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Distributed Variational Filtering for Simultaneous
Sensor Localization and Target Tracking

in Wireless Sensor Networks
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Abstract—The tracking of a moving target in a wireless sensor
network (WSN) requires exact knowledge of sensor positions.
However, precise information about sensor locations is not always
available. Given the observation that a series of measurements
are generated in the sensors when the target moves through
the network field, we propose an algorithm that exploits these
measurements to simultaneously localize the detecting sensors and
track the target (SLAT). The main difficulties that are encoun-
tered in this problem are the ambiguity of sensor locations, the
unrestricted target moving manner, and the extremely constrained
resources in WSNs. Therefore, a general state evolution model
is employed to describe the dynamical system with neither prior
knowledge of the target moving manner nor precise location
information of the sensors. The joint posterior distribution of
the parameters of interest is updated online by incorporating
the incomplete and inaccurate measurements between the target
and each of the sensors into a Bayesian filtering framework. A
variational approach is adopted in the framework to approximate
the filtering distribution, thus minimizing the intercluster commu-
nication and the error propagation. By executing the algorithm
on a fully distributed cluster scheme, energy and bandwidth
consumption in the network are dramatically reduced, compared
with a centralized approach. Experiments on an SLAT problem
validate the effectiveness of the proposed algorithm in terms of
tracking accuracy, localization precision, energy consumption,
and execution time.

Index Terms—Bayesian method, filtering algorithm, simultane-
ous localization and tracking, wireless sensor networks.
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I. INTRODUCTION

AWIRELESS sensor network (WSN) is one of the most
promising emerging technologies in recent years [1]–

[3]. It establishes the parameterization of physical phenom-
ena and enables the processing of the sensed information
for inference and estimation [4], [5]. In these applications,
the WSN perceives the environment data by sensing different
physical properties, e.g., signal strength (for target tracking),
pressure, temperature, and humidity. However, the sensed data
are meaningless without supplementary sensor location infor-
mation, particularly when used for tracking or other correlation
purposes [6]–[9]. It is generally known that a moving target can
be better tracked if the sensors that have detected it are exactly
localized. On the other hand, the estimation of these detecting
sensor locations can also be refined based on their observations
of the moving target [10]. That is, sensor localization and
target tracking are complementary to each other. Simultaneous
localization and tracking (SLAT) thus combines the two typical
problems of WSNs together, leading to a practically relevant
solution. A constraint structure is built in SLAT to shrink the
uncertainties of sensor positions and to estimate the target
temporal state, because each observation between a detecting
sensor and the target adds geometric constraints on both of
them and leads to improvements in their estimations over time.
The attractive solution of SLAT poses no restriction on the
moving manner of the mobile target, whose temporal position
is estimated in the presence of sensor localization errors. With
respect to the sensors, no additional hardware configuration
is required, fitting well with the low-cost budget of WSNs.
Furthermore, SLAT allows a continuous refinement of sensor
localization, even during the tracking phase.

A general situation of SLAT is considered in this paper.
The resident location of sensors is randomly distributed around
their deployment points due to spatially varying environment
factors and deployment errors. After the deployment phase,
sensors exchange information with the sensors within their
communication ranges rc. A set of observation is thus col-
lected and used to prelocalize themselves, improving the coarse
a priori position information. The SLAT procedure begins
when a mobile target x enters into the WSN, which arbitrarily
moves through the environment, with no constraint on its
trajectory or velocity. At the sampling instant t, only the sensors
that detect the presence of the target xt form an activated cluster
St for further signal processing. The temporal observation
between the target and each activated sensor is incorporated to
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update the target temporal estimation. With respect to the acti-
vated sensor, its temporal observation of the target is combined
with the static observation set stored during the prelocalization
phase together to refine its location estimation. Therefore, the
sensors that have detected the target are localized together with
the tracking of the target. In particular, sensors that are located
in the high-traffic area could be relocated, which shrinks the
corresponding sensor localization error and refines the target
tracking precision in return.

The proposed algorithm is called distributed variational fil-
tering for simultaneous localization and tracking (DVaSLAT),
which inherits many desirable properties from the Bayesian
framework [11]. A general state evolution model is employed
to describe the target xt and the activated sensors St using
a joint variable Xt. Because the algorithm is executed in a
distributed cluster scheme, a variational approach is employed
to approximate the joint state during the measurement incorpo-
ration phase, avoiding description complexity and unnecessary
intercluster communication. In addition, the error propagation
problem, which is always unavoidable in other approximation
methods, is terminated in our case, because the approximation
phase is jointly performed with the update phase of the filtering
distribution.

The remainder of this paper is organized as follows. In
Section II, we summarize the related work. In Section III, the
SLAT problem is defined. The DVaSLAT algorithm is described
in detail in Section IV. The performance of the proposed
DVaSLAT algorithm is evaluated through the simulations in
Section V. Section VI concludes this paper.

II. RELATED WORK

Target tracking is currently the principal research problem
in WSNs wherein the particle filter (PF) has been used [11].
Ahmed et al. provide a comprehensive analysis on the effect
of various design parameters (such as the number of deployed
nodes, the number of generated particles, and sampling in-
terval) and calibration parameters (such as the gain, path-
loss factor, noise variations, and nonlinearity constant) on the
performance of the PF-based tracking system [12]. Their sim-
ulation consists of two parts. The first part is performed in the
network simulator NS-2, where all the measurements that were
recorded by sensor nodes are forwarded to the centrally located
base station over multihop. Once all the data are available,
the base station runs the PF code offline in MATLAB. On the
contrary, the proposed DVaSLAT algorithm is executed online
in a distributed cluster-based manner in MATLAB, where the
communication in an activated cluster is within one hop. In
addition, the simulated target motion model in [12] is linear,
whereas we adopt the random walk mobility (RWM) model
[13], which puts no constraint on the target velocity or moving
direction.

With respect to the sensor localization problem, in this
paper, sensor nodes do not need assistance from other posi-
tioning systems such as the Global Positioning System (GPS).
Therefore, the sensor deployment phase always has a direct
influence on the accuracy of localization. Fang et al. [14]
assume that groups of sensors are deployed at regular de-

ployment points, which are different from the final resident
locations of sensors, and the distribution of sensors around
these points follows a Gaussian distribution. Because sensors
can discover their locations by observing the group member-
ships of their neighbors, the location discovery problem was
modeled as a statistical estimation problem, and the maximum-
likelihood estimation method was used in [14] to estimate the
location. In [15], the beaconless location discovery scheme
in [14] over a nonflat terrain was further modified and ex-
tended. We adopt the similar assumption in the prelocalization
phase of our algorithm, wherein sensor locations are estimated
using PF.

