Théorie et codage de l'information Examen final

Documents interdits Calculatrices inutiles

Nom : _		
Prénom : _		
Signature : _		

Exercice 1 (\sim 5 pts)

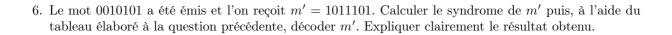
1. Quel est le principe de l'opération de quantification. Exposer les principes de la quantification par arrondi et de la quantification par troncature. A quoi correspond l'erreur de quantification.

2. Quand est-ce qu'une opération de compression est dite irréversible ? Citez un exemple.

3.	Compte-tenu de ce phénomène d'irréversibilité, que peut-on considérer comme limite pour la compression du son et des images ?
4.	Donner l'enchaînement des opérations mises en oeuvre par un algorithme de compression JPEG.
5	En matière de compression vidéo, quels sont les 3 axes exploités pour réduire le débit binaire?
0.	En manere de compression video, quels sont les 6 axes explontes pour reduite le deble binaire.

Exercice 2 (\sim 6 pts)

Soit $\mathcal L$ un code linéaire binaire défini par la matrice génératrice suivante :


$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

1. Que signifie «le code \mathcal{L} est sous forme systématique» ? Quel est l'intérêt de cette représentation ?

2. Déterminer tous les mots du code.

3.	Quelles sont les valeurs des paramètres de ce $[n,k,d]$ -code? nombre d'erreurs que peut détecter et corriger ce code.	En justifiant	votre réponse,	donner le
4.	Le mot $m=1100101$ a été reçu. Calculer le syndrome de m . code en justifiant votre réponse.	En déduire qu	ne m n'est pas	un mot du

5.	Calculer	le tableau	de décodage	par syndrome	et décoder	le mot m en	expliquant l	a procédure.
					6			
					U			

Exercice 3 (\sim 3 pts)

Soit \mathcal{C} un code cyclique binaire de longueur n et de polynôme générateur g(x) = 1 + x.

1. Calculer le polynôme de contrôle h(x) correspondant.

2. Déterminer la matrice de contrôle de $\mathcal C$ en justifiant la réponse.
3. En déduire que tous les mots du code sont de poids pair.

Exercice 4 (\sim 3 pts)

Soit $\mathcal C$ un code binaire de matrice génératrice suivante :

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

1. Montrer que $\mathcal C$ est un code cyclique, dont on précisera le polynôme générateur g(x).

2. Calculer le polynôme de contrôle h(x).

3.	Calculer la matrice de contrôle H du code $\mathcal{C}.$
4.	A l'aide d'un calcul sur les polynômes et d'une justification précise, déterminer si $m=0011010$ est un mot de \mathcal{C} . Même question avec le mot $m'=1001110$.

Exercice 5 (\sim 3 pts)

1. Chercher un polynôme f(x) de degré 2 irréductible sur \mathbf{F}_2 .

2. Construisez \mathbf{F}_4 à l'aide de f(x), avec ses tables d'addition et de multiplication.

3. Que différencie \mathbf{F}_4 de $\mathbb{Z}/4\mathbb{Z}$?