
Hybrid Probabilistic Data Association and
Variational Filtering for Multi-Target Tracking in

Wireless Sensor Networks
Jing Teng, Hichem Snoussi, Cédric Richard and Yi Zhou

ICD/LM2S, University of Technology of Troyes
12 rue Marie Curie, 10000, France

Email: jing.teng@utt.fr, hichem.snoussi@utt.fr, cedric.richard@utt.fr, yi.zhou@utt.fr

Abstract—A hybrid signal processing scheme is proposed for
distributed multi-target tracking (MTT). For the sake of resource
efficiency in a wireless sensor network (WSN), we reduce the
problem to parallel cluster-based single target tracking when
the targets are far apart, and switch to MTT only when data
association becomes ambiguous. A sequential monte carlo method
is employed to assign the ambiguous observations to specific
targets or clutter, based on association probabilities. Whereas
the rest observations are incorporated by the variational filter,
which approximates the distribution of involved particles by a
simple Gaussian distribution for each target. The natural and
adaptive message compression dramatically reduces the resource
consumption of the WSN. The low computation complexity also
guarantees the one-line execution of the hybrid MTT scheme. In
addition, experimental results prove that the proposed scheme
succeeds in distinguishing and tracking multiple targets even
during the occlusions.

I. INTRODUCTION

Among the potential applications of wireless sensor net-
works (WSNs), the tracking of mobile targets has found its
major importance in monitoring wildlife animals, vehicles
on the freeway, and surveillance in the battle field etc. [1].
Target tracking consists of recursively updating the posterior
distribution of the target state given the sequence of sensor
observations and the state evolution model [2]. Multi-target
tracking (MTT) deals with state estimation of several moving
targets, which is not a trivial extension of single target tracking
but rather a challenging topic of research. The main difficulty
of MTT comes from the assignment of a given measurement
to a specific target.

Traditionally, the nearest neighbor (NN) approach, which
utilizes the closest measurement to the predicted target mea-
surement, is the simplest approach for MTT [3]. However, the
NN measurements may be originated from a clutter, leading
to filter divergence in many situations. As long as the data
association is considered in a deterministic way, all possible
associations must be exhaustively enumerated [4]. Multiple
hypothesis tracking (MHT) [5] recursively builds all possible
associations of measurements to existing/new tracks and false
alarms, while respecting the mutual exclusion association
constraint. MHT is capable of addressing the problems as
low detection probability, high false alarm rates, delayed
measurements, initiation and termination of tracks. However,
it suffers from large storage space requirements, as the number

of possible associations increases exponentially with time.
The joint probabilistic data association filter (JPDAF) [6]
is an alternative solution which consists of updating each
individual track state with weighted combinations of all mea-
surements. In fact, JPDAF is a particular way of combining
the multiple hypotheses generated by MHT into a single
hypothesis. Sequential Monte Carlo (SMC) method samples
from complex association probability distribution conditioned
on observations, where the sample with the highest probability
is considered as the best association hypothesis [7], [8]. As
the hypotheses are not explicitly enumerated, the large storage
space is no longer required compared to MHT. Besides, the
SMC method is very easy to implement and can be applied
under very general hypotheses to cope with heavy clutters.

Due to the consideration of all possible events in the
data association phase, MTT is an expensive task in terms
of sensing, computation and communication. Concerning the
extremely stringent resources in WSNs, an energy-aware dis-
tributed signal processing scheme is proposed in this paper. As
the targets can travel arbitrarily and no a priori information
on targets motion is provided, the general state evolution
model proposed in [9], [10] is extended to describe the hidden
states. Only the sensors which have detected the appearances
of targets are activated to form data processing clusters for
energy efficiency, where the cluster heads (CHs) are the ones
with the most residual energy in each activated cluster. When
the activated clusters are not overlapped, variational filters for
single target tracking are parallelly executed in corresponding
CHs. Otherwise, the activated CHs exchange ambiguous ob-
servations with each other, and invoke the probabilistic data
association phase. A SMC method is employed to assign the
ambiguous observations to specific targets or clutter based on
the association probabilities. Whereas the variational tracking
is delayed after the SMC phase to incorporate the rest of
observations. Owing to the implicit compression of variational
filtering, the temporal dependence of each target is reduce
to a Gaussian distribution, which dramatically cuts off the
inter-cluster communication. An overview of the hybrid MTT
scheme is illustrated by Fig. 1.

