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SGM TO SOLVE NMF – APPLICATION TO
HYPERSPECTRAL DATA

C. Theys1, H. Lantéri1 and C. Richard1

Abstract. This article deals with the problem of minimization of a
general cost function under non-negativity and flux conservation con-
straints. The proposed algorithm is founded on the Split Gradient
Method (SGM) adapted here to solve the Non Negative Matrix
Factorization (NMF). We show that SGM can be easily regularized,
allowing to introduce some physical constraints. Finally, to validate
the algorithm, we propose an example of application to hyperspectral
data unmixing.

1 Introduction

In the field of image reconstruction or deconvolution, the minimization of a cost
function between noisy measurements and a linear model is usually performed, sub-
ject to positivity and flux constraints. The well known, in astrophysical area, are
the Iterative Space Reconstruction Algorithm (ISRA) (Daube-Witherspoon 1986),
and the Expectation Minimization (EM) (Dempster et al. 1977) or Richardson
Lucy (RL) (Lucy 1974; Richardson 1972) algorithm. In the last ten years, a gen-
eral algorithmic method, called Split Gradient Method (SGM) (Lantéri et al. 2001,
2002), has been developed to derive multiplicative algorithms for minimizing any
convex criterion under positivity constraints. It leads to ISRA and EM-RL algo-
rithm as particular cases. SGM has recently been extended to take into account a
flux conservation constraint (Lantéri et al. 2009).

During the last few years, many papers have been published in the field of
Nonnegative Matrix Factorization (NMF) with multiplicative algorithms (Lee &
Seung 2001; Cichoki et al. 2006; Févotte et al. 2009). This problem is closely
related to the blind deconvolution one (Desidera et al. 2006; Lantéri et al. 1994)
and consists in estimating W and H, nonnegative, such that V ≈WH. The aim
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of this paper is to propose a unified framework based on SGM, an interior-point
algorithm, to derive algorithms for NMF, in a multiplicative form or not.

To illustrate the general interest of SGM for NMF, we also show how to regular-
ize the problem by introducing smoothness or sparsity constraints on the columns
of W and H respectively, Lantéri et al. (2011), Lantéri et al. (2011). The choice of
these different regularization terms are motivated by the application on hyperspec-
tral imagery, Theys et al. (2009). The paper is organized as follows. In Section 2,
we describe the problem at hand and notations for non-negative matrix factoriza-
tion. In Section 3, we describe the Split Gradient Method (SGM). In Section 4,
we show how to add a sum-to-one constraint in the SGM algorithm. In Section 5,
we briefly discuss the choice of the step size. Section 6 introduces the physical
context and some simulation results are given in Section 7. The regularized SGM
is developed in section 8 with a smoothness constraint on the columns of W and
then a sparsity constraint on the columns of H, with typical numerical examples
in Section 9. Section 10 concludes the paper.

2 Nonnegative matrix factorization

We consider here the problem of nonnegative matrix factorization (NMF), which
is now a popular dimension reduction technique, employed for non-subtractive,
part-based representation of nonnegative data. Given a nonnegative data matrix
V of dimension F ×N , the NMF consists of seeking a factorization of the form

V ≈WH (2.1)

where W and H are nonnegative matrices of dimensions F × K and K × N ,
respectively. Dimension K is usually chosen such that FK +KN � FN , that is,
much more equations than unknowns. For example with F = N = 3 and K = 1:⎡

⎣ V11 V12 V13

V21 V22 V23

V31 V32 V33

⎤
⎦ =

⎡
⎣ W11

W21

W31

⎤
⎦ [ H11 H12 H13

]
. (2.2)

This problem is encountered at each time we want to find both the basis and the
coefficients of projection. The factorization (2.1) is usually sought through the
minimization problem

min
W,H

D(V,WH) s.t. [W]ij ≥ 0, [H]ij ≥ 0 (2.3)

with [V]ij and [WH]ij the (i, j)-th entries of V and WH, respectively. In the
above expression, D(V,WH) is a cost function defined by

D(V,WH) =
∑
ij

d([V]ij , [WH]ij) =
∑
ij

dij . (2.4)

In the general case, d(u, v) is a positive convex function that is equal to zero if
u = v.
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2.1 Unicity

The solution of (2.3) is, obviously, not unique. One way to overcome this problem
is to normalize the columns of W or H. We propose, here, to normalize to one
the columns of W. As a direct consequence of (2.1), this implies a constraint-sum
condition on the columns of H.

