Signaux et Systèmes

Systèmes du premier et du second ordre

Cédric RICHARD Université Côte d'Azur

SYSTÈMES LINÉAIRES INVARIANTS DANS LE TEMPS Caractérisation fréquentielle

Équations différentielles linéaires à coefficients constants On s'intéresse à la réponse fréquentielle des systèmes définis par

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \dots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t)$$
$$= b_{0}\frac{d^{M}x(t)}{dt^{M}} + b_{1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \dots + b_{M-1}\frac{dx(t)}{dt} + b_{M}x(t)$$

Deux approches peuvent être envisagées :

▷ utiliser le fait que $x(t) = e^{j\omega t}$ est fonction propre de l'équation ci-dessus afin d'identifier la fonction de transfert $H(\omega)$ telle que

$$y(t) = H(\omega)e^{j\omega t}$$

 \triangleright utiliser les propriétés de la transformée de Fourier pour identifier $H(\omega)$ Si les deux approches aboutissent au même résultat, on adopte ici la deuxième

Systèmes linéaires invariants dans le temps Caractérisation fréquentielle

Équations différentielles linéaires à coefficients constants

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \dots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t)$$
$$= b_{0}\frac{d^{M}x(t)}{dt^{M}} + b_{1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \dots + b_{M-1}\frac{dx(t)}{dt} + b_{M}x(t)$$

Les systèmes ci-dessus étant linéaires invariants dans le temps, leur réponse est donnée par le produit de convolution

$$y(t) = h(t) * x(t) \longleftrightarrow Y(\omega) = H(\omega)X(\omega)$$

ou, de manière équivalente

$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

Systèmes linéaires invariants dans le temps Caractérisation fréquentielle

En appliquant la transformée de Fourier aux deux membres de l'égalité, on obtient

$$\mathcal{F}\Big[\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k}\Big] = \mathcal{F}\Big[\sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}\Big]$$

Par la linéarité de la transformée de Fourier, et la propriété de dérivation temporelle

$$\sum_{k=0}^{N} a_k (j\omega)^k Y(\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(\omega)$$

On aboutit finalement à la fonction de transfert

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k}$$

SYSTÈMES LINÉAIRES INVARIANTS DANS LE TEMPS Pôles et zéros

Il est souvent pratique de factoriser les polynômes du numérateur et du dénominateur, et d'écrire la fonction de transfert ainsi

$$H(\omega) = \frac{N(\omega)}{D(\omega)} = K \cdot \frac{(j\omega - z_1)(j\omega - z_2)\dots(j\omega - z_{M-1})(j\omega - z_M)}{(j\omega - p_1)(j\omega - p_2)\dots(j\omega - p_{N-1})(j\omega - p_N)}$$

dont les coefficients $\{z_i, p_i\}$ sont obtenus à partir des coefficients $\{a_i, b_i\}$, et $K = \frac{b_M}{a_N}$

Les coefficients $\{z_i\}$ sont les racines de l'équation $N(\omega) = 0$ Ils sont appelés zéros du système

Les coefficients $\{p_i\}$ sont les racines de l'équation $D(\omega) = 0$ Ils sont appelés **pôles** du système

SYSTÈMES LINÉAIRES INVARIANTS DANS LE TEMPS Exemple

On considère le SLIT défini par

$$\frac{dy(t)}{dt} + ay(t) = x(t), \quad a > 0$$

On en déduit que

$$H(\omega) = \frac{1}{j\omega + a}$$

Le système a un pôle en (-a)

On a déjà vu que la transformée de Fourier inverse de $\frac{1}{j\omega+a}$ est $e^{-at}\Gamma(t)$. On en déduit que la réponse impulsionnelle du système est

 $h(t) = e^{-at} \Gamma(t)$

Systèmes linéaires invariants dans le temps Exemple

On considère le SLIT défini par

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

On en déduit que

$$H(\omega) = \frac{(j\omega) + 2}{(j\omega)^2 + 4(j\omega) + 3}$$

Pour calculer la transformée de Fourier inverse de $H(\omega)$, il est nécessaire de décomposer la fraction rationnelle en éléments simples

$$H(\omega) = \frac{(j\omega) + 2}{(j\omega)^2 + 4(j\omega) + 3} = \frac{\frac{1}{2}}{(j\omega + 1)} + \frac{\frac{1}{2}}{(j\omega + 3)}$$

