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Abstract—We propose a Bayesian tracking algorithm based on
adaptive fragmentation and variational approximation. By using
the cue of gradient, we fragment the target into disconnected
rectangles and reduce the confusion from the background. To
handle the uncertainties in real tracking case, we choose the
Bayesian framework with a variational implementation. The
parameters of the variational inference are updated according
to the observation and to the weights of the voting candidates.
Experimental results show that our tracker outperforms direc-
tive searching and particle filtering. Furthermore, due to the
simplicity of calculation, the proposed method can be applied to
real-time surveillance systems.

I. INTRODUCTION

Visual tracking in complex environments is one of the
key problems in many computer vision applications such
as visual surveillance, intelligent robot and wireless camera
networks. A visual tracker can be divided into two parts: target
representation and localization.

Representation consists of decreasing the dimension of the
target in the first frame of the video stream. Due to the
simplicity and invariance to scaling and rotation, the histogram
is a popular representation method. However, there is an
inherent defect of the histogram based representation. Since
the spatial information is omitted, the tracker in the later
localization step cannot distinguish the objects with almost
the same feature histogram. A robust fragments-based method
was proposed in [1]. In this method, the window containing the
target in the first frame is divided into overlapped sub-regions.
By keeping the distance to the center of the main window, each
sub-region participates in a voting process in order to estimate
the target position in the subsequent frames. However, the
fixed sub-region division and unchanged directive searching
range in the localization step decreases the tracker’s flexibility
of handling the abrupt variation of the target trajectory.

In the localization procedure, the tracker generates some
candidate regions and then assigns weights to these candidates
according to their feature difference from the reference. The
candidate with the least difference has the highest similarity
to the reference. Two major categories of algorithms are used
for localization. The first category of algorithms is based on
deterministic searching in a limited region close to the last
position. Mean shift method [2] or exhaustive searching [1]

are within this category. The second category is based on
Bayesian filtering which estimates the posterior distribution
of the target position given all the previous frames. The
main drawback of the Bayesian approach is the intractable
computation of the marginal posterior distribution, mainly due
to the nonlinear expression of the likelihood function. The
particle filtering is a sequential Monte Carlo approximation
allowing the implementation of the Bayesian filtering methods
even in highly nonlinear and non-Gaussian models. However,
its performance highly depends on the proposal distribution,
which is rarely available in real visual tracking applications
[3]. As an alternative solution, in this paper, we apply the
variational approximation to Bayesian visual tracking based
on the fragmentation representation. The variational method
is able to approximate the complex Bayesian posterior distri-
bution of the hidden states by minimizing the Kullback-Leibler
(KL) divergence to the true distribution at each time step [3],
[4].

The main contribution of this paper is to introduce a new
framework for efficient visual tracking. In the representation
step, we modify the fragmentation in [1] by using the gradient
cue, in order to obtain the partitions in the most informative
region. By online updating a free form approximation of
the filter distribution, the variational approach is proved to
outperform the directive searching and the particle filtering.
Furthermore, the filtering based method is able to predict the
region where the target is likely to appear. Therefore we only
compute the integral histogram in the region of interest (ROI),
speeding up the tracker.

The remainder of the paper is organized as follows. Section
II introduces the target model based on the modified fragment
representation. Section III describes the variational approxi-
mation in a Bayesian inference framework. Section IV gives
the experimental results. Section V concludes the paper.

II. FRAGMENTS-BASED TARGET REPRESENTATION

Thanks to its simplicity and independence from scaling
and rotation, the color histogram has been widely used for
target representation. However, the histogram feature loses
the spatial information of the target. In [1], the rectangular
window, containing the target, is divided into smaller fixed
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vertical and horizontal sub-rectangles, indicated in the second
column of Figure 1. Each sub-rectangle, called patch, has its

Fig. 1: Fragmentation on a stepping forward pedestrian. The
first column is the target in a bounding box; the second column
is the fragmentation based on fixed horizontal and vertical
rectangles proposed in [1]; the third column shows the gradient
information of the target; the last column displays the patches
selected by our fragmentation.

own coordinates inside the window, and its own height and
width, represented as 𝑃 𝑡=(dx, dy, h, w). The computation of
histogram is performed in each patch. Therefore, the target
in the tracker window was now represented as a series of
patches and their respective histograms. Spatial information is
efficiently saved through this approach.