As aforementioned, target-tracking algorithms are often
based on the geographical information of sensors provided by
a localization algorithm. Souza et al. assess the performance of
classical target tracking algorithms under the impact of errors
introduced by sensor localization algorithms in [16]. However,
in their case, sensor localization and target tracking are two sep-
arate phases, and the evaluated target maneuver is restricted to a
uniform motion. Although the cross-layer design of localization
and tracking algorithms remains fairly unexplored in [16], the
authors also believe that this design may lead to improved
solutions for both problems. To the best of our knowledge, it is
the first time that Taylor et al. defined the two typical problems
of WSNs together as SLAT in [17]. The notation of SLAT re-
sembles the related and well-studied simultaneous localization
and mapping (SLAM) problem in the robotics and artificial-
intelligence community [18]. However, the target to be located
in SLAM is a mobile robot [19], [20], whose control input is
known a priori. On the contrary, SLAT does not require any
constraint on the moving manner of the target. In addition, the
environment is typically idealized in SLAM so that it consists of
an unknown number of stationary “landmarks,” which cannot
detect the robot or other landmarks to localize themselves. In
other words, SLAM can only be centralized and executed in
the robot, which incrementally estimates its temporal location
and the landmarks, from the noisy and incomplete observations
between them. On the other hand, in SLAT, both the static
observations between neighboring sensors and the temporal
observations between the detecting sensors and the target can
be incorporated to simultaneously estimate sensor locations
and track the target. In addition, the observations that were
incorporated into the classical SLAM algorithms, i.e., extended
Kalman filter for simultaneous localization and mapping (EKF-
SLAM) [20], FastSLAM 1.0 [21], and FastSLAM 2.0 [22],
are range-bearing measurements, which require a special an-
tenna configuration and omnidirectional signals to determine
the bearing information, which is not practical for low-cost
WSNs. Therefore, we adopt the received signal strength indica-
tor (RSSI) technology, which requires no additional hardware
configuration [6], [23]. In fact, this paper is most related to
the algorithm called LaSLAT, which was proposed in [17].
LaSLAT does not require any constraint on the trajectory of
the target, where consecutive measurements between sensors
and the target are packed up to update the joint distribution.
The application of Laplace’s method approximates the joint
posterior distribution with a Gaussian, leading to a reduction
of the belief propagation. The results of LaSLAT are presented
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Fig. 1. SLAT scenery.

by a centralized implementation using a network of Cricket
sensors. Compared with LaSLAT, our algorithm is executed
in a distributed cluster scheme. The variational method is
employed instead of the Laplace method to approximate the
joint state during the measurement incorporation phase, avoid-
ing description complexity and unnecessary communication.
Furthermore, the error propagation problem, which is always
unavoidable in other approximation methods, is terminated in
our case, because the approximation phase is jointly performed
with the update phase of the filtering distribution. In addition,
consecutive measurements between the target and sensors are
batched to be incorporated into LaSLAT. Strictly speaking,
LaSLAT is therefore not a real-time algorithm. Because a
larger batch size provides more information, the localization
precision and the convergence rate of the LaSLAT algorithm
are accordingly improved, which are also justified in [17]. On
the contrary, our algorithm is executed online to incorporate
the timely observations; thus, the time complexity is one of
our utmost concerns. Accordingly, we label our algorithm
DVaSLAT.

III. PROBLEM STATEMENT

In this paper, we assume that sensors are randomly dis-
tributed around their deployment points, as shown in Fig. 1,
where the lengths of the “node tails” denote the correspond-
ing offsets. This initial assignment results in a node layout
that resembles an unfolded and scaled version of the actual
deployment, roughly preserving the topological ordering of
nodes. The final resident location si of sensor i is assumed
to be Gaussian distributed around its deployment point s̄i with
precision ηi, i.e., si ∼ N (s̄i, ηi). After the deployment, sensor
i exchanges information with its neighboring sensors in the
communication range rc, denoted by the red dashed circle
in Fig. 1. To improve the coarse a priori information on the

sensor location, a prelocalization phase is locally launched by
incorporating only these measurements, i.e.,

p(ŝi|zi,s) ∝ N (s̄i, ηi)
∏

‖si−sj‖�rc

p(zi,j |si). (1)

Thus, according to the prior distribution si ∼ N (s̄i, ηi), the
estimation of sensor i is refined by incorporating the ob-
servation zi,s = {zi,j}‖si−sj‖�rc

. After prelocalizing all the
sensors, much more precise information on their locations is
provided, which is incorporated as the a priori information Ŝ =
{ŝi}Ns

i=1 for SLAT, where Ns is the total number of sensors in
the WSN.

To minimize energy and bandwidth consumption, the SLAT
procedure is distributively executed on a cluster base. Once
an intrusion in the WSN is identified, a cluster of sensors
St around the phenomenon of interest is activated. Only the
sensors that detect the presence of the target xt, i.e., ‖si −
xt‖ � rs, form the activated cluster St = {si}‖si−xt‖�rs

. As
shown in Fig. 1, sensors that detect the target xt are in the
blue dotted circle with the center xt and the radius rs. The
size of a cluster is determined by the relationship between the
communication range rc and the sensing range rs [24]. For
localization accuracy and energy efficiency, the communication
range is defined as twice the sensing range (rc = 2rs), which
guarantees that only one cluster is formed at each instant and
the communication in the activated cluster is within one hop.
The activated sensors broadcast their residual energy level in
the cluster. The sensor with the maximum residual energy
is elected as the cluster head (CH) to take charge of signal
processing. The other clustered detecting sensors then transfer
their observations to the CH. These observations consist of
the following two parts: 1) the temporal observation among
the clustering sensors and the target, i.e., zs,x

t = {zi,x
t }∀si∈St

,
which is incorporated to update the target temporal estimation,
and 2) the static observation that is stored during the prelocal-
ization phase, which is combined with the temporal observation
Zt = {{zi,s}mt

i=1,z
s,x
t }, where mt is the number of activated

clustering sensors, to further refine their location estimations.
Therefore, estimations of the target and the detecting sensor
locations are simultaneously updated in the CH based on these
observations.

The SLAT problem can then be defined as follows.
Definition of the SLAT Problem: Given a mobile target x and

a WSN with rough location information Ŝ, for the clustering
sensors that have detected the target x, we want to simultane-
ously find their location St and the temporal position xt of the
target, where the estimation results are designated as 〈St〉 and
〈xt〉, respectively.

IV. DISTRIBUTED VARIATIONAL FILTERING FOR

SIMULTANEOUS LOCALIZATION AND TRACKING

ALGORITHM

The DVaSLAT algorithm adopts the classical Bayesian
framework to estimate the unknown state Xt = {xt,St} over
time by using the incoming observations Zt. In a probabilis-
tic approach, this procedure means recursively computing the
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Fig. 2. Flowchart of the SLAT procedure.

posterior distribution p(Xt|Z1:t). A standard two-step
Bayesian recursive solution is described as follows.

• Prediction

p(Xt|Z1:t−1) =
∫

p(Xt|Xt−1)p(Xt−1|Z1:t−1) dXt−1.

(2)
• Update

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Zt|Z1:t−1)
(3)

where

p(Zt|Z1:t−1) =
∫

p(Zt|Xt)p(Xt|Z1;t−1) dXt.