On en déduit que

$$h(t) = \frac{1}{2}e^{-t}\Gamma(t) + \frac{1}{2}e^{-3t}\Gamma(t)$$

Remarque : le système a deux pôles en (-1) et (-3), et un zéro en (-2)

Systèmes linéaires invariants dans le temps

Analyse de la fonction de transfert

$$H(\omega) = \operatorname{Re}[H(\omega)] + j \operatorname{Im}[H(\omega)]$$
$$= |H(\omega)| e^{j\varphi(t)}$$

Les grandeurs qui peuvent être étudiées sont

▷ le module $|H(\omega)|$, ou gain $|H(\omega)|_{dB}$ du système en dB

$$|H(\omega)| = \sqrt{\operatorname{Re}[H(\omega)]^2 + \operatorname{Im}[H(\omega)]^2}$$
$$|H(\omega)|_{\mathrm{dB}} = 20 \, \log_{10} |H(\omega)|$$

 \triangleright la phase $\varphi_H(\omega)$

$$\varphi_H(\omega) = \arg[H(\omega)] = \tan^{-1}\left(\frac{\operatorname{Im}[H(\omega)]}{\operatorname{Re}[H(\omega)]}\right)$$

Gain et phase

Définition

Le diagramme de Bode d'un système $H(\omega)$ est une représentation graphique de ses caractéristiques composée de 2 tracés :

 \triangleright le gain $|H(\omega)|_{\rm dB}$ en dB du système

▷ la phase $\varphi_H(\omega)$, en radians ou degrés

en fonction de la pulsation ω

Étude et des asymptotes

Le tracé d'un diagramme de Bode débute par celui des asymptotes caractérisant le comportement du système pour $\omega \to 0$ (basses fréq.) et $\omega \to +\infty$ (hautes fréq.) On affine le tracé par des points remarquables aux fréquences de coupure.

- $\triangleright\,$ fournit une esquisse approximative de manière simple
- ▷ facilite l'interprétation de la réponse en fréquence
- ▷ facilite la conception de systèmes ayant les réponses fréquentielles souhaitées
- \vartriangleright ... est aujourd'hui moins indispensable du fait des moyens de calcul existants

DIAGRAMME DE BODE Propriétés

Afin de faciliter le tracé de diagrammes de Bode, on doit utiliser les propriétés :

Produit

Soit deux systèmes linéaires invariants dans le temps $H_1(\omega)$ et $H_2(\omega)$ en série. Le système équivalent est $H(\omega) = H_1(\omega)H_2(\omega)$ et l'on a

$$|H(\omega)|_{dB} = |H_1(\omega)|_{dB} + |H_2(\omega)|_{dB}$$
$$\varphi_H(\omega) = \varphi_{H_1}(\omega) + \varphi_{H_2}(\omega)$$

Division

Si la fonction de transfert d'un système linéaire invariant dans le temps peut être mise sous la forme $H(\omega) = \frac{H_1(\omega)}{H_2(\omega)}$, alors

$$H(\omega)|_{\rm dB} = |H_1(\omega)|_{\rm dB} - |H_2(\omega)|_{\rm dB}$$
$$\varphi_H(\omega) = \varphi_{H_1}(\omega) - \varphi_{H_2}(\omega)$$

Expressions génériques

Une fonction de transfert $H(\omega) = \frac{N(\omega)}{D(\omega)}$ contient les facteurs génériques suivants au numérateur ou au dénominateur :

 \triangleright constante K

- \triangleright pôles ou zéros à l'origine (facteur $j\omega$ ou $\frac{1}{j\omega})$
- $\triangleright\,$ pôles ou zéros du premier ordre

$$(j\omega+b)$$
 ou $\frac{1}{(j\omega+a)}$

▷ pôles ou zéros du second ordre (complexes conjugués)

$$(j\omega)^2 + b_1(j\omega) + b_0$$
 ou $\frac{1}{(j\omega)^2 + a_1(j\omega) + a_0}$