However, the main drawback is that the division of the
sub-regions is fixed in each tracking step. In visual tracking
case, the human target often steps forward. Consequently, the
leg’s location is variable in the main window. If the fixed
patches are used to locate the leg of the target, they would be
often viewed as outliers in later comparison. In this paper,
in order to locate the patches in more informative places,
we use the oriented gradient information of the target [5].
First, the pixel’s orientation and magnitude are computed in
the main window. Then, we define the patches with suitable
width, height and we set a threshold 𝑇 as the ratio between
the cumulative magnitudes 𝑐𝑢𝑚𝑀 in the main window and the
numbers of patches 𝑛𝑢𝑚𝑃 (𝑇=𝑐𝑢𝑚𝑀 /𝑛𝑢𝑚𝑃 ). The patch with
the higher cumulative magnitudes than the average 𝑇 is kept
as a descriptor. Figure 1 indicates that this method produces
patches in the regions containing texture variations.

III. BAYESIAN FILTERING BY VARIATIONAL

APPROXIMATION

A. State-space Model and Likelihood Model

In this paper, the target state 𝒙𝑡 at time instant 𝑡 is the
location of the target in the current frame. In order to model
the prior information about the target trajectory, we adopt the
model introduced by [3]:⎧⎨

⎩

𝝁𝑡 ∼ 𝒩 (𝝁𝑡 ∣ 𝝁𝑡−1, �̄�)

𝝀𝑡 ∼ 𝒲�̄�(𝝀𝑡 ∣ 𝑺)

𝒙𝑡 ∼ 𝒩 (𝒙𝑡 ∣ 𝝁𝑡,𝝀𝑡)

(1)

where the state of interest 𝒙𝑡 has a Gaussian distribution with
random mean 𝝁𝑡 and random precision matrix 𝝀𝑡. The mean
follows a Gaussian walk reflecting the time correlation of
the system trajectory. The precision matrix follows a Wishart
distribution. �̄� , �̄� and 𝑺 are hyper-parameters, denoting
respectively the Gaussian walk precision matrix, freedom
degrees and the precision matrix of the Wishart distribution.
In order to capture various motions, we adaptively tune the
parameter �̄� instead of constructing a fixed motion model.
Contrary to [3], where the �̄� is fixed, this modification is
more robust to motion changing. Details are given in the next
section.

To evaluate how likely a candidate region represents the
target, we define the likelihood model based on the color
histogram measurement. As mentioned before, the model
reference is a series of patches with their corresponding color
histograms. We compute the Chi-square distance first between
the 𝑛th patch’s histogram of the 𝑖th candidate region 𝑥𝑖 and
the corresponding patch’s histogram ℎ𝑟𝑒𝑓 in the reference as
follow:

𝐷𝑛 = Σ𝑁𝑏

𝑗=1

(ℎ𝑛,𝑥𝑖(𝑗)− ℎ𝑛,𝑟𝑒𝑓(𝑗))
2

ℎ𝑛,𝑥𝑖(𝑗) + ℎ𝑛,𝑟𝑒𝑓 (𝑗)
, (2)

where 𝑁𝑏 denotes the number of bins in histogram. If there
are 𝑁 patches selected at time 𝑡, the whole distance set is
{𝐷1, . . . , 𝐷𝑁} for region 𝑥𝑖. Therefore, the combined distance
between the 𝑖th candidate and the reference is,

𝐷𝑥𝑖 =

𝑁∑
𝑛=1

𝐷𝑛. (3)

Given 𝑀 candidates at time 𝑡, we define the likelihood of one
candidate state 𝑥𝑖𝑡 as,

𝑝(𝑦𝑡 ∣ 𝑥𝑖𝑡) ∝ 𝑒𝑥𝑝(−𝐷𝑥𝑖/
𝑀∑
𝑖=1

𝐷𝑥𝑖). (4)