The minimization problem (2.3) becomes:

min
W,H

D(V,WH) s.t. [W]ij ≥ 0, [H]ij ≥ 0,
∑
i

[W]ij = 1,
∑
i

[H]ij =
∑
i

[V]ij . (2.5)

This constant-sum constraint is motivated by applications such as, for example,
hyperspectral data unmixing. In this case, W is the matrix of basis spectra that
are supposed to be normalized to one. Another source of indetermination is that
the solutions are given up to a permutation on rows and columns of W and H. The
problem established by (2.3) is a convex optimization problem under inequality
constraint and problem (2.5) is a convex optimization problem under both equality
and inequality constraints. We propose to consider first the problem (2.3), the
inequality constraint is treated by solving the Karush-Kuhn-Tucker conditions.
Second, we consider the problem (2.5) and the equality constraint is added by
introducing normalized variables. Once the conditions satisfying the constraints
have been established, an iterative algorithm should be applied alternatively on W
and H. The proposed iterative algorithm founded on the Split Gradient Method
(SGM), a scaled gradient descent algorithm. The way to obtain it is detailed in
the following section.

3 Minimization under non-negativity constraints: The SGM

The SGM was initially formulated and developed to solve the minimization of a
positive convex function under non-negativity constraint of the solution, problem
(2.3).

3.1 The Lagrangian function

The non-negativity constraint is expressed by the Lagrangian function associated
to (2.3), given by:

L(V,WH;Λ,Ω) = D(V,WH)− 〈Λ,W〉 − 〈Ω,H〉 (3.1)

where Λ and Ω are the matrices of positive Lagrange multipliers, and 〈·,·〉 is the
inner product defined by:

〈U,V〉 =
∑
ij

[U]ij [V]ij . (3.2)

The Lagrange multipliers method allows to find an optimum of a function under
some constraints.
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3.2 Minimization with respect to W

Minimization of (3.1)with respect toW leads to the following Karush-Kuhn-Tucker
conditions for all i, j at the solution W∗, Λ∗:

[∇WL(V,W∗H;Λ∗,Ω)]ij = 0, (3.3)
[Λ∗]ij ≥ 0, (3.4)
[W∗]ij ≥ 0, (3.5)
〈Λ∗,W∗〉 = 0⇔ [Λ∗]ij [W∗]ij = 0. (3.6)

Condition (3.3) immediately leads to

[Λ∗]ij = [∇WD(V,W∗H)]ij . (3.7)

Condition (3.6) then becomes

[W∗]ij [∇WD(V,W∗H)]ij = 0
⇔ [W∗]ij [−∇WD(V,W∗H)]ij = 0 (3.8)

where the extra minus sign in the last expression is just used to make apparent
the negative gradient descent direction of D(V,WH).

The expression (3.6) gives the condition that must be satisfied for any op-
timization problem under non-negativity constraint. At the solution, the inner
product between the gradient of the cost function and the variables must be equal
to zero. The interpretation is the following: either our solution is the one that
minimizes the cost function and the minimizer is positive, either the minimizer of
the cost function is negative or zero and the constrained solution is zero.

This condition is non linear w.r.t. the unknowns, an analytical solution does
not exist.

3.2.1 Gradient descent method

Since the gradient of the functional has an analytical form, a natural choice for
the iterative algorithm is a gradient descent method.

If we consider first the minimization problem without non-negativity con-
straint:

min
W,H

D(V,WH), (3.9)

we use the negative gradient as a descent direction and we write:

[Wk+1]ij = [Wk]ij + αkij [−∇WD(V,W∗H)]ij (3.10)

with αkij a positive step size that allows to control convergence of the algorithm.
If now, we consider the minimization problem with non-negativity constraint,

Equation (2.3), the descent direction becomes [W∗]ij [−∇WD(V,W∗H)]ij ,
Equation (3.8) and the descent algorithm is:

[Wk+1]ij = [Wk]ij + αkij [W
∗]ij [−∇WD(V,W∗H)]ij . (3.11)
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More generally:
M ·W · [−∇WD(V,W∗H)] (3.12)

is a scaled gradient descent direction of D if M is a matrix with positive en-
tries, where · denotes the Hadamard product. A particular choice for M with
an adequate particular decomposition of [−∇WD(V,W∗H)] leads to the SGM
algorithm.

3.2.2 Split Gradient Method (SGM)

The SGM algorithm is a descent algorithm whose direction is constructed in such
a way that, for a step size equal to one, we obtain a multiplicative algorithm.
To obtain it, an additional point is that [−∇WD]ij can always be decomposed
as [P]ij − [Q]ij , where [P]ij and [Q]ij are positive entries, let us note that this
decomposition is obviously not unique. If we take for M, Equation (3.12):

[M]ij =
1

[Q]ij
(3.13)

we obtain the following gradient-descent algorithm:

[Wk+1]ij = [Wk]ij + αkij
[Wk]ij
[Q]kij

[−∇WD(V,WkH)]ij (3.14)

with αkij a positive step size that allows to control convergence of the algorithm.
If we write explicitly the decomposition of the gradient, Equation (3.11) becomes:

[Wk+1]ij = [Wk]ij + αkij
[Wk]ij
[Qk]ij

(
[Pk]ij − [Qk]ij

)
(3.15)

or

[Wk+1]ij = [Wk]ij + αkij [W
k]ij

(
[Pk]ij
[Qk]ij

− 1
)
. (3.16)

Once we have the gradient type descent algorithm, we must determine the maxi-
mum value for the step size in order that [Wk+1]ij ≥ 0, given [Wk]ij ≥ 0. Note
that, according to (3.15) or (3.16), a restriction must only apply if

[Pk]ij − [Qk]ij < 0 (3.17)

since the other terms are positive. The maximum step size which ensures the
positivity of [Wk+1]ij is given by

(αkij)max =
1

1− [Pk]ij

[Qk]ij

(3.18)

which is strictly greater than 1. Finally, the maximum step size over all the
components must satisfy

(αk)max ≤ min{(αkij)max}. (3.19)
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This choice ensures the non-negativity of all the components of Wk from iteration
to iteration. Then, convergence of the algorithm is guaranteed by computing an
appropriate step size, at each iteration, over the range [0, (αk)max] by means of a
simplified line search such as the Armijo rule for example. Finally, it is important
to notice that the use of a step size equal to 1 leads to the very simple and
well-known multiplicative form:

[Wk+1]ij = [Wk]ij
[Pk]ij
[Qk]ij

· (3.20)

This form is used because it is very easy to implement and it guarantees the
non-negativity of successive iterates for an initial non-negative value [W0]ij ≥ 0.
The main and important drawback is that the convergence of the algorithm is not
assured in the general case, but only for specific cases of [P] and [Q].

3.3 Minimization with respect to H

Minimization of (3.1) with respect to H leads to the following Karush-Kuhn-
Tucker conditions for all i, j at the solution W∗, Λ∗:

[∇HL(V,W∗H;Λ,Ω∗)]ij = 0, (3.21)
[Ω∗]ij ≥ 0, (3.22)
[H∗]ij ≥ 0, (3.23)
〈Ω∗,H∗〉 = 0⇔ [Ω∗]ij [H∗]ij = 0. (3.24)

Condition (3.21) immediately leads to

[Ω∗]ij = [∇HD(V,WH∗)]ij . (3.25)

Condition (3.24) then becomes

[H∗]ij [∇HD(V,WH∗)]ij = 0
⇔ [H∗]ij [−∇HD(V,WH∗)]ij = 0. (3.26)

where the extra minus sign in the last expression is just used to make the negative
gradient descent direction of D(V,WH) apparent.

The expression (3.24) gives the condition that must be satisfied for any op-
timization problem under non-negativity constraint. At the solution, the inner
product between the gradient of the cost function and the variables must be equal
to zero. The interpretation is the following: either our solution is the one that
minimizes the cost function and the minimizer is positive, either the minimizer of
the cost function is negative or zero and the constrained solution is zero.

This condition is non linear w.r.t. the unknowns, an analytical solution does
not exist.
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3.3.1 Gradient descent method

Since the gradient of the functional is computable, a natural choice for the iterative
algorithm is a gradient descent method.

If we consider first the minimization problem without non-negativity con-
straint:

min
W,H

D(V,WH), (3.27)

we use the negative gradient as a descent direction and we write:

[Hk+1]ij = [Hk]ij + βkij [−∇HD(V,WH∗)]ij (3.28)

with βkij a positive step size that allows to control convergence of the algorithm.
If now, we consider the minimization problem with non-negativity constraint,

Equation (2.3), the descent direction becomes [H∗]ij [−∇HD(V,WH∗)]ij ,
Equation (3.26) and the descent algorithm is:

[Hk+1]ij = [Hk]ij + βkij [H
k]ij [−∇HD(V,WH∗)]ij . (3.29)

More generally:
N ·H · [−∇HD(V,WH∗)] (3.30)

is a gradient descent direction of D if N is a matrix with positive entries, where ·
denotes the Hadamard product. A particular choice for N with a specific decom-
position of [−∇HD(V,WH∗)] leads to the SGM algorithm.

3.3.2 Split Gradient Method (SGM)

The SGM algorithm is a descent algorithm whose direction is constructed in such
a way that, for a step size equal to one, we obtain a multiplicative algorithm.
To obtain it, an additional point is that [−∇HD]ij can always be decomposed
as [R]ij − [S]ij , where [R]ij and [S]ij are positive entries, let us note that this
decomposition is obviously not unique. If we take for N, Equation (3.30):

[N]ij =
1

[S]ij
, (3.31)

we obtain the following gradient-descent algorithm:

[Hk+1]ij = [Hk]ij + βkij
[Rk]ij
[Sk]ij

[−∇HD(V,WHk)]ij (3.32)

with βkij a positive step size that allows to control convergence of the algorithm.
If we write explicitly the decomposition of the gradient, Equation (3.32) becomes:

[Hk+1]ij = [Hk]ij + βkij
[Hk]ij
[Rk]ij

(
[Rk]ij − [Sk]ij

)
(3.33)
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or

[Hk+1]ij = [Hk]ij + βkij [H
k]ij

(
[Rk]ij
[Sk]ij

− 1
)
. (3.34)

Once we have the gradient type descent algorithm, we must determine the ma-
ximum value for the step size in order that [Hk+1]ij ≥ 0, given [Hk]ij ≥ 0. Note
that, according to (3.33), a restriction must only apply if

[Rk]ij − [Sk]ij < 0 (3.35)

since the other terms are positive. The maximum step size which ensures the
positivity of [Hk+1]ij is given by

(βkij)max =
1

1− [Rk]ij

[Sk]ij

(3.36)

which is strictly greater than 1. Finally, the maximum step size over all the
components must satisfy

(βk)max ≤ min{(βkij)max}. (3.37)

This choice ensures the non-negativity of all the components of Hk from iteration
to iteration. Then, convergence of the algorithm is guaranteed by computing an
appropriate step size, at each iteration, over the range [0, (βk)max] by means of a
simplified line search such as the Armijo rule for example. Finally, it is important
to notice that the use of a step size equal to 1 leads to the very simple and well-
known multiplicative form:

[Hk+1]ij = [Hk]ij
[Rk]ij
[Sk]ij

· (3.38)

This form is used because it is very easy to implement and it guarantees the non-
negativity of successive iterates for an initial non-negative value [H0]ij ≥ 0. The
main and important drawback is that the convergence of the algorithm is not
assured.

3.4 Explicit expressions of the gradients

Before ending this section, let us compute ∇D with respect to H and W, using
Equations (2.1) and (2.4). It can be expressed in matrix form as follows:

∇HD = WTA ∇WD = AHT (3.39)

where A is a matrix whose (i, j)-th entry is given by:

[A]ij =
∂dij

∂[WH]ij
· (3.40)

Equations (3.20), (3.38) associated to (3.39), (3.40), lead to the multiplicative
algorithms described in (Cichoki et al. 2006; Févotte et al. 2009; Lee & Seung
2001). These are particular cases of the relaxed algorithms (3.15) (3.33), when a
unit step size is used.
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4 Minimization under non-negativity constraints and flux conservation

Let us now consider problem (2.5), which differs from (2.3) by additional flux
constraints.

4.1 Flux conservation constraints

We make the following variable changes:

[W]ij =
[Z]ij∑
m[Z]mj

; (4.1)

[H]ij =

(∑
m

[V]mj

)
[T]ij∑
m[T]mj

· (4.2)

The term (
∑

m[V]mj) comes from the fact that [H]ij is normalized to the column
j of V. In so doing, the problem becomes unconstrained with respect to the flux
but we must search the solution in a domain where the denominator is a constant
to ensure that the problem remains convex w.r.t. the new variables. It is an
important point performed by our method. The flux conservation being provided
by the change of variables, we can proceed the SGM on the new variables to ensure
both the non-negativity and the flux conservation.

To deal with the non-negativity constraints, let us consider again the SGM
algorithm and compute the gradient with respect to new variables.

4.2 Explicit expressions of the gradients

Let us compute expression of the gradients w.r.t. the new variables:

∂D
∂[Z]lj

=
∑
i

∂D
∂[W]ij

× ∂[W]ij
∂[Z]lj

, (4.3)

∂D
∂[T]lj

=
∑
i

∂D
∂[H]ij

× ∂[H]ij
∂[T]lj

(4.4)

where, in a compact form,

∂[W]ij
∂[Z]lj

=
1∑

m[Z]mj
× (δli − [W]ij), (4.5)

∂[H]ij
∂[T]lj

=
∑

m[V]mj∑
m[T]mj

×
(
δli − [H]ij∑

m[V]mj

)
(4.6)

with δli the Kronecker symbol. As a consequence, the components of the opposite
of the gradient of D with respect to the new variables can now be written as

− ∂D
∂[Z]lj

=
1∑

m[Z]mj

((
− ∂D
∂[W]lj

)
−
∑
i

[W]ij

(
− ∂D
∂[W]ij

))
(4.7)



“eas1359016” — 2013/2/26 — 10:32 — page 366 — #10
�

�

�

�

�

�

�

�

366 New Concepts in Imaging: Optical and Statistical Models

and

− ∂D
∂[T]lj

=
∑

m[V]mj∑
m[T]mj

((
− ∂D
∂[H]lj

)
−
∑

i[H]ij∑
m[V]mj

(
− ∂D
∂[H]ij

))
(4.8)

4.3 SGM with the normalized variables

We solve both the split of the gradient between two positive functions and the
conservation of the convexity w.r.t. to the new variables by making the shift of
the form:

(−∂D�∂[W]ij)s ←− (−∂D�∂[W]ij) + η, ∀(i, j),
(−∂D�∂[H]ij)s ←− (−∂D�∂[H]ij) + μ, ∀(i, j).