Étude de systèmes : fonction constante

Fonction constante : $H(\omega) = K$

$$H(\omega)|_{\rm dB} = 20 \, \log_{10} |K|$$
$$\varphi_H(\omega) = \begin{cases} 0, & K > 0\\ \pi, & K < 0 \end{cases}$$

Étude de systèmes : fonction constante

Exemple : $H(\omega) = K = 10 \implies |H(\omega)|_{dB} = 20 \log_{10} 10 = 20 \text{ dB}$

Étude de systèmes : fonction constante

Exemple : $H(\omega) = K = 10 \Rightarrow \varphi_H(\omega) = 0$

Étude de systèmes : pôle ou zéro à l'origine

Zéro à l'origine : $H(\omega) = j\omega$

Le système considéré est un dérivateur. En effet :

$$y(t) = \frac{dx(t)}{dt} \quad \longleftrightarrow \quad Y(\omega) = j\omega X(\omega)$$

On a donc

$$|H(\omega)|_{\rm dB} = 20 \, \log_{10} \omega$$
$$\varphi_H(\omega) = \frac{\pi}{2}$$

Le gain du système est de +20 dB/décade

Pôle à l'origine : $H(\omega) = \frac{1}{j\omega}$ De la même manière que ci-dessus :

$$|H(\omega)|_{\rm dB} = -20 \, \log_{10} \omega$$
$$\varphi_H(\omega) = -\frac{\pi}{2}$$

Étude de systèmes : zéro à l'origine (dérivateur)

Exemple : $H(\omega) = j\omega \implies |H(\omega)|_{dB} = 20 \log_{10} \omega \quad (+20 \text{ dB/décade})$

Étude de systèmes : zéro à l'origine (dérivateur)

Exemple : $H(\omega) = j\omega \implies \varphi_H(\omega) = \frac{\pi}{2}$

Filtre passe-bas du premier ordre : module

Filtre passe-bas : $H(\omega) = \frac{1}{1+j\left(\frac{\omega}{\omega_c}\right)}$ $H(\omega) = \frac{1}{1+j\left(\frac{\omega}{\omega_c}\right)} \Rightarrow |H(\omega)| = \frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_c}\right)^2}}$ $|H(\omega)|_{dB} = -10\log_{10}\left[1+\left(\frac{\omega}{\omega_c}\right)^2\right]$ 1. $\omega \ll \omega_c$ $|H(\omega)|_{dB} \approx -10\log_{10}1 = 0 \, dB$

2.
$$\omega \gg \omega_c$$

$$|H(\omega)|_{\rm dB} \approx -10 \log_{10} \left(\frac{\omega}{\omega_c}\right)^2 = -20 \log_{10} \left(\frac{\omega}{\omega_c}\right) \quad \leftarrow \quad -20 \, {\rm dB/d\acute{e}cade}$$

Filtre passe-bas du premier ordre : module

Exemple :
$$H(\omega) = \frac{1}{1+j\left(\frac{\omega}{10}\right)} \Rightarrow |H(\omega)|_{dB} = -10\log_{10}\left[1+\left(\frac{\omega}{10}\right)^2\right]$$

Filtre passe-bas du premier ordre : phase

Filtre passe-bas :
$$H(\omega) = \frac{1}{1+j\left(\frac{\omega}{\omega_c}\right)}$$

 $H(\omega) = \frac{1}{1+j\left(\frac{\omega}{\omega_c}\right)} \Rightarrow \varphi_H(\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_c}\right)$
 $\varphi_H(\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_c}\right)$
1. $\omega \ll \omega_c$
 $\varphi_H(\omega) = 0$ rad

2. $\omega \gg \omega_c$

$$\lim_{\omega \to \infty} \varphi_H(\omega) = -\frac{\pi}{2} \operatorname{rad}$$