B. Bayesian Filtering by Sequential Monte Carlo Approxima-
tion

Given the model in section III-A, the Bayesian filtering
consists of estimating the posterior marginal probability of
the continuous hidden state, i.e. 𝑝(𝜶𝑡 ∣ 𝒚1:𝑡), where 𝜶𝑡 =
(𝒙𝑡,𝝁𝑡,𝝀𝑡) is the extended hidden state, and 𝒚1:𝑡 denotes all
the past frames up to current frame. As the likelihood function
is nonlinear and the dimensionality of the observation is highly
decreased, the online update of the posterior distribution is
intractable. The particle filtering is a popular approximation
method based on sequential Monte Carlo procedure. In this
methodology the posterior distribution is approximated by a
point-mass distribution of a set of weighted samples (called
particles) {𝜶(𝑖)

𝑡 , 𝑤
(𝑖)
𝑡 }𝑁𝑖=1:

𝑝𝑁(𝜶𝑡 ∣ 𝒚1:𝑡) ≈
𝑁∑
𝑖=1

𝑤
(𝑖)
𝑡 𝛿

𝜶
(𝑖)
𝑡
(𝑑𝜶𝑡),

where 𝛿
𝜶

(𝑖)
𝑡
(𝑑𝜶𝑡) denotes the Dirac function. To maintain a

sequential schedule, the sampling (proposal) distributions must
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respect the following form:

𝜋(𝜶0:𝑡 ∣ 𝒚1:𝑡) = 𝜋(𝜶0:𝑡−1 ∣ 𝒚1:𝑡−1)𝜋(𝜶𝑡 ∣ 𝜶0:𝑡−1,𝒚1:𝑡).

Finally, the weights can be computed in a recursive way as:

𝑤
(𝑖)
𝑡 ∝ 𝑤

(𝑖)
𝑡−1

𝑝(𝒚𝑡 ∣ 𝜶(𝑖)
𝑡 )𝑝(𝜶

(𝑖)
𝑡 ∣ 𝜶(𝑖)

0:𝑡−1)

𝜋(𝜶
(𝑖)
𝑡 ∣ 𝜶(𝑖)

0:𝑡−1,𝒚1:𝑡)
. (5)

The performance of the particle filter depends on the proposal
distribution. Usually, the dynamical transition model is used
as the proposal. Therefore, the samples are proportional to the
likelihood function. In this case, the samples are selected in
the highest value area of the likelihood. If the likelihood model
has limited overlapped area with the posterior, the performance
would be poor. To improve the performance, one has to use
a quasi-optimal proposal distribution. However, this leads to
more complex and time consuming algorithm, which is not
suitable for real-time visual tracking applications.

Recently, the variational approximation, has been proposed
as an alternative to sequential Monte Carlo method. It is based
on a deterministic approximation of the posterior distribution
of the hidden variables, while keeping tractable and closed
analytical forms [6].

C. Variational Approximation

Contrary to the point-mass approximation of the filtering
distribution in particle filtering, the variational approach ap-
proximates the posterior 𝑝(𝜶𝑡 ∣ 𝒚1:𝑡) by a more tractable
distribution 𝑞(𝜶𝑡). It is based on minimizing the Kullback-
Leibler divergence between the filtering distribution and the
approximate distribution:

𝐷KL(𝑞∣∣𝑝) =
∫
𝑞(𝜶𝑡) log

𝑞(𝜶𝑡)

𝑝(𝜶𝑡 ∣ 𝒚1:𝑡)
𝑑𝜶𝑡. (6)

with the assumption of a separable distribution 𝑞(𝜶𝑡) =
𝑞(𝒙𝑡)𝑞(𝝁𝑡)𝑞(𝝀𝑡). Variational calculus leads to the following
optimal distribution:⎧⎨

⎩
𝑞(𝒙𝑡) ∝ exp ⟨log 𝑝(𝜶𝑡∣𝒚1:𝑡)⟩𝑞(𝝁𝑡)𝑞(𝝀𝑡)