Let us notice that this shift leaves Equations (4.9) and (4.14) unchanged. Conse-
quently, using

η = −min
ij

(
− ∂D
∂[W]ij

)
+ ε, μ = −min

ij

(
− ∂D
∂[H]ij

)
+ ε

does not modify the gradient of D with respect to the new variables Z and T, but
ensures the non-negativity of (−∂D�∂[W]ij)s and (−∂D�∂[H]ij)s. A constant
ε is added to avoid numerical instability, however, it must be chosen small enough
not to slow down the minimization. Let us note that this particular decomposition
allows to ensure that the denominator in (4.1) and (4.2) remains constant and then
we are always in the convexity domain. We shall now apply the SGM method.

4.4 Minimization with respect to W

Consider the following gradient (4.9) decomposition:

[−∇ZD]ij = [P]ij − [Q]ij (4.9)

that involves the non-negative entries defined as follows

[P]ij =
(
− ∂D

∂[W]ij

)
s

, (4.10)

[Q]ij = [Q].j =
∑
i

[W]ij

(
− ∂D

∂[W]ij

)
s

. (4.11)

The relaxed form of the minimization algorithm can be expressed as

[Zk+1]lj = [Zk]lj + αk[Zk]lj

(
(−∂D�∂[Wk]lj)s∑

i[Wk]ij(−∂D�∂[Wk]ij)s
− 1
)
.

We clearly have
∑

l[Z
k+1]lj =

∑
l[Z

k]lj , for all αk. This allows us to express the
algorithm with respect to the initial variable W, that is,

[Wk+1]lj = [W]klj + αk[W]klj

(
(−∂D�∂[W]klj)s∑

i[W]kij(−∂D�∂[W]kij)s
− 1

)
. (4.12)
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Again, with a constant step size equal to 1, the algorithm takes a simple multi-
plicative form:

[Wk+1]lj = [Wk]lj
(−∂D�∂[Wk]lj)s∑

i[Wk]ij(−∂D�∂[Wk]ij)s
· (4.13)

4.5 Minimization with respect to H

In an analogous way, consider the following gradient (4.14) decomposition:

[−∇TD]ij = [R]ij − [S]ij (4.14)

that involves the non-negative entries given by

[R]ij =
∑
m[V]mj∑
m[T]mj

(
− ∂D
∂[H]ij

)
s

, (4.15)

[S]ij = S.j =
∑
m[V]m,j∑
m[T]mj

∑
i

[H]ij∑
m[V]mj

(
− ∂D
∂[H]ij

)
s

. (4.16)

This leads to the relaxed form of optimization algorithm with respect to variable
T, that is,

[Tk+1]lj = [Tk]lj + αk[Tk]lj

⎛
⎝ (−∂D�∂[Hk]lj)s∑

i
[Hk]ij∑
m[V]mj

(−∂D�∂[Hk]ij)s
− 1

⎞
⎠ .

It can be seen that
∑

l[T
k+1]lj =

∑
l[T

k]lj , for all αk, which implies that

[Hk+1]lj = [Hk]lj + αk[Hk]lj

⎛
⎝ (−∂D�∂[Hk]lj)s∑

i
[Hk]ij∑
m[V]mj

(−∂D�∂[Hk]ij)s
− 1

⎞
⎠ . (4.17)

The multiplicative form is obtained with a constant step size equal to 1, namely,

[Hk+1]lj = [Hk]lj
(−∂D�∂[Hk]lj)s∑

i[Hk]ij(−∂D�∂[Hk]ij)s

∑
m

[V]mj . (4.18)

In the next section, we propose to illustrate this algorithm within the field of
hyperspectral imaging.

5 Choice of the descent step size and convergence speed

On one hand, if the descent step size is fixed to one, there is no way to mod-
ify the convergence speed and the iterations number can be high, moreover, the
convergence is not ensured but the algorithm takes a simple form. On the other
hand, if the descent step size is searched by a simple rule, Armijo for example, the
iterations number decreases but the duration of one iteration increases, from our
experience, when the step size is computed, the overall gain is about ten or twenty
percents and in this case the convergence is ensured.
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6 Physical context: Hyperspectral imagery

Hyperspectral imaging has received considerable attention in the last few years.
See for instance (Chang 2003), (Landgrebe 2003) and references therein. It con-
sists of data acquisition with high sensitivity and resolution in hundreds contiguous
spectral bands, geo-referenced within the same coordinate system. With its ability
to provide extremely detailed data regarding the spatial and spectral characteris-
tics of a scene, this technology offers immense new possibilities in collecting and
managing information for civilian and military application areas.

