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ABSTRACT

Personal sound zone (PSZ) systems, which aim to create listening
(bright) and silent (dark) zones in neighboring regions of space, are
often based on time-varying acoustics. Conventional adaptive-based
methods for handling PSZ tasks suffer from the collection and pro-
cessing of acoustic transfer functions (ATFs) between all the match-
ing microphones and all the loudspeakers in a centralized manner,
resulting in high calculation complexity and costly accuracy require-
ments. This paper presents a distributed pressure-matching (PM)
method relying on diffusion adaptation (DPM-D) to spread the com-
putational load amongst nodes in order to overcome these issues.
The global PM problem is defined as a sum of local costs, and the
diffusion adaption approach is then used to create a distributed so-
lution that just needs local information exchanges. Simulations over
multi-frequency bins and a computational complexity analysis are
conducted to evaluate the properties of the algorithm and to com-
pare it with centralized counterparts.

Index Terms— Personal sound zone, pressure matching, dis-
tributed networks, diffusion adaptation.

1. INTRODUCTION

Personal sound zone (PSZ) aims to generate individual zones for
users within a spatial control region by employing a loudspeaker
array [1]. This can be used in a wide range of commercial au-
dio applications, including neckband headset [2], car cabin au-
dio [3], mobile devices [4], television sound systems [5], to cite
a few. Among several methods adopted for sound zone genera-
tion, there are two typical approaches, namely the acoustic contrast
control (ACC) [6–8] methods and pressure matching (PM) [9–12]
methods. The ACC algorithms maximize the energy ratio between
the bright and dark zones. The PM algorithms, on the other hand,
try to minimize the mean-square error (MSE) of the reproduced
sound field in the zones compared to the target sound field. Note
that these methods should be implemented with online estimates of
room impulse responses (RIR), which are often time-variant [13,14].

Existing adaptive PSZ algorithms employ centralized approaches
to gather and process the acoustic transfer functions (ATFs) between
all loudspeakers and all matching points [15]. However, the practi-
cality of these centralized solutions is limited in large-scale applica-
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tions and distributed system deployments due to their high computa-
tional complexity. To address this, network-wide ACC-based meth-
ods have been proposed, which leverage a wireless acoustic sensor
and actuator network (WASAN) to distribute the computational bur-
den across nodes [16,17]. In the method described in [16], each zone
is treated as being covered by a single acoustic node, composed of L
loudspeakers and one microphone. However, this approach requires
significant processing capacity for each node. Alternatively, in [17],
a distributed adaptive ACC algorithm using a gradient-based gen-
eralized eigenvalue decomposition (GEVD) approach is devised to
solve the centralized problem, achieving comparable performance
to its centralized counterpart. Nevertheless, this method relies on a
root node to compute the global gradient vector and disseminate it to
all other nodes through a communication tree. If a communication
or computation failure occurs on the root node, it can result in the
failure of the entire network. To overcome these limitations, the
diffusion adaptation strategy [18–20] presents an attractive solution
with enhanced adaptation performance and wider stability ranges.
It operates without relying on a root node and allows each node to
share its local estimates with immediate neighbors, optimizing a
global cost collaboratively. Moreover, the optimization objective of
the PM method, which is a quadratic form, can be decomposed into
a sum of local cost functions, making it more suitable for exploiting
the benefits of diffusion strategies. These factors motivated us to
develop a distributed PM algorithm using diffusion adaptation.

In this paper, we examine a real-world PSZ application scenario
where the ATFs exhibit time-varying characteristics and are subject
to regular perturbations caused by physical and environmental fac-
tors [12,21]. Within this context, we propose a distributed PM algo-
rithm designed for networks. Our approach considers a system archi-
tecture where each node consists of multiple microphones, multiple
loudspeakers, and a local processor with communication and com-
puting capabilities. Moreover, we impose the constraint that each
node k can only access its local data, specifically the measured ATFs
between its microphones and all the loudspeakers. Subsequently, we
decompose the global cost function of the PM algorithm across the
nodes to address the optimization problem in a distributed manner.
We conduct simulations to validate the proposed distributed pres-
sure matching via diffusion adaptation (DPM-D) algorithm across
multiple frequency bins. This approach stands out significantly from
the existing literature, which predominantly emphasizes the use of
acoustic contrast control (ACC)-based distributed methods. Our pro-
posed method surpasses the limitations of the distributed ACC ap-
proach, which necessitates a root node for communication and com-
putation.
Notation. Normal font letters x, boldface small letters x and capital
letters X denote scalars, column vectors and matrices, respectively.
C denotes the complex field. The transpose and Hermitian transpose
of a vector or matrix are denoted by (·)⊤ and (·)H, respectively. (·)∗



denotes the complex conjugation operator. 1N denotes the all-one
vector of size N . Nk denotes the set of one-hop neighboring nodes
of node k, including k, and |Nk| denotes the cardinality of Nk.