𝑞(𝝁𝑡) ∝ exp ⟨log 𝑝(𝜶𝑡∣𝒚1:𝑡)⟩𝑞(𝒙𝑡)𝑞(𝝀𝑡)

𝑞(𝝀𝑡) ∝ exp ⟨log 𝑝(𝜶𝑡∣𝒚1:𝑡)⟩𝑞(𝒙𝑡)𝑞(𝝁𝑡)

(7)

Taking into account the state model (1) and variational ap-
proximation 𝑞(𝜶𝑡−1) at time 𝑡− 1, the filtering distribution is
written as,

𝑝(𝜶𝑡∣𝒚1:𝑡)∝𝑝(𝒚𝑡∣𝒙𝑡,𝝀𝑡,𝝁𝑡)𝑝(𝒙𝑡,𝝀𝑡,𝝁𝑡 ∣ 𝒚1:𝑡−1)
∝𝑝(𝒚𝑡∣𝒙𝑡)𝑝(𝒙𝑡,𝝀𝑡∣𝝁𝑡)

∫
𝑝(𝝁𝑡∣𝝁𝑡−1)𝑞(𝝁𝑡−1)𝑑𝝁𝑡−1.

(8)
Substituting equation (8) in (7) and considering the space
model (1), the separable components of the approximate
distribution are obtained in the following form,⎧⎨

⎩
𝑞(𝒙𝑡) ∝ 𝑝(𝒚𝑡 ∣ 𝒙𝑡)𝒩 (𝒙𝑡 ∣ ⟨𝝁𝑡⟩, ⟨𝝀𝑡⟩)
𝑞(𝝁𝑡) ∝ 𝒩 (𝝁𝑡 ∣ 𝝁∗

𝑡 ,𝝀
∗
𝑡 )

𝑞(𝝀𝑡) ∝ 𝒲𝑛∗(𝝀𝑡 ∣ 𝑺∗
𝑡 )

(9)

where the parameters are updated according to the scheme
of equation (10) in [7]. However, due to the non-Gaussian
likelihood mode in model (4), the mean and the covariance

of the distribution 𝑞(𝑥𝑡) have no closed form. An Importance
sampling scheme is thus employed in order to approximate
these statistics as follows. The samples are drawn according
to the Gaussian 𝒩 (𝒙𝑡 ∣ ⟨𝝁𝑡⟩, ⟨𝝀𝑡⟩) and weighted according
to their likelihoods:

𝒙
(𝑖)
𝑡 ∼ 𝒩 (𝒙𝑡 ∣ ⟨𝝁𝑡⟩, ⟨𝝀𝑡⟩), 𝑤(𝑖)

𝑡 ∝ 𝑝(𝒚𝑡 ∣ 𝒙(𝑖)
𝑡 ). (10)

The mean and the covariance are then obtained by the follow-
ing approximations:

⟨𝒙𝑡⟩ =
𝑁∑
𝑖=1

𝑤
(𝑖)
𝑡 𝒙

(𝑖)
𝑡 , ⟨𝒙𝑡𝒙

𝑇
𝑡 ⟩ =

𝑁∑
𝑖=1

𝑤
(𝑖)
𝑡 𝒙

(𝑖)
𝑡 𝒙

(𝑖)𝑇
𝑡 . (11)

It is worth noting that the parameters of one factorized
distribution are jointly updated with respect to the other
remaining components’ expectations. In fact, the additional
hidden states 𝝁𝑡 and 𝝀𝑡 give more flexibility to the dynamical
state. Based on the extended state, candidates can be adaptively
hypothesized. In order to handle the uncertainties in an adap-
tive way, we also propose to tune the hyper-parameters of the
prior distributions of 𝝁𝑡 and 𝝀𝑡, based on the distribution 𝑞(𝒙𝑡)