The Bayesian filtering framework of the DVaSLAT algorithm
is composed of the following two distinct phases: 1) prediction
and 2) update. The prediction phase uses the state estimate
from the previous sampling instant to produce an estimate
of the state at the current instant according to (2). In the
update phase of (3), measurement information at the current
instant is used to refine this prediction to arrive at a new
and, hopefully, more accurate state estimate. The computation
requires the definition of a state evolution model p(Xt|X1:t−1)
and an observation model p(Zt|Xt). In particular, the state
evolution is generally assumed to be a Markov process, i.e.,
p(Xt|X1:t−1) = p(Xt|Xt−1). The SLAT procedure works
in a recursive way, which is illustrated by the flowchart
in Fig. 2.

A. General State Evolution Model

Because the mobile target arbitrarily travels in the sensor
field, instead of a traditional kinematic parameter model [25]–
[27], we employ a general state evolution model [28]–[30],
which is more adaptive to practical situations and has no
restriction on the velocity or moving direction of the target. As
aforementioned, at instant t, the joint hidden state to be esti-
mated Xt contains the target position xt and a set of activated
sensor locations St = {si

t}mt
i=1. Taking sensor i for example,

si
t is assumed to be a Gaussian variable whose expectation is

its latest estimate value ŝi, and the precision matrix ηi indi-
cates its position offset due to the deployment error, estimate
uncertainty, or other spatial factors. The target xt is assumed
to follow an extended Gaussian model, where the expectation

Fig. 3. Graphical model of the general state evolution model. Nodes that are
denoted by circles correspond to hidden random variables, whereas nodes that
are denoted by squares correspond to parameters of the model.

μt and the precision matrix λt are both random, following a
Gaussian and a Wishart distribution, respectively, i.e.,⎧⎪⎪⎨

⎪⎪⎩
si

t ∼ N (ŝi, ηi) ∀ si
t ∈ St

xt ∼ N (μt,λt)
μt ∼ N (μt−1, λ̄)
λt ∼ Wd(V̄ , n̄).

(4)

The precision matrix λt reflects the uncertainty of the tar-
get location estimation at instant t, which is modeled by a
d-D Wishart distribution (d is equal to the dimension of the
target state, and d = 2 in this paper), with V̄ and n̄ denoting,
respectively, its precision matrix and degree of freedom. Note
that ·̄ denotes the initial fixed parameter. The general state
evolution model is demonstrated in Fig. 3. Assuming a random
mean and covariance for the state xt leads to a probability
distribution that covers a wide range of tail behaviors, which
allows discrete jumps in the target trajectory. In fact, the mar-
ginal state distribution is obtained by integrating over the mean
and precision matrix as

p(xt|xt−1) =
∫ ∫

N (xt|μt,λt)p(μt,λt|xt−1) dμt dλt

where the integration with respect to the precision matrix leads
to the known class of scale mixture distributions introduced by
Barndorff-Nielsen [31]. A low value of the degree of freedom n̄
reflects the heavy tails of the marginal distribution p(xt|xt−1).

B. Observation Model

Localization algorithms for WSNs mainly rely on the range
measurement, bearing measurement, neighborhood proximity,
or hop count method. With regard to the budget of WSNs,
the RSSI technology, which has been proposed for hardware-
constrained systems [23], is employed in this paper. The RSSI
determines the distance between a receiver Pr and a transmitter
Pt based on the knowledge of a path-loss model as

νr(Pt) = Ψ0 − 10ζ log
‖Pr − Pt‖

d0
. (5)

The denotations in the formulation are, respectively, the ref-
erence distance d0, the known received signal power Ψ0 (in
decibel-milliwatts) at d0, and the known path-loss distance
exponent ζ, which takes a value in the range [2], [4] (ζ = 2
for propagation in the free space, ζ = 4 for relatively lossy
environments, and for the case of full specular reflection from
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the earth’s surface [32]). We can notice in (5) that the received
signal power νr(Pt) is theoretically a one-to-one mapping
to the distance ‖Pr − Pt‖ that is traveled by the signal. In
wireless communication, the multipath reflections, non-line-of-
sight conditions, and other shadowing effects always lead to
erroneous distance estimates based on the RSSI. Therefore, we
introduce a white Gaussian error εi

y ∼ N (0, σ−2
y ) to model the

sensed observation y at sensor i as

yi,x
t = νi(xt) + εi

y

∼N
(
νi(xt), σ−2

y

)
where

νi(xt) = Ψ0 − 10ζ log
‖si − xt‖

d0
.

Similarly

yi,j ∼ N
(
νi(sj), σ−2

y

)
where

νi(sj) = Ψ0 − 10ζ log
‖si − sj‖

d0
. (6)

Due to the noisy wireless links, the signal z that was received
at the CH is assumed to be corrupted by a normally distributed
error εi

z ∼ N (0, σ−2
z ). The realistic measurements that are re-

ceived at the CH from sensor i are thus formulated as follows:

zi,x
t =

{
βiyi,x

t + εi
z, if yi,x

t � γs

εi
z, otherwise.

Similarly

zi,j =
{

βiyi,j + εi
z, if yi,j � γc

εi
z, otherwise

(7)

where βi is the attenuation coefficient that is associated with
sensor i. The signal detection threshold γs and the communi-
cation threshold γc correspond to the sensor detection range
rs and communication range rc, respectively, i.e., γs = Ψ0 −
10ζ log(rs/d0) and γc = Ψ0 − 10ζ log(rc/d0).

The Bayesian filtering framework of SLAT requires the
construction of an observation model p(Zt|Xt). To track the
target xt, the available observations at the activated CH are
denoted by zs,x

t = {zi,x
t }mt

i=1. Assuming that the noise samples
εi
z are independently distributed, we have

p(zs,x
t |xt) =

mt∏
i=1

[
N
(
zi,x
t |βiyi,x

t , σ−2
z

)
P
(
yi,x

t � γs

)

+ N
(
zi,x
t |0, σ−2

z

)
P
(
yi,x

t < γs

)]
(8)

where

P
(
yi,x

t � γs

)
=

∞∫
γs

N
(
yi,x

t |νi(xt), σ−2
y

)
dyi,x

t

P
(
yi,x

t < γs

)
= 1 − P

(
yi,x

t � γs

)
.

Fig. 4. Probability model of the sensed observation yi,x
t with false alarms,

where the dashed lines with arrows denote the false alarms.