Each vector pixel of an hyperspectral image characterizes a local spectral sig-
nature. Usually, one consider that each vector pixel can be modeled accurately
as a linear mixture of different pure spectral components, called endmembers.
Referring to our notations, each column of V can thus be interpreted as a spec-
tral signature obtained by linear mixing of the spectra of endmembers, i.e., the
columns of W. The problem is then to estimate the endmember spectra W and
the abundance coefficients H from the spectral signatures V.

In all the simulations presented in this paper, the end members are extracted
from the ENVI library (ENVI 2003).

7 Simulation results

Many simulations have been performed to validate the proposed algorithm,
Equations (4.13) and (4.18). The experiment presented in this paper corresponds
to 10 linear mixtures of 3 endmembers, the length of each spectrum being 826.
The three endmembers used in this example correspond to the spectra of the con-
struction concrete, green grass, and micaceous loam. The chosen cost function for
D is the Frobenius norm:

D(V,WH) =
∑
ij

([WH]ij − [V]ij)2 = (WH−V)T (WH−V). (7.1)

The used procedure is the following:

1. Take the spectra from a library (ENVI here).

2. Generate randomly the KN abundance coefficients Hij in a given interval.

3. Compute V.

4. Generate randomly H0 and W 0 in the space constraints.

5. Compute the chosen cost function, here the Frobenius norm:

6. Compute the decomposition of the gradient w.r.t. Z, i.e. (4.10) and (4.11).

7. Compute Wk+1, (4.12).

8. Compute the decomposition of the gradient w.r.t. T , i.e. (4.15) and (4.16).
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9. Compute Hk+1, (4.17).

10. Until the stopping criterion:

D(V,Wk+1Hk+1)−D(V,WkHk)
D(V,WkHk)

≤ 10−10. (7.2)

Figure 1 shows the behaviour of the criterion D as a function of the number of
iterations, and the 10 reconstructed spectra in comparison with the true ones.
Figure 2 shows the estimated endmembers (columns of W), and their abundance
coefficients (rows of H) after 12 000 iterations, and compared with the true values.
Note that the initial values for W and H were chosen to satisfy the constraints,
i.e., positivity, sum to one of the columns of W. We clearly see that the curves
coincide almost perfectly. The normalization of the columns of matrix W, as well
as the flux conservation between V and H, are satisfied at each iteration. Let us
note that H and W could be estimated up to a permutation of the columns of W,
and to an analogous permutation of the rows of H.

0 100 200 300 400 500 600 700 800 900
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 1. Frobenius D(V,WH) as a function of the number of iterations. Columns of V

at the end of the iterations, solid line for true values, dashed line for estimated values.

8 Regularization

In full generality, we can add several regularization terms depending on one or
two variables, the only constraint being that each regularization function must be
convex w.r.t. the relevant variable. If the regularization term depends on the two
variables, it must be convex w.r.t. one variable, the other being fixed. Here, we
consider the case where the regularization penalty terms are incorporated sepa-
rately on the columns of W and H, and are added to the data consistency term
D(V,WH). Then the penalized objective function expresses as

Dreg(V,WH) = D(V,WH) + γ1F1(W) + γ2F2(H) (8.1)

where F1(W) and F2(H) are penalty functions, and γ1, γ2 the respective regular-
ization factors. The general rules given for SGM remain true for the regularized
versions of the algorithms.



“eas1359016” — 2013/2/26 — 10:32 — page 370 — #14
�

�

�

�

�

�

�

�

370 New Concepts in Imaging: Optical and Statistical Models

0 0.5 1 1.5 2 2.5 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Re
fle

ct
an

ce

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
x 10

−3

Re
fle

ct
an

ce

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Re
fle

ct
an

ce

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2. On the left, columns of W. On the right, rows of H. On each plot: solid line for

true values, dashed line for estimated values.

The minimization of Dreg w.r.t. the variable Z must take into account the
regularization function F1(W), Equation (4.1):

−∇ZDreg = −∇ZD − γ1∇ZF1, (8.2)

and the minimization of Dreg w.r.t. the variable T must take into account the
regularization function F2(H), Equation (4.2).

−∇TDreg = −∇TD − γ2∇TF2. (8.3)

In the following, we consider one regularization term at a time, that is, first on
the spectra and then on the abundance coefficients.
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8.1 Regularized SGM on the spectra W

We develop in this section expressions of SGM for a regularization F1 on the
normalized endmembers spectra W, we have:

−∇ZDreg = −∇ZD − γ1∇ZF1, (8.4)

−∇TDreg = −∇TD. (8.5)

The component of the opposite of the gradient of Dreg with respect to Z is:

−∂Dreg

∂[Z]lj
=

1∑
m[Z]mj

(
− ∂D
∂[W]lj

− γ1
∂F1

∂[W]lj

)
s

−

1∑
m[Z]mj

∑
i

[W]ij

(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

(8.6)

In the same way that for the non regularized SGM, we solve both the split of
the gradient between two positive functions and the conservation of the convexity
w.r.t. the new variables by making the shift of the form:(

− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

←−
(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
+ η + ε ∀(i, j)

with

η = −min
ij

(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
.

