
Information Theory and Coding
Discrete source coding

Cédric RICHARD
Université Côte d’Azur

Discrete source coding

Each of the Q states si of source S is associated with a codeword, that is, a
sequence of ni symbols of a q-ary alphabet. These constitute a source code that
can be noted as follows: C = {c1, . . . , cq}.

source encoder
S −→ C

channel

S ∈= {s1, . . . , sQ} C ∈ {c1, . . . , cQ}

Example. The Morse code

� quaternary code (dot, dash, long space, short space)
� variable length code
� the shortest sequence is for "E"

1

Problem

Source coding and adaptation (ideal noiseless channel)

Let S be a source characterized by a rate Ds (Q-ary symbol per second). Consider
a noiseless channel with maximum rate Dc (q-ary symbol per second). We define:

- emission rate of the source : T � Ds H(S)

- channel capacity : C � Dc log q

If T > C: the channel cannot transmit the information

If T ≤ C : the channel can theoretically transmit the information

If we have a q-ary code where the average length n of codewords is such
that nDs ≤ Dc, then this code can be used for transmission.

Otherwise, how to encode the source words to make their transmission
possible?

Source coding is used to eliminate redundant information
WITHOUT LOSS !!!

2

Discrete-time source

General model

A discrete source S is defined by an alphabet A = {s1, . . . , sQ} and an emission
mechanism. It is a discrete-time random process

S1, . . . , Si−1, Si, Si+1, . . .

characterized by joint laws:

P (S1, . . . , Sn), ∀n ∈ IN∗

� model too general to give rise to tractable developments

3

Discrete-time source

Complementary assumptions

For simplicity, assumptions need to be made about the source.

Property 1 (Stationary process). A random process Si is said to be stationary if
the laws that govern it are independent of the origin of time, that is,

P (S1 = si1 , . . . , Sn = sin) = P (Sn0+1 = si1 , . . . , Sn0+n = sin),

for all positive n0 and n.

Example. A memoryless source is characterized by independent and identically
distributed Si. This is a stationary process.

P (S1 = si1 , . . . , Sn = sin) = P (S = si1) . . . P (S = sin).

4

Discrete-time source

Complementary assumptions

Again, for the sake of simplicity, the following ergodicity assumption can be made.

Property 2 (Ergodic process). A stationary random process Si is ergodic if, for
every k = 1, 2, . . ., for every set of indices i1, . . . , ik and for any bounded function
f(·) from Ak into R, we have:

1

n

n∑
k=1

f(Si1 , . . . , Sik)
a.s.−→ E{f(Si1 , . . . , Sik)}.

Interest. An ergodic process can be studied by observing any long enough
trajectory.

5

Discrete-time source

Markov source

Any source S emits symbols according to a law that can depend on all past
symbols.

Definition 1 (Markov source). A source S is said to be Markovian if

P (Sn+1 = sin+1 |Sn = sin , . . . , S1 = si1) = P (Sn+1 = sin+1 |Sn = sin)

for all si1 , . . . , sin+1
in A.

As a direct consequence we have

P (S1, . . . , Sn) = P (S1)P (S2|S1) . . . P (Sn|Sn−1)

6

Discrete-time source

Markov source

Definition 2 (Time invariance). A Markov source S is time-invariant if, for all
n ∈ {1, 2, . . .}, we have

P (Sn+1|Sn) = P (S2|S1)

Such a source is entirely defined by the vector of initial probabilities p|t=0 and the
transition Π whose entries are

Π(i, j) = P (S2 = sj |S1 = si)

Obviously, we have
∑q

j=1 Π(i, j) = 1 et Π(i, j) ≥ 0.

7

Discrete-time source

Example of Markov source

Consider the following Markov source

s1 s2

s3

0.7

0.5

0.3 0.5

0.8

0.2

The corresponding transition matrix can be written as:

Π =

0 0.7 0.3

0.5 0 0.5

0 0.8 0.2

8

Discrete-time source

Markov source in steady state

Definition 3 (steady-state - version 1). Consider a Markov source S. If it exists,
its steady state distribution is defined as:

lim
n→∞P (Sn = si)

for all i ∈ {1, . . . , Q}.

Let p|t→∞ the steady-state distribution if it exists. Given that p|t=n = p|t=n−1 Π,
we have:

p|t→∞ = p|t→∞ Π

We say that p|t→∞ is the steady-state distribution of S since initializing it with
p|t→∞ makes it stationary.

Drawback. The steady state defined in this way depends on the initial
distribution p|t=0. Other definitions exist.