Filtre passe-bas du premier ordre : phase

Exemple :
$$H(\omega) = \frac{1}{1+j\left(\frac{\omega}{10}\right)} \Rightarrow \varphi_H(\omega) = -\tan^{-1}\left(\frac{\omega}{10}\right)$$

Filtre passe-haut du premier ordre : module

Filtre passe-haut : $H(\omega) = 1 + j\left(\frac{\omega}{\omega_c}\right)$

$$H(\omega) = 1 + j\left(\frac{\omega}{\omega_c}\right) \quad \Rightarrow \quad |H(\omega)| = \sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}$$

$$|H(\omega)|_{\rm dB} = 10 \log_{10} \left[1 + \left(\frac{\omega}{\omega_c}\right)^2 \right]$$

1. $\omega \ll \omega_c$

$$|H(\omega)|_{\rm dB} \approx 10 \log_{10} 1 = 0 \,\mathrm{dB}$$

2. $\omega \gg \omega_c$

$$|H(\omega)|_{\mathrm{dB}} \approx 10 \log_{10} \left(\frac{\omega}{\omega_c}\right)^2 = 20 \log_{10} \left(\frac{\omega}{\omega_c}\right) \leftarrow +20 \,\mathrm{dB/d\acute{e}cade}$$

Filtre passe-haut du premier ordre : module

Exemple :
$$H(\omega) = 1 + j\left(\frac{\omega}{10}\right) \implies |H(\omega)|_{dB} = 10\log_{10}\left[1 + \left(\frac{\omega}{10}\right)^2\right]$$

Filtre passe-haut du premier ordre : phase

Filtre passe-haut : $H(\omega) = 1 + j\left(\frac{\omega}{\omega_c}\right)$

$$H(\omega) = 1 + j\left(\frac{\omega}{\omega_c}\right) \quad \Rightarrow \quad \varphi_H(\omega) = \tan^{-1}\left(\frac{\omega}{\omega_c}\right)$$

$$\varphi_H(\omega) = \tan^{-1}\left(\frac{\omega}{\omega_c}\right)$$

1. $\omega \ll \omega_c$

$$\varphi_H(\omega) = 0 \operatorname{rad}$$

2. $\omega \gg \omega_c$

$$\lim_{\omega \to \infty} \varphi_H(\omega) = \frac{\pi}{2} \operatorname{rad}$$

Filtre passe-haut du premier ordre : phase

Exemple : $H(\omega) = 1 + j\left(\frac{\omega}{10}\right) \implies \varphi_H(\omega) = \tan^{-1}\left(\frac{\omega}{10}\right)$

Systèmes du second ordre

Définition

Les systèmes du second ordre sont régis par l'équation différentielle linéaire

$$\frac{d^2y(t)}{dt^2} + 2\xi\omega_n\frac{dy(t)}{dt} + \omega_n^2y(t) = K\omega_n^2x(t)$$

Fonction de transfert

Après avoir posé K = 1 de sorte que H(0) = 1, on s'intéresse à

$$H(\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\xi\omega_n(j\omega) + \omega_n^2} = \frac{1}{1 + \frac{2\xi}{\omega_n}(j\omega) + \frac{1}{\omega_n^2}(j\omega)^2}$$
$$= \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + j2\xi\left(\frac{\omega}{\omega_n}\right)}$$

 ξ : facteur d'amortissement ω_n : fréquence naturelle ou de résonance

Systèmes du second ordre

Recherche des pôles

$$H(\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\,\xi\,\omega_n\,(j\omega) + \omega_n^2} = \frac{\omega_n^2}{D(\omega)}$$

Les pôles du système sont obtenus en résolvant $D(\omega)=0.$ Ainsi on trouve

$$j\omega = -\xi\omega_n \pm j\omega_n\sqrt{1-\xi^2}$$

On montre que

$$h(t) = \frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\xi\omega_n t} \sin\left(\omega_n \sqrt{1-\xi^2} t\right) \Gamma(t)$$

sous réserve que

système stable :
$$\xi > 0$$

pôles complexes : $\xi < 1$ $\Rightarrow 0 < \xi < 1$

Systèmes du second ordre : module

$$|H(\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\xi^2 \left(\frac{\omega}{\omega_n}\right)^2}}$$

$$|H(\omega)|_{\rm dB} = -10\log_{10}\left\{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\xi^2\left(\frac{\omega}{\omega_n}\right)^2\right\}$$