With respect to the cluster sensors, the observations used for
localizing sensor i at instant t are formulated as

p
(
zi

t|si
t

)
= p

(
zi,x
t |si,xt

)
p(zi,s|si)

= p
(
zi,x
t |si,xt

)mt−1∏
j 
=i

p(zi,j |si, sj)

=
[
N
(
zi,x
t |βiyi,x

t , σ−2
z

)
P
(
yi,x

t � γs

)
+ N

(
zi,x
t |0, σ−2

z

)
P
(
yi,x

t < γs

)]

×
mt−1∏
j 
=i

[
N
(
zi,j |βiyi,j , σ−2

z

)
P (yi,j � γc)

+ N
(
zi,j |0, σ−2

z

)
P (yi,j < γc)

]
. (9)

In particular, zi,s denotes the observations between the neigh-
boring sensors, which are collected during the prelocalization
phase and are stored in sensor i for further use. At sampling
instant t, the temporal observation of the target zi,x

t is incor-
porated together with zi,s to help refine the localization of
sensor i.

One important problem that is introduced by the definition
of the observation model is the false alarm. We can notice
in (6) that the mapping between νi(xt) and the sensor
observation yi,x

t is not deterministic due to the shadowing
effect of εi

y . That is, if νi(xt), the one-to-one mapping to
the true distance ‖si − xt‖, is greater than the threshold γs,
the observed measurement yi,x

t is not necessarily greater
than γs. In fact, P (yi,x

t � γs) can also be formulated by
P (yi,x

t � γs) = [p(yi,x
t � γs|νi(xt) � γs)P (νi(xt) � γs) +

p(yi,x
t � γs|νi(xt) < γs)P (νi(xt) < γs)], as shown in

Fig. 4. According to (8), the probability of false alarm
p(yi,x

t � γs|νi(xt) < γs) has naturally been incorporated
during the integral. Similarly, the symmetric probability of
false alarm p(yi,x

t < γs|νi(xt) � γs) is incorporated in the
calculation of P (yi,x

t < γs). The same holds true for the
calculation of P (yi,j).

C. Update

In a distributed context, the filtering distribution of the target
p(xt|Z1:t) needs to be transferred for future use, whereas the
estimations of the detecting sensors are updated and locally
stored. With regard to energy and bandwidth efficiency, a
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variational approach simultaneously updates and compresses
the filtering distribution of the target to a single Gaussian
distribution between successive clusters in a consistent manner
[29]. Thus, distributed signal processing is effectively achieved.
The following section introduces the details of the variational
approach compared with the traditional PF method.

1) PF Method: Given the general state evolution model
described in Section IV-A, the joint hidden state has been
extended to αt = {xt,μt,λt,St}. According to the Bayesian
filtering framework, the distribution of interest takes the form
of a posterior distribution p(αt|Z1:t).

The nonlinear and non-Gaussian aspects of the state evo-
lution distributions in (4) lead to intractable integrals when
calculating the posterior distribution in (3). Generally, we can
resort to a Monte Carlo procedure to approximate the joint
posterior distribution p(α0:t|Z1:t) by N random independent
and identically distributed samples, i.e., particles {α(k)

0:t }N
k=1.

We have

p̂N (α0:t|Z1:t) =

N∑
k=1

w
(k)
t δ

α
(k)
0:t

(α0:t)

N∑
k=1

w
(k)
t

where δ
α

(k)
0:t

(α0:t) denotes the Dirac delta function of α0:t

located at α
(k)
0:t . Based on the same set of particles, the mar-

ginal posterior probability p(αt|Z1:t) can also be approx-
imated as p̂N (αt|Z1:t) =

∑N
k=1 w

(k)
t δ

α
(k)
t

(αt)/
∑N

k=1 w
(k)
t .

In the Bayesian importance sampling (IS) method, the particles
{α(k)

0:t }N
k=1 are sampled according to a proposal distribution

π(α0:t|Z1:t), and {w(k)
t }N

k=1 are the corresponding importance
weights. We have

w
(k)
t ∝

p
(
Z1:t|α(k)

0:t

)
p
(
α

(k)
0:t

)
π
(
α

(k)
0:t |Z1:t

) .

PF consists of propagating the trajectories {α(k)
0:t }N

k=1 in time
without modifying the past simulated particles. Consequently,
the class of the proposal distributions has the following form:

π(α0:t|Z1:t) = π(α0:t−1|Z1:t−1)π(αt|α0:t−1,Z1:t).

The importance weights are then recursively computed in
time as

w
(k)
t ∝ w

(k)
t−1

p
(
zt|α(k)

t

)
p
(
α

(k)
t |α(k)

0:t−1

)
π
(
α

(k)
t |α(k)

0:t−1,Z1:t

) .

The optimal choice of the proposal function is p(αt|αt−1,zt)
[33], which conditionally minimizes the variance of the im-
portance weights upon the simulated trajectory α

(k)
0:t−1 and the

observations Z1:t. However, considering the Markov nonlinear
state-space model defined in (4), we can simply adopt the
transition prior p(αt|αt−1) as the proposal distribution, i.e.,

π(αt|α0:t−1,Z1:t) = p(αt|αt−1)

in which case, the weights are updated according to the likeli-
hood function as

w
(k)
t ∝ w

(k)
t−1p

(
zt|α(k)

t

)
.

The PF method suffers from two major drawbacks. First, an
efficient implementation requires the ability to sample from
p(αt|αt−1). Second, propagating such a huge amount of parti-
cles and their corresponding weights makes the communication
burden of WSN even heavier. In addition, a resampling step
is involved in the classical PF to avoid the collapse of the
Monte Carlo approximation, which dramatically increases the
computational complexity [34].

2) Variational Approach: Instead of the point-mass distrib-
ution p̂N (αt|Z1:t), a variational approach is employed here to
approximate the posterior probability p(αt|Z1:t) by a separa-
ble distribution q(αt), which minimizes the Kullback–Leibler
(KL) divergence error as

DKL(q‖p) =
∫

q(αt) log
q(αt)

p(αt|Z1:t)
(dαt) (10)

where

q(αt) =
∏

i

q
(
αi

t

)
= q(xt)q(μt)q(λt)q(St)

q(St) =
mt∏
i=1

q
(
si

t

)
.

To minimize the KL divergence subject to the constraint∫
q(αt)dαt =

∏
i

∫
q(αi

t)dαi
t = 1, the Lagrange multiplier

method is used, i.e.,

DKL(q‖p)=
∫ ∏

i

q
(
αi

t

)[∑
i

log q
(
αi

t

)
−log p(αt|Z1:t)

]
dαt

differentiating it with respect to q(αi
t) as

∂DKL(q‖p)
∂q
(
αi

t

) = log q
(
αi

t

)
− 〈log p(Z1:t,αt)〉∏

j �=i

+ 1 + λi

where λi is a Lagrange multiplier that is introduced to ensure
that q(αi

t) is normalized. The approximate distribution is thus
yielded [35] as follows:

q
(
αi

t

)
∝ exp 〈log p(Z1:t,αt)〉∏

j �=i
q(αj

t) (11)

where 〈·〉q(αj
t)

denotes the expectation operator relative to the

distribution q(αj
t ). Therefore, these dependent parameters can

jointly and iteratively be updated. According to the variational
algorithm, the filtering distribution at time t − 1 is approx-
imated by the separable distribution, i.e., p̂(αt−1|Z1:t−1) =
q(αt−1), the filtering distribution at time t is thus deduced
as [30]

p̂(αt|Z1:t) =
p(zt|αt)