9

Discrete-time source

Markov source in steady state

Definition 4 (steady-state - version 2). Consider a Markov source S. If it exists,
its steady state distribution is defined as:

lim
n→∞P (Sn = si|S1 = j)

for all i, j ∈ {1, . . . , Q}.

Main interest. The asymptotic behavior of S is independent of the initial
distribution.

10

Discrete-time source

m-th order Markov source

A Markov source is characterized by a memory of size m = 1. This can be
generalized to memory sizes m > 1.

Definition 5 (m-th order Markov source). A source S is an m-th order Markov
source if:

P (Sn+1 = sin+1
|Sn = sin , . . . , S1 = si1)

= P (Sn+1 = sin+1 |Sn−m = sin−m , . . . , Sn = sin)

for all si1 , . . . , sin+1 in A.

Remark. Any m-th order Markov source S can be expressed as a 1-st order
Markov source by considering an m-th order extension of S.

11

Discrete-time source

Entropy of a stationary source

Any source S emits symbols according to a law that can depend on the symbols
that came before them. The definition of the entropy of S must take this into
account.

Definition 6 (Entropy of a stationary source - version 1). The entropy of a
stationary S source is defined as:

H0 � lim
n→+∞H(Sn|S1, . . . , Sn−1).

This definition only makes sense if the limit exists.

12

Discrete-time source

Entropy of a stationary source

Validation of the definition. One need to check that the following limit exists:

lim
n→+∞H(Sn|S1, . . . , Sn−1)

We have:

0 ≤ H(Sn|S1, S2, . . . , Sn−1) ≤ H(Sn|S2, . . . , Sn−1) ≤ . . . ≤ H(Sn).

Since S is stationary, we can write:

H(Sn) = H(S1) H(Sn|Sn−1) = H(S2|S1) ...

The above inequality can be replaced by:

0 ≤ H(Sn|S1, . . . , Sn−1) ≤ H(Sn−1|S1, . . . , Sn−2) ≤ . . . ≤ H(S1).

The series {H(Sn|S1, . . . , Sn−1)}n≥1 is decreasing and bounded. It is therefore
convergent, ensuring the validity of the definition in the stationary case.

13

Discrete-time source

Entropy of a stationary source

Definition 7 (Entropy of a stationary source - version 2). The entropy of a
stationary S source is defined as:

H0 � lim
n→+∞

H(S1, . . . , Sn)

n
.

Both definitions are equivalent in the case of stationary sources. Indeed, it results
from the following equality:

H(S1, . . . , Sn) = H(S1) +H(S2|S1) + . . .+H(Sn|S1, . . . , Sn−1)

that H(S1, . . . , Sn)/n is the arithmetic mean of the n first terms of the series
H(S1), H(S2|S1), . . . , H(Sn|S1, . . . , Sn−1). Cesaro’s theorem yields the expected
result.

Cesaro’s theorem. If an −→
n→∞ a, then 1

n

∑n
k=1 ak

−→
n→∞ a

14

Discrete-time source

Entropy of a stationary source

Example 1. In the case of a memoryless source, characterized by independent and
identically distributed Si, we have:

H0 = H(S1).

Example 2. If S denotes a time-invariant Markov source, its entropy is given by:

H0 = H(S2|S1).

15

Source coding

Definitions

Source coding consists of associating to each symbol si generated by a source, a
sequence of symbols of a q-ary alphabet, referred to as a codeword.

Example 1. ASCII (7 bits) et extended ASCII (8 bits), Morse code, etc.

Example 2.

code A code B code C code D code E code F code G

s1 1 0 00 0 0 0 0

s2 1 10 11 10 01 10 10

s3 0 01 10 11 011 110 110

s4 0 11 01 110 0111 1110 111

16

source coding

Definition

Regularity. A code is said to be nonsingular if all codewords are distinct.

Decodability.

A nonsingular code is called uniquely decodable if any sequence of codewords can
be decoded only in a unique way.

Fixed length. With fixed-length codewords, any message can be decoded
without ambiguity.

Separator. A symbol of the alphabet is used as a word separator.

Without prefix. A code is called a prefix code or an instantaneous code
if no codeword is a prefix of any other codeword.

Exercise. Characterize codes A to G.

17

Toward Shannon’s first theorem

Kraft’s inequality

We propose to design uniquely decodable codes, and more particularly
instantaneous codes, that are as compact as possible.

Kraft’s inequality provides a necessary and sufficient condition on the existence of
instantaneous codes for given codeword lengths.