The decomposition of the gradient of the regularized cost function w.r.t. Z is:

[−∇ZDreg]ij = [P ]ij − [Q]ij (8.7)

with

[P ]ij =
(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

,

[Q]lj = [Q].j =
∑
i

[W].j

(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

(8.8)

and the iterate on W is:

[Wk+1]lj = [W]klj + αk[W]klj

⎛
⎝

(
− ∂D
∂[W]lj

− γ1
∂F1
∂[W]lj

)
s∑

i[W]ij
(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

− 1

⎞
⎠ . (8.9)

In the same way that for the non regularized SGM, with a constant step size equal
to one, we get:

[Wk+1]lj = [W]klj

(
− ∂D
∂[W]lj

− γ1
∂F1
∂[W]lj

)
s∑

i[W]ij
(
− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

· (8.10)
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The iterate on H is still given by Equation (4.17) or Equation (4.18) for a unit
step size.

8.1.1 Tikhonov smoothness regularization

The well known Tikhonov regularization expresses some smoothness of the solution
and is applied, here, on endmember spectra, i.e. on the columns of W. This is
justified by physical considerations, spectra varying slowly as a function of the
wavelength. Consequently, the regularization function is:

F1(W) =
1
2

∑
ij

([W]ij − c)2 (8.11)

with c a constant positive or zero, or more generally

F1(W) =
1
2

∑
ij

[∂1,2W]2ij (8.12)

where ∂1,2 is the first or second-order derivative operator. For simplicity, we
approximate ∂1,2W in a closed numerical form as

[∂1,2W]ij = [W]ij − [AW]ij (8.13)

where AW stands for the convolution of each column of matrix W by a mask, e.g.
[1 0 0] and [12 0 1

2 ] for the first and second-order derivative operators, respectively.
In this case, the opposite of the gradient can be expressed in matrix form as follows:

−[∇WF1]ij = [(A + A�)W]ij − [(A�A + I)W]ij . (8.14)

Note that Tikhonov regularization with the basic SGM algorithm was initially
associated to the basic SGM algorithm in (Lantéri et al. 2011), i.e., without flux
constraint. The interested reader is invited to consult this reference for an overview
of the results that have been obtained.

8.1.2 Simulations results

As for the non regularized SGM, many simulations have been performed to validate
the proposed algorithm, Equations (8.10) and (4.18). Note that the different forms
of the regularization term give approximatively the same practical results. The
experiment corresponds to 10 linear mixtures of 3 endmembers, the length of
each spectrum being 826. A noise vector distributed according to a Gaussian
distribution with zero-mean and covariance matrix σ2IN , where IN is the N ×N
identity matrix has been added to each column of V. Note that this statistical
model assumes that the noise variances are the same in all bands. Results are
given for a snr equal to 20dB. Figure 3 shows the estimated endmembers (columns
of W) after 12 000 iterations, and compared with the true values with and without
regularization. Figures 4 and 5 show the 10 reconstructed spectra in comparison
with the true ones, respectively without and with regularization. We clearly see
the interest of the regularization on the estimation.
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Fig. 3. Columns of W. On each plot: solid line for true values, dashed line for estimated

values. Left column: without regularization γ = 0. Right column with γ = 0.1.

8.2 Regularized SGM on the abundance coefficients H

We develop in this section expressions of SGM for a regularization F2 on the
normalized abundance coefficients H, we have:

−∇ZDreg = −∇ZD (8.15)

−∇TDreg = −∇TD − γ2∇TF2. (8.16)

In this case, the component of the opposite of the gradient of Dreg with respect
to T is:

− ∂Dreg

∂[T]lj
=

1∑
m[T]mj

(
− ∂D
∂[H]lj

− γ2
∂F2

∂[H]lj

)
s

−

1∑
m[T]mj

∑
i

[H]ij

(
− ∂D
∂[H]ij

− γ2
∂F2

∂[H]ij

)
s

· (8.17)
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0 0.5 1 1.5 2 2.5 3
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 4. Columns of V, solid line for true values, dashed line for estimated values without

regularization, γ = 0.

In the same way that for the non regularized SGM, we solve both the split of
the gradient between two positive functions and the conservation of the convexity
w.r.t. the new variables by making the shift of the form:

(
− ∂D
∂[H]ij

− γ2
∂F2

∂[H]ij

)
s

←−
(
− ∂D
∂[H]ij

− γ2
∂F2

∂[H]ij

)
+ η + ε ∀(i, j)

with

η = −min
ij

(
− ∂D
∂[H]lj

− γ2
∂F2

∂[H]lj

)
.