∫
p(αt|αt−1)q(αt−1)dαt−1

p(zt|Z1:t−1)
∝ p(zt|xt,St)p(St|St−1)p(xt|μt,λt)p(λt)qp(μt)

(12)

with qp(μt) =
∫

p(μt|μt−1)q(μt−1)dμt−1.
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Therefore, through a simple integral with respect to μt−1,
the filtering distribution p(αt|Z1:t) can sequentially be up-
dated. Considering the general state evolution model proposed
in (4), the evolution of μt is Gaussian, i.e., p(μt|μt−1) =
N (μt−1, λ̄). Defining q(μt−1) = N (μ∗

t−1,λ
∗
t−1), qp(μt) is

also Gaussian [30], with the following parameters:

qp(μt) = N (μp
t ,λ

p
t ) (13)

where

μp
t = μ∗

t−1 and λp
t =

(
λ∗

t−1
−1 + λ̄

−1
)−1

.

The temporal dependence is hence reduced to the incorpora-
tion of only one Gaussian component approximation q(μt−1).
The update and the approximation of the filtering distribu-
tion p(αt|z1:t) are jointly performed, yielding a natural and
adaptive compression [29]. According to (11) and taking into
account (12) and (13), variational calculus leads to closed-form
expressions of q(μt) and q(λt) as [30]{

q(μt) = N (μ∗
t ,λ

∗
t)

q(λt) = Wd (V ∗
t , n

∗)

where the parameters are iteratively updated until convergence
according to the following scheme [28]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ∗
t =λ∗

t
−1 (〈λt〉〈xt〉+λp

t μ
p
t )

λ∗
t =〈λt〉+λp

t

n∗= n̄+1

V ∗
t =
(
〈xtx

T
t 〉−〈xt〉〈μt〉T−〈μt〉〈xt〉T+〈μtμ

T
t 〉+V̄

−1
)−1

.

(14)

Note that 〈·〉 denotes the expectation relative to the distribution
q(·). The mean state and the precision matrix distributions
q(μt) and q(λt) have closed forms such that their expectations
are easily derived as⎧⎨

⎩
〈μt〉 = μ∗

t〈
μtμ

T
t

〉
= λ∗

t
−1 + μ∗

tμ
∗T
t

〈λt〉 = n∗V ∗
t .

(15)

However, the target state xt and the activated sensors positions
St do not have closed forms. Combining (11) and (12), q(xt)
and q(si

t) have the following expressions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(xt)∝N (〈μt〉, 〈λt〉)
∏mt

i=1 exp
〈
log p

(
zi,x
t |xt, s

i
)〉

q(si)

q
(
si

t

)
∝N (ŝi, ηi) exp

〈
log p

(
zi,x
t |xt, s

i
)〉

q(xt)

×
∏mt−1

j 
=i exp
〈
log p(zi,j |si, sj)

〉
q(sj)

.

(16)

Therefore, the general state evolution model (4) and the obser-
vation model (8) and (9) are naturally incorporated to update
q(xt) and q(si

t). Their distribution forms immediately suggest
an IS procedure, where samples are drawn from Gaussian
distributions N (〈μt〉, 〈λt〉) and N (ŝi, ηi), respectively, and

are weighted according to their likelihoods (taking into account
the observation model) as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(k)
t ∼ N (〈μt〉, 〈λt〉)

w
(k)
t ∝

∏mt

i=1 p
(
zi,x
t |x(k)

t , 〈si
t〉
)

s
i,(k)
t ∼ N (ŝi, ηi)

w
i,(k)
t ∝ p

(
zi,x
t |〈xt〉, si,(k)

)∏mt−1
j 
=i p(zi,j

t |si,(k), 〈sj〉).
(17)

Note that the expected observations relative to q(·), such
as exp〈log p(zi,x

t |xt, s
i)〉q(si) in (16), are approximated

by the observation with respect to the expectations, e.g.,
p(zi,x

t |xt, 〈si
t〉), when computing the particle weights. Ac-

cordingly, the expectations relative to q(xt) and q(si
t) can be

approximated by the Monte Carlo method as⎧⎪⎪⎨
⎪⎪⎩

〈xt〉 =
N∑

k=1

w
(k)
t x

(k)
t

〈si
t〉 =

N∑
k=1

w
i,(k)
t s

i,(k)
t .

(18)

Contrary to the traditional PF, the VF method reduces the
temporal dependence to a single Gaussian distribution q(μt−1)
instead of propagating the huge amount of particles. To estimate
the positions of the detecting sensors and the target, new
particles are generated at each sampling instant, from the closed
Gaussian distributions deduced from q(μt−1) using variational
calculus, and then, they are sampled according to the temporal
observations to calculate the corresponding expectations.

D. Prediction

As aforementioned, a standard SLAT solution contains a
prediction step and an update step. Aside from the afore-
mentioned update of the filtering distribution p(αt|Z1:t), the
predictive distribution p(αt|Z1:t−1) can also efficiently be cal-
culated using the variational approach. In fact, by incorporating
the separable approximate distribution q(αt−1) in the place
of p(αt−1|Z1:t−1), the recursive DVaSLAT algorithm calcu-
lates the predictive distribution p(αt|Z1:t−1) in the following
form:

p̂(αt|Z1:t−1) ∝
∫

p(αt|αt−1)q(αt−1) dαt−1

∝ p(St)p(xt|μt,λt)p(λt)qp(μt). (19)

The exponential-form solution, which minimizes the KL diver-
gence between the predictive distribution p(αt|Z1:t−1) and the
separable approximate distribution qt|t−1(αt), yields Gaussian
distributions for the predicted expectations and a Wishart dis-
tribution for the target precision matrix as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qt|t−1(xt) ∝ N
(
〈μt〉qt|t−1 , 〈λt〉qt|t−1

)
qt|t−1(μt) ∝ N

(
μ∗

t|t−1,λ
∗
t|t−1

)
qt|t−1(λt) ∝ Wd

(
V ∗

t|t−1, n
∗
t|t−1

)
qt|t−1(St) ∝ N (Ŝ,η)

(20)
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where the parameters are updated according to the same itera-
tive schemes in (14) and (15). The target state and the activated
sensors are now predicted by the following expressions:

〈xt〉qt|t−1 = 〈μt〉qt|t−1

〈xtx
T
t 〉qt|t−1 = 〈λt〉qt|t−1

−1 + 〈μt〉qt|t−1〈μt〉Tqt|t−1

〈St〉qt|t−1 = 〈Ŝ〉. (21)

The computational cost and the memory requirements are dra-
matically reduced by the variational approach in the prediction
phase compared to the PF method. As previously demonstrated,
the expectations involved in the computation of the predictive
distribution have closed forms, avoiding the need of Monte
Carlo integration.

