2.5 d2min = 0.3 d2min = 0.05

the best performances in terms of the Root Mean Square Error
(RMSE = ( 1

NL
× ‖Â−A‖2F )

1
2 ) with the corresponding opti-

mal pairs of regularization parameters. Graph TV requires tuning
an additional parameter d2min which is also reported in the table.
All TV approaches outperformed FCLS. Graph TV had the lowest
RMSE for all cases. The first row of Figure 1 shows the true abun-
dance map of endmember e1, and the estimated maps obtained with
Collaborative TV, SUnSAL TV and Graph TV with SNR = 30dB.
It can be seen from these maps that both TV approaches and the
proposed Graph TV estimated smooth abundance maps. However,
the proposed approach was able to better recover the abundances of
the squares in the second column. This is possibly due to the fact
that the pixels in a square are connected to each other and discon-
nected from the background. This has prevented smoothing over the
squares and making them disappear. Figure 2 shows the RMSE as a
function of λ for the optimal µ in the case of the synthetic data set
for a SNR of 30 dB.

We also tested the proposed approach using real hyperspectral
data, namely the Cuprite scene provided by NASA AVIRIS imag-
ing spectrometer. The scene was captured over the mining district of
Nevada with a spatial resolution of 17 meters over the wavelength
interval 400−2500 nm. After removing the water absorption bands,
188 bands were left for the analysis. We used the same USGS Li-
brary which contains the spectra of pure materials present in this
scene. The second row of Figure 1 shows the abundances estimated
using SUnSAL TV and the proposed approach for two endmembers.
The tuning parameters λ and µ were both set to 10−3 for SUnSAL
TV [12] and to 5 × 10−3 for the proposed algorithm, d2min was set
to 2.5. From the two endmember abundance maps, it can be seen
that TV provided smoother results. However, the proposed approach
was able to preserve relatively more details.

5. CONCLUSION

In this work, we incorporated a Graph based Total Variation within
the unmixing problem. The proposed regularization provided
smooth abundance maps while preserving details. Future work
includes studying the potential of spatial-spectral weights for further
improving the proposed approach.
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