Theorem 1 (Kraft’s inequality). Let n1, . . . , nQ be candidate codeword lengths to
encode the Q symbols of a source with a q-ary alphabet. A necessary and sufficient
condition for the existence of an instantaneous code with these codeword lengths is
given by:

Q∑
i=1

q−ni ≤ 1.

Remark. The same necessary and sufficient condition was established by
McMillan for uniquely decodable codes, previously to Kraft’s inequality.

18

Toward Shannon’s first theorem

Kraft’s inequality

Proof. The following representation, in the case of a binary code, makes the proof
clear.

01

00011011

000001010011100101110111

q

q2

q3

19

Toward Shannon’s first theorem

Kraft’s inequality

Let n1 ≤ . . . ≤ nQ. Consider a q-ary tree of height nQ. This tree then has qnQ leaf
nodes.

Necessary condition. The prefix condition requires that a codeword of length ni

excludes qnQ−ni leaf nodes. Therefore, the total number of excluded leaf nodes
must satisfy:

Q∑
i=1

qnQ−ni ≤ qnQ .

Sufficient condition.

First, we select a node with depth n1, which excludes qnQ−n1 leaf nodes. However,
there are still available leaf nodes because, using Kraft’s inequality, we know that

qnQ−n1 < qnQ

On the way to one of the available leaf nodes, we select a node with depth n2, ...

20

Toward Shannon’s first theorem

McMillan’s inequality

Kraft’s inequality implies that McMillan’s inequality is sufficient since any prefix
code is uniquely decodable.

Necessary condition. Consider the following expansion:(
Q∑
i=1

ri q
−i

)N

=

NQ∑
n=1

ν(n) q−n

where ν(n) =
∑

i1+...iN=n ri1 . . . riN . Interpreting ri as the number of codewords of
length i, ν(n) corresponds to the number of messages of length n. The unique
decodability condition implies that ν(n) ≤ qn. Then we have:

Q∑
i=1

ri q
−i ≤ (NQ)

1
N ,

which leads to the result by considering the limit of the upper bound when N tends
to infinity.

21

Toward Shannon’s first theorem

McMillan’s inequality

Definition 8 (Complete code). A code is complete if:

Q∑
i=1

q−ni = 1.

22

Toward Shannon’s first theorem

McMillan’s inequality

As an example, McMillan’s inequality is applied to different codes.

code A code B code C

s1 00 0 0

s2 01 100 10

s3 10 110 110

s4 11 111 11∑4
i=1 2

−ni 1 7/8 9/8

Codes A and B are uniquely decodable, the first one being complete. Code C is not
uniquely decodable.

23

Toward Shannon’s first theorem

Consequences of McMillan’s inequality

Let S be a memoryless source with Q symbols. Let pi be the probability of
symbol si, encoded to a q-ary codeword of length ni. By setting:

qi =
q−ni∑Q
j=1 q

−nj

,

then applying Gibb’s inequality with pi and qi, we obtain:

Q∑
i=1

pi log
1

pi
+

Q∑
i=1

pi log q
−ni ≤ log

Q∑
i=1

q−ni .

Applying McMillan’s inequality to the right-hand side member of the inequality
yields:

H(S)− n log q ≤ log

Q∑
i=1

q−ni ≤ 0,

where n =
∑Q

i=1 pi ni is the expected length of the codewords.

24

Toward Shannon’s first theorem

Consequences of McMillan’s inequality

Theorem 2. The expected length n of the codewords of any uniquely decodable
code is lower-bounded by:

H(S)

log q
≤ n.

Condition of equality. The above inequality turns into an equality if∑Q
i=1 q

−ni = 1, that is, pi = q−ni . This means that:

ni =
log 1

pi

log q
.

Definition 9. Any code where each codeword i is of length ni =
log 1

pi

log q is absolutely
optimal.

25

Toward Shannon’s first theorem

Consequences of McMillan’s inequality

Usually, the above equality condition is not satisfied because ni =
log 1

pi

log q is not an
integer. However, it is possible to construct a code such that:

log 1
pi

log q
≤ ni <

log 1
pi

log q
+ 1.

Multiplying each member by pi and summing over i, we obtain:

H(S)

log q
≤ n <

H(S)

log q
+ 1.

Definition 10 (Shannon’s code: predefined codeword lengths). We talk about a
Shannon’s code when:

ni =

⌈
log 1

pi

log q

⌉
.