Therefore, the variational approach predicts and updates the
probability distributions at each instant, allowing the covering
of the whole state evolution. The pseudocode of the DVaSLAT
algorithm is summarized in Algorithm 1.

Algorithm 1: DVaSLAT algorithm.

Input: S̄, λ̄, V̄ , n̄, μ∗
0, and λ∗

0

Output: 〈xt〉 and 〈St〉
1 for i = 1 : Ns do
2 Generate N samples {si,(k)

0 }N
k=1 from N (s̄i, ηi);

3 Prelocalize si according to (1), where the initial estima-
tion ŝi is calculated based on zi,s;

4 end
5 for t = 1, 2, . . ., do
6 Cluster activation and CH election;
7 Incorporate the a priori information: μp

t = μ∗
t−1, λp

t =
((λ∗

t−1)
−1+λ̄

−1)−1, qp(μt)=N (μp
t ,λ

p
t ), and {ŝi}mt

i=1;
8 Predict p(αt|Z1:t−1) according to (19);
9 Compute the corresponding expectations as (21);
10 Initiate μ∗

t = μp
t , λ∗

t = 2λp
t , n∗

t = n̄ + 1, and V ∗
t =

((2λp
t )−1 + (V̄ )−1)−1;

11 Calculate the initial expectations 〈μt〉 = μ∗
t and

〈λt〉 = n∗
tV

∗
t ;

12 while not converge do
13 Generate N samples {x(k)

t }N
k=1 from N (〈μt〉, 〈λt〉);

14 Compute the expectation of the target state based
on zs,x

t in (17) and (18);
15 for i = 1 : mt do
16 N samples {si,(k)

t }N
k=1 from N (ŝi, ηi);

17 Update the expectation of sensor i by incorporat-
ing the observations {zi,x

t ,zi,s} as (17) and (18);
18 end
19 Update the variational parameters μ∗

t , λ∗
t , n∗

t , and V ∗
t

according to (14);
20 Reupdate the expectations 〈μt〉 and 〈λt〉 by

(15);
21 end
22 Communicate q(μt) = N (μ∗

t ,λ
∗
t) for the next instant;

23 Return the target position estimation 〈xt〉 and those of
the activated sensors 〈St〉 = {〈si

t〉}mt
i=1;

24 end

Fig. 5. Target trajectory following an RMW model.

V. EVALUATION AND SIMULATION

This section evaluates the DVaSLAT algorithm on a synthetic
example, which involves the tracking of a mobile target and the
localization of sensors. The purpose of the synthetic example is
to establish a baseline performance comparison on a relatively
difficult problem.

A. Simulation Configuration

As aforementioned, no constraint is put on the target velocity
or moving direction. Therefore, the RWM model [13], which
mimics an erratic movement of a target in extremely unpre-
dictable situations, was employed in our simulation to describe
the target movement. The target that follows an RWM model
moves from its current location by choosing a random direction
and a random speed. If the target reaches the boundary of the
simulation field, it rebounds with an angle determined by the
incoming direction. Fig. 5 shows our configuration of the target
motion in the simulation field, where the target moving duration
is 200 time slots.

With regard to the sensor deployment step, the coverage
is an important issue to be guaranteed. In general, at least
three sensors are required to detect the target presence at every
sampling instant for the tracking work. If sensors are uniformly
distributed over the simulation region with density ρ, sensor dis-
tribution in any given area A is Poisson with rate ρA. Thus, the
probability for any arbitrary point to be sensed by at least three
sensors is p =

∑∞
i=3(ρπr2

s)i exp(−ρπr2
s)/i! [36], where rs is

the sensing range of sensors. In our simulations, to ensure the
3-coverage condition, 400 sensors were assumed to uniformly
be deployed in a 2-D field (100 × 100 m2), and their sensing
ranges were identically fixed to 15 m. However, due to the
spatially varying environment factors and deployment errors,
sensors were, in fact, randomly distributed around their initially
setting locations S̄ : si ∼ N (s̄i, ηi), where ηi was identical
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Fig. 6. Simulation field. (a) Initial configuration in the simulation field, where
the green rectangles denote the initial known sensor locations, and the black
rectangles are their actual locations. The dashed lines denote the deviations
between sensor initial known positions and the actual positions. The gray
field shows the sensing range of sensor s1. (b) Performance of the DVaSLAT
algorithm after one trial. The blue line is the trajectory of the target, and
the red line is the tracking result of the DVaSLAT algorithm. The green
rectangles denote the sensor positions estimated by the DVaSLAT algorithm.
Other denotations are the same as in (a).

for all the sensors. The initial configuration is demonstrated in
Fig. 6(a).

The parameters involved in the general state evolution model
(4) were set as follows:

V̄ =
[

5 0
0 5

]
, ηi =

[
1/4 0
0 1/4

]

λ̄ =
[

1/900 0
0 1/900

]
, n̄ = 10.

The low state precision λ̄ and the low degree of freedom n̄
allow a general noninformative prior. All the simulations shown
in this section were implemented by MATLAB version 7.1
using an Intel Pentium D central processing unit, 3.4-GHz,
1.0-GB random access memory personal computer.

Fig. 7. Target tracking and sensor localization performance of the DVaSLAT
algorithm.

TABLE I
EVALUATION OF THE DVASLAT ALGORITHM

B. Evaluation

The performance of the DVaSLAT algorithm using 100 par-
ticles is shown in Fig. 6(b) and evaluated by the root mean
square error (RMSE) in Fig. 7. The average target tracking
error is 0.6047 m, and the average sensor localization error
is 0.8042 m against the initial deployment error of 2.5605 m
(see Table I). Therefore, in addition to the accurate tracking
performance, remarkable refinements for sensor localization
are demonstrated. However, because DVaSLAT is executed on
a cluster base for energy efficiency, only the sensors that have
detected the presence of the target are activated and relocated,
which leads to precise localization of the sensors in high-traffic
regions. On the contrary, sensors that are far from the target
trajectory are left unlocalized, corresponding to the peaks in the
bottom plot of Fig. 7.

The energy expenditure during the whole SLAT process is
calculated based on the hypothesis that the energy consumed in
computation can be neglected relative to the energy consumed
in communication. According to the energy consumption model
that was proposed in [26] and [37], the energy consumed (in
transmissions per bit) is ET = εe + εad3, where εe is the en-
ergy consumed by the circuit per bit, εa is the energy dissipated
(in Joules per bit per cubic meter), and d is the transmission
distance (εa = 3.5 × 10−3 pJ/b/m3, εe = 45 nJ/b). The energy
consumed when receiving data is given by ER = εrN , where
εr denotes the energy expended on receiving 1 b of data
(εr = 135 nJ/b). Similarly, the energy consumed in detection
is defined by ES = εsN , where εs is the energy expended on
sensing 1 b of data (εs = 50 nJ/b). We calculate the overall
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TABLE II
EVALUATION OF THE DVASLAT ALGORITHM USING

DIFFERENT NUMBERS OF PARTICLES

Fig. 8. Tracking performance comparison. (a) DVaSLAT. (b) LaSLAT.

and the average energy consumptions of the CHs and the slave
sensors, respectively. The execution time is evaluated by the
average time consumed per sampling slot (1 s). As shown in
Table I, the average execution time of 0.1962 s guarantees the
online implementation of our scheme.