Systèmes du second ordre : module

$$|H(\omega)|_{\rm dB} = -10\log_{10}\left\{ \left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\xi^2 \left(\frac{\omega}{\omega_n}\right)^2\right\}$$

a) $\omega \ll \omega_n$

$$|H(\omega)|_{\rm dB} \approx -10\log_{10}1 = 0\,\rm dB$$

b) $\omega \gg \omega_n$

$$|H(\omega)|_{\rm dB} \approx -10\log_{10}\left(\frac{\omega}{\omega_n}\right)^4 = -40\log_{10}\left(\frac{\omega}{\omega_n}\right)$$

La décroissance du gain dans la bande de coupure est de -40 dB/décade

Systèmes du second ordre : module

$$|H(\omega)|_{\rm dB} = -10\log_{10}\left\{ \left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\xi^2 \left(\frac{\omega}{\omega_n}\right)^2\right\}$$

c) $\omega = \omega_n$

$$|H(\omega)|_{\rm dB} = -10\log_{10}(2\,\xi)^2 = -20\log_{10}(2\,\xi)$$
$$\approx -6\,\rm{dB} - 20\log_{10}(\xi) = -6\,\rm{dB} + 20\log_{10}\left(\frac{1}{\xi}\right)$$

- $\triangleright |H(\omega_n)|_{\mathrm{dB}}$ dépend de la valeur de ξ
- \triangleright plus l'amortissement ξ est faible, plus $|H(\omega_n)|$ est grand
- \triangleright par exemple : $\xi = 0.1 \Rightarrow |H(\omega_n)|_{\mathrm{dB}} \approx 14 \,\mathrm{dB}$

Systèmes du second ordre : module

Exemple : $H(\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\xi \omega_n (j\omega) + \omega_n^2}$ avec : $\omega_n = 10$ rad/s, $\xi = 0.1$

Systèmes du second ordre : phase

$$H(\omega) = \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + j \, 2 \, \xi \, \left(\frac{\omega}{\omega_n}\right)}$$

$$\varphi_H(\omega) = -\tan^{-1} \left[\frac{2\xi\left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right]$$

Systèmes du second ordre : phase

$$\varphi_H(\omega) = -\tan^{-1}\left[\frac{2\xi\left(\frac{\omega}{\omega_n}\right)}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right]$$

a) $\omega \ll \omega_n$

$$\varphi_H(\omega) \approx 0$$
 rad

b) $\omega \gg \omega_n$ $\varphi_H(\omega) \approx -\tan^{-1} \left[\frac{-2\xi\omega_n}{\omega}\right] \text{ pour } \omega \to \infty$

Puisque $\frac{2 \xi \omega_n}{\omega} > 0$, on en déduit

$$\lim_{\omega \to \infty} \varphi_H(\omega) = -\pi \text{ rad}$$

Systèmes du second ordre : phase

$$\varphi_H(\omega) = -\tan^{-1}\left[\frac{2\xi\left(\frac{\omega}{\omega_n}\right)}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right]$$

c) $\omega = \omega_n$

$$\varphi_H(\omega) = -\frac{\pi}{2}$$

d) Au voisinage de $\omega = \omega_n$

$$\frac{d\varphi_H(\omega)}{d\omega} = -\frac{\frac{2\xi}{\omega_n} \left[1 + \left(\frac{\omega}{\omega_n}\right)^2\right]}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\xi^2 \left(\frac{\omega}{\omega_n}\right)^2} \approx -\frac{1}{\xi\omega_n}$$

Plus $\xi \omega_n$ est faible, plus la pente de $\varphi_H(\omega)$ en ω_n est importante

Systèmes du second ordre : phase

Exemple :
$$H(\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\xi \omega_n (j\omega) + \omega_n^2}$$
 avec : $\omega_n = 10$ rad/s, $\xi = 0.1$