The decomposition of the gradient of the regularized cost function w.r.t. T is:

[−∇TDreg]lj = [R]ij − [S]ij (8.18)

with

[R]ij =
(
− ∂D
∂[H]ij

− γ2
∂F2

∂[H]lj

)
s

, [S]ij =
∑
i

[H]ij

(
− ∂D
∂[H]ij

− γ2
∂F2

∂[H]ij

)
s

(8.19)
and the iterate on H is:

[Hk+1]lj = [H]klj + αk[H]klj

⎛
⎝

(
− ∂D
∂[H]lj

− γ2
∂F2
∂[H]lj

)
s∑

i[H]ij
(
− ∂D
∂[H]ij

− γ2
∂F2
∂[H]ij

)
s

− 1

⎞
⎠ · (8.20)
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Fig. 5. Columns of V, solid line for true values, dashed line for estimated values with

γ = 0.1.

In the same way that for the non regularized SGM, with a constant step size equal
to one, we get:

[Hk+1]lj = [H]klj

(
− ∂D
∂[H]lj

− γ2
∂F2
∂[H]lj

)
s∑

i[H]ij
(
− ∂D
∂[H]ij

− γ2
∂F2
∂[H]ij

)
s

· (8.21)

The iterate on W is still given by Equation (4.12) or Equation (4.13) for a unit
step size.

8.2.1 Sparsity-enforcing regularization

Such a penalty, which expresses that most of information may be concentrated
in a few coefficients, mainly applies to the abundance coefficients, that is, to the
columns of H. Keeping in mind that the algorithm satisfies flux conservation
constraint, see (4.2), we are ready to consider the following sparsity measure σ
introduced in (Hoyer (2004))

σ =

√
K − ‖[H]•j‖1

‖[H]•j‖2√
K − 1

, 0 ≤ σ ≤ 1 (8.22)

with K the number of rows of H, and [H]•j its j-th row. This clearly defines a
relation between the 
2-norm and the 
1-norm of [H]•j , the sum constraint on H
associated with non negativity inducing a constant 
1-norm.

‖[H]•j‖22 = α2‖[H]•j‖21 (8.23)
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with

α =
1√

K − σ(
√
K − 1)

,
1√
K
≤ α ≤ 1. (8.24)

Note that only two values for σ lead to unambiguous situations; if α is equal to
one, only one entry of [H]•j is nonzero; if α = 1/

√
K, all the entries of [H]•j are

equal. Any other value for α can correspond to different sets of entries. As a
consequence, we suggest to consider the following penalty function2:

F2(H) =
1
2

∑
j

(‖[H]•j‖22 − α2‖[H]•j‖21
)2

(8.25)

with α equal to one, and use of the regularization factor γ2 in (8.1) to push [H]•j
toward a sparse solution. For convenience, let us provide the opposite of the
gradient of F2(H)

−[∇HF2]ij = (α2‖[H]•j‖21 − ‖[H]•j‖22)
([H]ij − α2‖[H]•j‖1) (8.26)

to be used in (8.21). In the next section, we shall test this algorithm for hyper-
spectral data unmixing.

8.2.2 Simulations results

To test interest of sparsity regularization on the abundance coefficients, we take
20 linear mixtures of 6 endmembers, the length of each spectrum being 826. The
six endmembers correspond to the construction concrete, green grass, micaceous
loam, olive green paint, bare red brick and galvanized steel metal.

In order to characterize the performance of our approach, and show that it
tends to provide sparse solutions, we considered a matrix H with only one nonzero
entry per column. This entry was selected randomly and set to one. See Figure 6.
Each observed spectrum was corrupted by an additive white Gaussian noise at
a signal-to-noise ratio equal to 20 dB. The matrices H obtained for γ2 = 0 and
γ2 = 10−3, respectively, are presented in Figures 7 and 8.

We clearly observe that the sparsity-enforcing function allowed us to recover, in
most cases, the endmembers involved in each observed spectrum. On the contrary,
when no sparsity penalty term was used, all the entries of the estimated matrix
H were nonzero. Finally, we checked that normalization of the columns of the
matrix W, as well as the flux conservation between V and H, were satisfied at
each iteration in both cases. On Figure 9, the behaviour of sj is plotted as a
function of the number of iterations, one see clearly that sj tends to 1, whatever
j after a small number of iterations.

2Using (4.2), note that [H]•j‖2
1 remains constant along iterations.
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Fig. 6. True H with a sparsity sj = 1, α = 1.

Fig. 7. Estimated H without sparsity constraint, μ = 0.

Fig. 8. Estimated H with a sparsity constraint, μ = 0.001.

9 Conclusion

In this paper, we proposed a (split) gradient-descent method to solve the nonnega-
tive matrix factorization problem subject to flux conservation constraints on each
column of the estimated matrices. Tikhonov regularization and sparsity-enforcing
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Fig. 9. sj as a function of the number of iterations, μ = 0.001.

regularization have been also considered. Application in the context of hyper-
spectral data unmixing shows the effectiveness and the interest of the proposed
algorithms.
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