To benchmark the performance of the proposed DVaSLAT
algorithm, we run the algorithm with an increasing number of
particles, i.e., N = 100, 200, 400, 800. Monte Carlo simulations
are executed to get a statistical reflection of the behavior of
the algorithm. As shown in Table II, the RMSE generally
decreases with the increase in the number of particles. However,
the performance does not appear to significantly upgrade. The
computational complexity is reflected by the average execution
time statistics in Table II. The execution time increases with the
increasing of the number of particles, exhibiting a proportional
trend.

C. Comparisons With LaSLAT and Traditional PF Algorithms

The performance of our DVaSLAT algorithm is compared
with the LaSLAT algorithm [17]. For comparison, we initially
set the batch size to one time slot in LaSLAT. The tracking
performance of the DVaSLAT algorithm and LaSLAT are eval-
uated by the RMSE in Fig. 8. We can notice that both algorithms
yield accurate estimation of the target position. However, the
precise estimation of LaSLAT is achieved at the cost of com-
putation complexity. In fact, with the LaSLAT procedure, the

smaller the batch size is, the less information is incorporated,
and consequently, the more Newton–Raphson optimization
iterations are needed until the solution is fully converged.
Furthermore, the representation of the belief state requires a
storage space that is quadratic with respect to the number of
activated sensors, because the correlations between the target
and activated sensors must be updated with each observation.
The centralized implementation is therefore preferable for the
LaSLAT algorithm.

Monte Carlo simulations of the LaSLAT algorithm that were
executed on different batch sizes are reported in Table III. Note
that the execution time of LaSLAT, which is evaluated by the
average time consumed per sampling slot, fluctuates during the
simulations. The reason for the fluctuation is that the amount
of the Newton–Raphson optimization iterations dramatically
drops along with the increment of batch size, whereas the time
consumed per iteration greatly increases due to the quadratic
increment of the belief state to be updated. On the contrary,
the execution time for each iteration involved in the DVaSLAT
algorithm is constant, because the number of particles and the
involved iterations are of constant size. The small execution
time of the DVaSLAT algorithm guarantees its real-time imple-
mentation in online applications. By changing the batch size of
measurements incorporated in the LaSLAT algorithm, we can
find that LaSLAT is vulnerable to substantial errors when the
batch size is small (see Fig. 9). Because LaSLAT incorporates
only range information between the target and activated sen-
sors, the algorithm risks to fall into false local minima. With
regard to the precision of sensor localization, Fig. 10 compares
the RMSEs of initial sensor deployment and of sensor localiza-
tion in DVaSLAT. We can notice that DVaSLAT accomplishes
a remarkable improvement in the precision of sensor local-
ization. Due to incorporating the measurements between the
neighboring sensors, the DVaSLAT algorithm has much more
information for localization at every sampling instant, and the
risk of local minima is also reduced. On the contrary, LaSLAT
demonstrates barely small amelioration in RMSE compared
with the initial sensor deployment. The precisions of sensor
localization are also compared in Table III with Monte Carlo
simulations of the two algorithms. Our DVaSLAT algorithm
demonstrates superiority in online applications with excellent
tracking accuracy and localization precision.

We also compare our DVaSLAT algorithm with the tra-
ditional strategy [16], which localizes all the sensors in the
field and then tracks the target based on the sensor location
estimations. In our simulation of the traditional strategy, we
employ the classical PF algorithm to localize all the sensors in
the simulation field and to track the target in the second stage.
Monte Carlo simulations were performed on the same configu-
ration to compare the performance of the two strategies, where
the number of particles was set to 400. Table IV shows that
the DVaSLAT algorithm outperforms the traditional strategy by
interdependently and continuously improving estimates of both
sensors and target. The tracking accuracy and the localization
precision are evaluated by their RMSE. With respect to the exe-
cution time, the traditional strategy outperforms the DVaSLAT
algorithm, because it terminates the sensor relocalization phase
during the target tracking.
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TABLE III
MONTE CARLO SIMULATIONS OF THE DVASLAT AND LASLAT ALGORITHMS THROUGH 100 TRIALS

Fig. 9. Example of false local minima in target estimation by LaSLAT, where
batch size = 4. As has been analyzed, LaSLAT falls into local minima at some
instants due to the lack of information. The Newton–Raphson optimization does
not always find the global minima.

TABLE IV
COMPARISON BETWEEN THE TRADITIONAL AND THE

DVASLAT ALGORITHMS

D. Cramér–Rao Bound

The Cramér–Rao bound expresses a lower bound on the
variance of a deterministic parameter estimator. It is well known
that, for an unbiased estimator, this lower bound is the inverse of
the Fisher information matrix [32], [38]. To show the advantage
of incorporating the target measurement in the localization
process, we calculate the Fisher information matrix before and
after the passage of the target in the detection field of sensor i
as follows.

• Before the passage of the target

I(si) = E

[
∂2 ln p(zi,s|si)

∂si∂siT

]
.

• After the passage of the target

I(si) = E

⎡
⎣∂2 ln

(
p(zi,x

1:t |si)p(zi,s|si)
)

∂si∂siT

⎤
⎦ .

Here, zi,x
1:t are the observations that were collected until the

instant t, when the target x passes through the detection field of
sensor si.

Fig. 10. Localization performance comparison. (a) DVaSLAT. (b) LaSLAT.

The Cramér–Rao bounds of the sensors are illustrated in
Fig. 11. The top left part of Fig. 11, shows that the Cramér–Rao
bounds before the passage of the target depend on the de-
ployment of sensors (see Fig. 11, bottom right). As expected,
the summit values appear in the boundary of the simulation
field, where sensors are sparsely located. After the passage of
the target, the Cramér–Rao bounds are remarkably reduced,
particularly in the regions of high traffic (see Fig. 11, top
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Fig. 11. Cramér–Rao bound of sensor localization.

right). As shown in the bottom right part of Fig. 11, sensor
s11 is located in the high-traffic region. In Fig. 11, bottom
left, we depict the variation of the Cramér–Rao bound of the
sensor s11 as a function of the elapsed time. Before the passage
of the target (from t = 0 to t = 21), the Cramér–Rao bound
of s11 stays at the same value 0.1061, which depends only
on the observations from its neighboring sensors. At instant
t1 = 22, the target is detected by s11, which results in a slight
reduction of the Cramér–Rao bound (from 0.1061 to 0.1057).
Until the instant t2 = 31, the target continuously appears in
the sensing range of s11. Accordingly, the Cramér–Rao bound
demonstrates a persistent decrease between t2 = 31 and t3 =
51. Another passage of the target sensed by s11 appears at
the duration between t4 = 140 and t5 = 171. Finally, because
t6 = 189, the Cramér–Rao bound of s11 reduces until the target
goes out of its sensing field at instant t7 = 195. The variation
tendency of the Cramér–Rao bound confirms the usefulness of
using the mobile target trajectory to refine sensor localization.