2. PROBLEM FORMULATION AND CENTRALIZED
ADAPTATION STRATEGY

2.1. System model

As shown in Fig. 1(a), we assume an array of L loudspeakers and
two spatial regions with M control points in total, delimited by Mb

(bright zone) and Md (dark zone) control points, respectively. The
objective of this system is to render a target sound field in the bright
zone with minimal interference in the dark zone. The subscripts b

and d denote the bright and dark zones, respectively.
With the frequency domain approach, the sound pressure pm at

the m-th control point is given by:

pm(f) =

L∑
l=1

hm,l(f)gl(f) = hm(f)g(f), (1)

where f is the frequency, hm,l(f) ∈ C denotes the ATF between
the l-th loudspeaker to the m-th control point, gl(f) ∈ C denotes
the loudspeaker control filter, and:

hm(f) = [hm,1(f) · · · hm,L(f)], (2)

g(f) = [g1(f) · · · gL(f)]⊤. (3)
We combine the ATF matrices of the bright and dark zones into a
matrixH(f) as follows:

H(f) =

[
Hb

Hd

]
=



h1(f)
...

hMb(f)
hMb+1(f)

...
hM (f)


, (4)

where the first Mb row vectors ofH denotes the ATFs for the bright
zone. Hd, consisting of the other Md = M − Mb row vectors of
H , denotes the ATFs for the dark zone. Likewise, the vector p(f)
containing the sound pressure at the M control points is defined as:

p(f) = [p1(f) · · · pMb(f), pMb+1(f) · · · pM (f)]⊤

=H(f)g(f), (5)
and the desired signal d(f) at all the M control points as:

d(f) = [d1(f) · · · dMb(f), dMb+1(f) · · · dM (f)]⊤. (6)
From (5) and (6), the estimated error at control points is given by:

e(f) = p(f)− d(f). (7)

2.2. Centralized adaptive PM

ATFs are usually measured beforehand, that is, during a pre-
calibration stage. Then they are used for the control filter calculation.
Nonetheless, perturbations are unavoidable during the actual mea-
surement of ATF because of, e.g., a position mismatch of sensors,
RIR variation caused by changes in room temperature and humid-
ity, changes in the electroacoustic response, and background noise
in the ATF measurement procedure, etc. It is reasonable to continu-
ously estimate the control filter g with the ATFs being updated over
time. We rewrite the estimated error of (7) at the n-th time block as:

e(n, f) = p(n, f)− d(n, f). (8)

We consider the mean-square error criterion J(n, f) ≜ ∥e(n, f)∥2
to formulate the problem of frequency-domain adaptive PM [15]:

go(n, f) = argmin
g

J(n, f). (9)

Taking the derivative of J(n, f) w.r.t. g and considering the com-
plex least mean squares (LMS) algorithm [22], the adaptive update
equation can be written as:

g(n+ 1, f) =g(n, f)− µHH(n, f)e(n, f), (10)
where µ > 0 is the step size. Inspecting (10), we observe that the
error signals as well as the ATFs between each control point and
all the loudspeakers are necessary for computing the control filter at
each iteration. This means that (10) must be processed in a central-
ized manner [23].

3. DISTRIBUTED PRESSURE MATCHING VIA
DIFFUSION ADAPTATION

3.1. Distributed diffusion adaptation strategy

Consider solving (9) in a collaborative and distributed manner.
Before devising the proposed algorithm, we briefly introduce the dif-
fusion adaptation strategy. Consider a connected network composed
of N nodes. The problem is to estimate an unknown complex vector
go ∈ CL×1 such that the following global cost is minimized:

Jglob(g) =

N∑
k=1

Jk(g), (11)

where Jk(g) denotes a real-valued function accessible to node k that
is considered to be convex.

The typical adapt-then-combine (ATC) diffusion LMS strategy
is written in the following form [19]:

ψk,n+1 = gk,n − µ[∇̂Jk(gk,n)]
∗, (12)

gk,n =
∑
ℓ∈Nk

aℓkψℓ,n+1, (13)

where ∇̂Jk(gk,n) denotes a stochastic approximation for the true
local gradient ∇Jk(gk,n), the nonnegative coefficients aℓk denote
the (ℓ, k)-th entries of a left-stochastic matrixA, satisfying:

A⊤
1N = 1N , aℓk = 0, if ℓ /∈ Nk (14)

to ensure convergence in the mean sense towards go, and µk is a
positive step size at node k.