approximated by the set {𝑤(𝑖)
𝑡 ,𝒙

(𝑖)
𝑡 }. In this paper, we use the

mean 𝐸(𝑤𝑡) and the variance 𝑉 𝑎𝑟(𝑤𝑡) of the samples weights
𝑤

(𝑖)
𝑡 , in order to monitor the hyper-parameters variation. The

decreasing of the mean 𝐸(𝑤𝑡) (i.e.lower than a fixed threshold
𝑀𝑤) and/or the increasing of the variance 𝑉 𝑎𝑟(𝑤𝑡) (i.e.
higher than a fixed threshold 𝑉𝑤 ) indicate that an abrupt
event has occurred (for example, the target is speeding up
or an occlusion has occurred). In these cases, decreasing the
precision matrix �̄� in model (1) will increase the range of the
search region of the variational filter. Therefore, the tracker
is able to localize the target when an irregular event occurs.
When the target recovers a regular trajectory, the search region
will then be automatically reduced.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results on two
widely used datasets from PETS2001 and PETS2006 (avail-
able at http://ftp.pets.rdg.ac.uk). The histogram was calculated
in RGB space with 10x10x10 bins. The parameters in the
dynamical model were set to 𝝁∗

0 = [𝑥0, 𝑦0]
𝑇 , 𝜆∗0 = diag (0.008

, 0.008), �̄� = diag (0.008, 0.008), �̄� = 4, 𝑆 = diag (5, 5).
The threshold for weight mean 𝐸(𝑤𝑡) and weight variance
𝑉 𝑎𝑟(𝑤𝑡) are respectively set to 𝑀𝑤 = 0.7 and 𝑉𝑤 = 82. The
range for �̄� is defined as (0.0003 ∼ 0.008)𝑰, where 𝑰 denotes
the identity matrix. 60 candidates were produced at importance
sampling step in the variational filter. For comparison purpose,
we also run the algorithm in [1] and the general particle filter
with 200 samples.

Figure 2 shows the limitations of the two concurrent track-
ing algorithms. As the bounding box of the target in the
initial frame contains some background information, the fixed
fragmentation tracker lost the target in frame 972. The particle
filter, even with more samples, also failed in frame 1086, when
the pedestrian changed the direction and the background has
a color histogram similar to the top part of the target. Based
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Fig. 2: Comparison of tracking performances between the
algorithm proposed in [1] (first row), the particle filter (second
row) and the proposed tracker (last row). From left to right,
frames (840, 972, 1086) were taken from the sequence in
PETS2001.

on the gradient cue of the target, our approach avoids the
selection of the patches in the background. Furthermore, when
the target accelerated, the mean of the weights dropped below
the threshold. In this case, our tracker adaptively tunes down
the �̄� and keeps tracking the real target. With the provided
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Fig. 3: Position errors w.r.t. ground truth

ground truth, we also compare the position errors of the three
trackers in Figure 3. Using much less samples, our tracker has
a comparable performance as the particle filter and succeeds
when an abrupt event happened.

In Figure 4, there is a severe occlusion when the tracked
person encountered an other person with similar appearance.
The other challenging aspect of this data set is the fact
that when the pedestrian moved closer to the camera, his
relative speed increased. The particle filter lost the target when
the occlusion happened. However, our proposed algorithm

succeeds in tracking the target.

Fig. 4: Tracking results in frames 1040, 1060 (occlusion
happened between two persons with similar appearance), 1077
(after occlusion) of PETS2006. The tracker in first row used
the particle filter. The second row shows the results of our
proposed tracker.

V. CONCLUSION

Based on gradient information, we use more informa-
tive fragments to represent a target. Without the time-
consuming background modeling and foreground segmenta-
tion, this model works well in real visual surveillance. The
variational approach in localization step is adaptively tuned
to handle the abrupt trajectory change in real time with
less samples, compared to the particle filter. Thanks to these
performances, the proposed tracker can be potentially applied
to the embedded smart camera systems. One shortcoming of
the proposed tracker is that its reference model and scale are
not updated during the tracking. This is due to the fact that
the tracker can not update the reference in a proper time. In
fact, there is a feature dissimilarity even for the same target in
different frames. Automatically updating the reference model
is one of the perspectives of this work.
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