VI. CONCLUSION

DVaSLAT has been proposed in the context of WSN. Without
any a priori information on the target motion, the DVaSLAT
algorithm aims at continuously updating and improving the
estimates of the activated sensor locations and the target trajec-
tory. Because the target can arbitrarily travel and the location

information of the activated sensors is rather coarse, a general
state evolution model has been proposed to describe the hidden
state, which is more adaptable to the nonlinear/non-Gaussian
situation than other kinematic parameter models. To minimize
resource consumption in WSNs, the DVaSLAT algorithm is
executed on a fully distributed cluster scheme. That is, only
the sensors that have detected the target are activated to form
a cluster to process data. The variational method allows an
implicit compression of the exchanged statistics between clus-
ters, which greatly decreases the intercluster communication. In
conclusion, because the target freely moves in WSNs, a large
number of range measurements are generated, which facilitates
both the activated sensors localization and the target tracking.
As shown in the simulations, estimates of sensors and of the
target are interdependently and continuously improved online.

In the simulations, the DVaSLAT algorithm has demon-
strated the nice property to be model independent, which we
hope to make use in the future. In fact, the DVaSLAT algorithm
could be applied in the context of mobile ad hoc networks
by making minor changes. Instead of statically storing the
observations zi,s between neighboring sensors, the set of ob-
servations zi,s

t should be updated at each sampling instant for
localizing the mobile sensors, whereas modeling the dynamics
on the mobile sensors is also necessary. This also inspires us to
extend the application of the DVaSLAT algorithm to multitarget
tracking in a similar way.
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[32] P. M. Djurić, M. Vemula, M. Bugallo, and J. Míguez, “Noncooperative
localization of binary sensors,” in Proc. 13th Workshop Statist. Signal
Process., 2005, pp. 1244–1249.

[33] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3,
pp. 197–208, 2000.

[34] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,” IEEE Trans.
Signal Process., vol. 51, no. 10, pp. 2592–2601, Oct. 2003.

[35] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approxi-
mation for Bayesian inference,” IEEE Signal Process. Mag., vol. 25, no. 6,
pp. 131–146, Nov. 2008.

[36] H. Yang and B. Sikdar, “A protocol for tracking mobile targets using
sensor networks,” in Proc. IEEE Int. Workshop Sensor Netw. Protocols
Appl., 2003, pp. 71–81.

[37] H. Wu and A. A. Abouzeid, “Error robust image transport in wireless
sensor networks,” in Proc. 5th Workshop Appl. Services Wireless Netw.,
Paris, France, 2005.

[38] S. Dulman, P. J. M. Havinga, A. Baggio, and K. Langendoen, “Revisiting
the Cramér–Rao bound for localization algorithms,” in Proc. 4th IEEE
Int. Conf. Distrib. Comput. Sensor Syst., 2008, pp. 1–4.

Jing Teng (M’11) received the B.Eng. degree in
electronic information engineering from the Central
South University, Changsha, China, in 2003 and
the Ph.D. degree in systems optimization and secu-
rity from the University of Technology of Troyes,
Troyes, France, in 2009.

Since 2010, she has been a Lecturer with the
School of Control and Computer Engineering, North
China Electric Power University, Beijing, China. She
is the author or a coauthor of more than 10 papers
in refereed journals and international conference

proceedings and has been serving as a Reviewer of several journals and
international conference proceedings. Her research interests include statistical
signal processing and its applications in wireless sensor networks.



2318 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 5, JUNE 2012

Hichem Snoussi (M’08) received the Diploma
degree in electrical engineering from the Ecole
Supérieure d’Electricité, Gif-sur-Yvette, France, in
2000 and the D.E.A. and Ph.D. degrees in signal
processing from the University of Paris-Sud, Orsay,
France, in 2000 and 2003, respectively.

Between 2003 and 2004, he was a Postdoctoral
Researcher with the Institut de Recherche en Com-
munications et Cybernétiques de Nantes, Nantes,
France. He has spent short periods as a Visiting
Scientist with the RIKEN Brain Science Institute,

Tokyo, Japan, and Olin Neuropsychiatry Research Center, Institute of Living,
Hartford, CT. Since 2005, he has been an Associate Professor with the Univer-
sity of Technology of Troyes (UTT), Troyes, France, where he has been leading
the research group “Surveillance” of the Laboratory of Systems Modeling and
Dependability, Institut Charles Delaunay, since January 2008. He is in charge
of the regional research program System Security and Safety of the Contrat de
Projets Etat-Région Champagne-Ardenne 2007–2013 and the CapSec platform
(wireless embedded sensors for security). He is the Principal Investigator of a
French National Research Agency (ANR)–Blanc project, a Center for Research
in Computing and the Arts project (new partnership and new technologies), and
a GDR–Information, Signal, Images, ViSion young researcher project. He is a
partner of several ANR projects, GIS, and strategic UTT programs.

Dr. Snoussi received the 2008–2012 National Doctoral Supervision and
Research Award.

Cédric Richard (S’98–M’01–SM’07) received the
Dipl.-Ing. and M.S. degrees and the Ph.D. degree in
electrical and computer engineering from the Uni-
versity of Technology of Compiègne, Compiègne,
France, in 1994 and 1998, respectively.

From 1999 to 2003, he was an Associate Professor
with the University of Technology of Troyes (UTT),
Troyes, France. From 2003 to 2009, he was a Full
Professor with the Institut Charles Delaunay (CNRS
FRE 2848), UTT, and the Supervisor of a group
that consists of 60 researchers and Ph.D. students.

In the winter of 2009, he was a Visiting Researcher with the Department of
Electrical Engineering, Federal University of Santa Catarina, Florianòpolis,
Brazil. Since September 2009, he has been a Full Professor with the Fizeau
Laboratory [Centre National de la Recherche Scientifique Unite Mixte de
Recherche (CNRS UMR) 6525, Observatoire de la Côte d’Azur], University
of Nice Sophia-Antipolis, Nice, France. He is the author of more than 100
papers. He has been an Associate Editor for the EURASIP Signal Processing
Magazine since 2009. His research interests include statistical signal processing
and machine learning.

Dr. Richard is a Member of the Groupe d’Etudes du Traitement du Signal
et des Images Association Board and the European Association for Signal
Processing. He has served as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING since 2006.

Rong Zhou received the M.E. degree in computer
application technology from the North China Elec-
tric Power University, Beijing, China, in 2003. She
is currently working toward the Ph.D. degree in
computer application technology with the Center
for Space Science and Applied Research, Chinese
Academy of Sciences, Beijing.

Since 2003, she has been a Lecturer with the North
China Electric Power University. Her research inter-
ests include statistical signal processing and small
target tracking and detection.