3.2. Distributed PM via diffusion LMS

To facilitate the presentation of the proposed strategy, we define
the network model as follows. We focus on a N -node distributed
personal sound zone network. Node k is a module consisting of one
or more microphones in the control zone, one or more loudspeakers,
and a processor with communication and computation capabilities.
A network of multi-channel nodes capable of processing a variety
of microphones’ and loudspeakers’ data is depicted in Fig.1(b)-1(c).
Note that, in practice, the system architecture matches the character-
istics of the application at hand (number of processors, number of
microphones and loudspeakers, room size, etc.).

For simplicity, in this paper, we consider the case where each
node is equipped with Mk microphones and Lk loudspeakers. We
write M =

∑N
k=1 Mk and L =

∑N
k=1 Lk. Let {Ck}Nk=1 be a

partition of the set of indices C = {1, · · · ,M}, specifically,
N⋃

k=1

Ck = C, Ck ∩ Cℓ = ∅, if k ̸= ℓ, (15)
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Fig. 1: Simulated PSZ system and examples of network topologies for distributed systems. (a) Plan view of the system geometry within a
room, where × represents the position of each validation point. The PSZ system is composed of 9 loudspeakers, and 16 microphones in the
bright and in the dark zone. (b) System 1: a network of 9 nodes, where each node possesses 2 or 4 microphones and 1 speaker; specifically,
each node l controls its own speaker l and possesses 2 or 4 microphones in the bright or in the dark zone depending if it is assigned to the
bright or to the dark zone. (c) System 2: same as System 1 except that the network now has 4 nodes, and each node possesses 8 microphones
in the bright or in the dark zone, and controls 2 or 3 speakers among 9 available.

where Ck denotes the set of indices of microphones at node k. We
further rewrite the global cost function (9) as (11):

go = argmin
g

Jglob(g) =

N∑
k=1

Jk(g) (16)

where we omitted the time block n and the frequency f for simplic-
ity. The local cost function Jk(g) at node k is written as:

Jk(g) =
∑
ℓ∈Ck

e2ℓ

where the ℓ-th entry of vector e, i.e., the error signal at the ℓ-th mi-
crophone, is given by eℓ = pℓ−H(ℓ, :)g, withH(ℓ, :) ∈ CL×1 the
ℓ-th row ofH , which denotes the ATFs from the ℓ-th microphone to
all L loudspeakers at node k. We force each node k to have access
only to its local measurements, which means that node k estimates
a local version gk of the control filter g without exchanging the row
data ofH with other nodes. Taking the derivative of Jk(g) w.r.t. g:

∇Jk(g) =
∑
ℓ∈Ck

2HH(ℓ, :)eℓ. (17)

Considering the diffusion LMS strategy in (12)-(13), we can address
problem (16) in a distributed manner using only local measurements
available at each node k:

ψk,n+1 = gk,n − µk

∑
ℓ∈Ck

HH(ℓ, :)eℓ, (18)

gk,n+1 =
∑
ℓ∈Nk

aℓkψℓ,n+1, (19)

where coefficients {aℓk} satisfy the conditions in (14). The local
estimate gk,n of the unknown control filter go is defined by

gk,n = [ḡ⊤1,k,n · · · ḡ⊤ℓ,k,n, · · · , ḡ
⊤
N,k,n, ]

⊤, (20)
where ḡℓ,k,n consists of the control weights coefficients of the Lℓ

loudspeakers at node ℓ and time index n, and gk,n are the control
filter weights of all the L loudspeakers. The solution of (16) is the
optimal control filter go = [go1 , · · · , goL]⊤.

4. SIMULATIONS

In this section, we validate the proposed Distributed PM method
via diffusion LMS (18)-(19), denoted by DPM-D. The algorithm
is compared with its centralized counterpart denoted by CPM. All
curves were obtained by averaging over 100 Monte Carlo runs.

4.1. Simulation setup

In the simulation, the room environment was generated with the
RIR generator toolbox [24]. As depicted in Fig. 1(a), a rectangular
room of size 8.088 m × 7.346 m × 2.865 m was modeled with
T60 ≈ 200 ms. The microphone and loudspeaker array were on
the same plane of height 1.485 m. A uniform linear array of L =
9 loudspeakers with an inter-element spacing of 0.06 m, and two
square regions of size 0.225 m × 0.225 m with 1 m separation was
used. In both the bright and dark zones, a grid of 4× 4 microphones
with an inter-element distance of 0.075 m was used to capture the
sound pressure. A validation point was positioned 0.707 cm from
each control microphone.