26

Shannon’s first theorem

Statement and demonstration

The bounds that have just been established will allow us to demonstrate Shannon’s
first theorem, which reads as follows:

Theorem 3. For any stationary source, there is a coding process to design a
uniquely decodable code where the expected codeword length is as close to its lower
bound as you want it to be.

Proof in the case of a memoryless source. Consider the kth extension of
source S. In the case of a memoryless source:

kH(S)

log q
≤ nk <

kH(S)

log q
+ 1.

In this expression, nk denotes the expected length of the codewords used to encode
the kth extension of source S. Dividing by k and calculating the limit as k tends to
infinity leads to the result.

27

Premier théorème de Shannon

énoncé et démonstration

Proof in the case of a stationary source. Consider the kth extension of a
source S. In the case of a memoryless source, we have:

H(S1, . . . , Sk)

k log q
≤ nk

k
<

H(S1, . . . , Sk)

k log q
+

1

k
.

In this expression, nk denotes la longueur denotes the expected length of the
codewords used to encode the kth extension of source S.

In the case of a stationary source, we know that limk→∞ H(S1, . . . , Sk) exists.
Denoting this limit by H0 yields:

lim
k→∞

nk

k
=

H0

log q
.

28

Binary coding techniques

Shannon’s code: predefined codeword length

Shannon’s first theorem provides an asymptotic property, but do not provide any
practical method for doing so.

Shannon’s coding technique consists of associating ni q-ary symbols to each source
state si, where:

ni =

⌈
log 1

pi

log q

⌉
.

29

Binary coding techniques

Shannon’s code: predefined codeword length

We consider a 5-symbol source {s1, . . . , s5} defined by probabilities:

p1 = 0.35 − log2 p1 = 1.51 −→ n1 = 2

p2 = 0.22 − log2 p2 = 2.18 −→ n2 = 3

p3 = 0.18 − log2 p3 = 2.47 −→ n3 = 3

p4 = 0.15 − log2 p4 = 2.73 −→ n4 = 3

p5 = 0.10 − log2 p5 = 3.32 −→ n5 = 4.

We can easily get an instantaneous code that satisfies the above conditions on ni

using a tree. For instance:

s1 : 00 s2 : 010 s3 : 011 s4 : 100 s5 : 1010.

This leads to n = 2.75, to be compared to H(S) = 2.19 Sh/symb.

30

Binary coding techniques

Shannon-Fano’s code

Shannon-Fano’s code is the first code that started to exploite the redundancy of a
source. Its principle is now outlined.

1. Arrange the states of the system by decreasing probabilities.

2. Split the system states into 2 groups G0 et G1 with probabilities as close as
possible without modifying their arrangement in 1.

3. Each group Gi is split into 2 sub-groups Gi0 et Gi1 with probabilities as close
as possible to each other, again without modifying the state arrangement.

4. The procedure stops when each subgroup consists of a single element. The
index of the group gives the codeword.

31

Binary coding techniques

Shannon-Fano’s code

To design a Shannon-Fano’s code, we proceed as follows:

state pi step 1 step 2 step 3 code

s1 0.35 0 0 00

s2 0.22 0 1 01

s3 0.18 1 0 10

s4 0.15 1 1 0 110

s5 0.10 1 1 1 111

This leads to n = 2.25, to be compared to H(S) = 2.19 Sh/symb.

32

Binary coding techniques

Huffman’s code

Huffman’s method provides a compact instantaneous code of minimum average
length. To achieve this, it exploits the following property.

Lemme 1. For any source, there is an instantaneous code of minimum expected
length that satisfies the following properties.

1. If P (S = si) > P (S = sj), then ni ≤ nj .

2. The two longest words, therefore associated with the least likely states, have the
same length and differ by only one bit.

Huffman’s method involves grouping the two least likely states together and then
treating them as one by summing their probabilities. This technique is then
repeated on the remaining states until only two remain.

33

Binary coding techniques

Huffman’s code

A tree is built from the leaf nodes, which represent the states of the source.

1. At each step, the two least likely leaves are merged into one.

2. The procedure stops when the result is a single leaf consisting of all the
symbols.

3. The reverse path of the tree provides the code words.

34

Binary coding techniques

Huffman’s code

00

0

0

1

1

1

1

0.220.22

0.180.18

0.15

0.10

0.250.25

0.350.350.35

0.40 0.40

0.60

The reverse exploration of the tree provides the following code words:

s1 : 00 s2 : 10 s3 : 11 s4 : 010 s5 : 011.

This leads to n = 2.25, to be compared to H(S) = 2.19 Sh/symb.

35