A sampling rate of 8 kHz and a window length of 3200 samples
were employed. In order to simulate the perturbations during the
ATF measurement process, the ATFs were perturbed by a zero-mean
white Gaussian noise with variance 0.0707 at each iteration. In or-
der to account for random thermodynamic fluctuations in the electri-
cal signals generated by the microphone’s components, an additive
Gaussian noise z(n) with a signal-to-noise ratio (SNR) of 20 dB was
added as d(n) =H(n)go + z(n), where we set the unknown vari-
able vector go to be a fixed set of variables sampled from CN (0, 1).
We selected a fixed step size µ = µk = 2.5 for both the CPM and
DPM-D algorithms for comparison. We simulated two systems with
different numbers of nodes with ring topology, and specific settings
of microphones and loudspeakers, as shown in Figs. 1(b)-1(c).

To evaluate the performance of the proposed algorithm, we con-
sidered (i) the Normalized Mean Square Error (NMSE) between the
reproduced and the target sound fields within the bright zone:

NMSE = 10 log10

(∑
m∈Mb

|dm − pm|2∑
m∈Mb

|dm|2
)
, (21)

and (ii) the Acoustic Contrast (AC), which represents the energy ra-
tio between the bright and dark zones after being controlled:

AC = 10 log10

(Md∥Hbg∥2

Mb∥Hdg∥2
)
, (22)

where we set Mb = Md = 16 in our simulations.

4.2. Simulation results

We first considered that the desired signal for the bright zone
is driven by a plane wave with frequency of 1 kHz, while the de-
sired signal for the dark zone is null [25]. Fig. 2(a) illustrates the
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Fig. 2: Comparison of the NMSE and AC learning curves. Shaded regions in (a) represent the three standard deviations of the estimates.
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Fig. 3: Multi-frequency control performances of the proposed DPM-D algorithm for Systems 1 and 2 compared with the CPM algorithm on
control points. (a) NMSE on frequency bins after 5000 iterations; (b) AC on frequency bins after 5000 iterations.

Table 1: Comparison of computational complexity

Algorithms Additions Multiplications
CPM (M + L)× F log2 F +M × L (M + L)× F

2
log2 F + (M + 1)× L

Proposed DPM-D (Mk + Lk)× F log2 F + (|Ck|+ |Nk| − 1)× L (Mk + Lk)× F
2
log2 F + (|Ck|+ |Nk|+ 1)× L

NMSE convergence behavior at the control and validation points for
the bright zone, and Fig. 2(b) reports the AC at the control and vali-
dation points (but includes information from the bright and the dark
zones. At the control and validation points, the DPM-D algorithm
reaches a steady-state comparable to that of the CPM algorithm. At
steady-state on control points, the NMSE and the AC are approxi-
mately equal to −16 dB and 16 dB, respectively. At steady-state on
validation points, the NMSE and the AC are approximately equal to
−14 dB and 14 dB, respectively. Regarding the DPM-D method, the
distributed PM with System 2 achieves superior convergence perfor-
mance. The reason is that nodes in System 2 use more microphones
measurements during the update step (18). However, the resulting
computational complexity is larger because it grows with the num-
ber of microphones maintained by each node.

In order to examine the performance of the proposed algorithm
over multi-frequency bins, we then tested the desired signal for the
bright zone with frequency bins ranging from 100 to 4000 Hz with a
step of 100 Hz. Other experimental settings were identical to those
considered before with the single-frequency signal. Fig. 3 shows the
NMSE and AC behaviors at various frequencies. It can be observed
that the DPM-D with both systems and the CPM perform almost the
same over most of frequency bins after 5000 iterations. Fig. 3(a) and
Fig. 3(b) indicate that adding additional microphones to a node in a
distributed system does not significantly improve its NMSE steady-
state performance and its AC steady-state performance, respectively.

We further conducted an analysis of the computational complex-

ity of the frequency domain-based PM methods, as shown in Ta-
ble 1. The parameter F in this table represents the number of FFT
operations. We evaluated the computational load at each iteration
on the centralized processor for centralized algorithms and on the
processor of each node k for distributed algorithms. The computa-
tional complexity was divided into two components: the FFT oper-
ation and the frequency domain processing. The results presented
in Table 1 demonstrate that the proposed distributed method effec-
tively distribute the computational load among to the processors of
each node, thereby reducing the communication load compared to
the centralized approach. This improvement in load distribution en-
hances the scalability of the system.

5. CONCLUSION

The novelty of the work presented in this paper resides in the
utilization of a distributed PM approach based on diffusion LMS
for handling PSZ tasks. This approach stands out significantly from
the existing literature, which predominantly emphasizes the use of
acoustic contrast control (ACC)-based distributed methods. Our pro-
posed method surpasses the limitations of the distributed ACC ap-
proach, which necessitates a root node for communication and com-
putation, by enabling each node to independently estimate and share
information with its neighboring nodes.
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