The rest of the paper is organized as follows. In Section II,
we formulate the variational tracking algorithm. Section III is
dedicated to a detailed description of the SMC data association
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Fig. 1: Block diagram of the hybrid MTT scheme

phase. In Section IV, performance of the proposed scheme is
studied by simulations. Finally, we suggest future directions
in Section V.

II. VARIATIONAL FILTERING

A. General state evolution model

The targets to track are modeled by independent Markovian
dynamics. Let M be the number of targets, each component
of the target temporal positions Xt = {xj

t}M
j=1 is assumed to

evolve according to the following extended Markov model:⎧⎪⎨
⎪⎩

xj
t ∼ N (xj

t |μj
t , λ

j
t )

μj
t ∼ N (μj

t |μj
t−1, λ̄

j)
λj

t ∼ Wd(λ
j
t |V̄ j , n̄j)

, ∀j = 1, . . . , M, (1)

where λ̄
j

is the initial precision matrix reflecting the un-
certainty of the target position expectation at instant t with
respect to the previous state. The state precision matrix λj

t

is modeled by a d dimensional Wishart distribution, with V̄ j

and n̄j denoting respectively its precision matrix and degrees
of freedom. Notice that ·̄ denotes initial fixed parameter.
Assuming random mean and covariance for xj

t leads to a
probability distribution covering a wide range of tail behaviors,
which allows discrete jumps in the target trajectory.

B. Observation model

The observation model depends on the sensing mode em-
ployed by the sensors. In this paper, it is assumed to be a
range-based mode using the received signal strength indicator
(RSSI) technology. The distance between a receiver and a
transmitter is determined based on the knowledge of a path-
loss model. Due to noisy wireless link, the received signal is
corrupted by normally distributed error εi ∼ N (0, σ−2

i ). The
realistic measurements are formulated as follows:

yi,j
t =

{‖ si − xj
t ‖, if RSSI � γi

s

0, otherwise
,

zi,j
t = βiyi,j

t + εi,

p(Zt|xj
t ) =

∏
i N (zi,j

t |βiyi,j
t , σ−2

i ),

(2)

where βi is the attenuation coefficient associated with the
sensor i. RSSI defines the received signal power, which fol-
lows a path-loss function and is a one-to-one correspondence
to the distance traveled by the signal. γi

s denotes the signal
detection threshold of the sensor i, which is assumed to be
identical for all the sensors.

C. Observation incorporation by variational Bayesian method

Variational filtering inherits many desirable properties from
Bayesian Inference framework. Target tracking can be formu-
lated as recursively estimating the predictive distribution as
follows,

p(Xt|Z1:t−1) =
∫

p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1.

(3)
Based on the state evolution model p(Xt|Xt−1), the estimate
of target states Xt is updated by incorporating the observation
model p(Zt|Xt):

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Zt|Z1:t−1)
. (4)

Without loss of generality, the jth target state xj
t is extended

to an augmented state αj
t = (xj

t , μ
j
t , λ

j
t ) by Eq. (1), the

distribution of interest takes the form of a marginal posterior
distribution p(αj

t |Z1:t). A variational Bayesian method is
proposed for approximating the intractable integrals arising in
Bayesian inference. Introducing a separable distribution q(αj

t ),
an analytical approximation to the parameter posterior prob-
ability p(αj

t |Z1:t) is provided by minimizing the Kullback-
Leibler divergence:

DKL(q||p) =
∫

q(αj
t ) log

q(αj
t )

p(αj
t |Z1:t)

dαj
t ,

where q(αj
t ) = q(xj

t )q(μ
j
t )q(λ

j
t ).

To minimize DKL subject to the constraint
∫

q(αt)dαt = 1,
Lagrange multiplier is used, yielding the following approxi-
mate distribution [9],

q(xj
t ) ∝ exp〈log p(Z1:t, αt)〉∏ q(μj

t)q(λ
j
t)

(5)

where 〈·〉q denotes the expectation operator relative to the
distribution q. Taking into account the separable approximate
distribution q(αj

t−1), the predictive distribution p(αj
t |Z1:t−1)

and the filtering distribution p(αj
t |Z1:t) are sequentially ap-

proximated according to the following scheme:

p(αj
t |Z1:t−1) ∝ p(xj

t , λ
j
t |μj

t )qp(μ
j
t ) (6)

p(αj
t |Z1:t) ∝ p(Zt|xj

t )p(xj
t , λ

j
t |μj

t )qp(μ
j
t ), (7)

where qp(μ
j
t ) =

∫
p(μj

t |μj
t−1)q(μ

j
t−1)dμj

t−1.

Therefore, through a simple integral with respect to μj
t−1,

the distributions involved in the Bayesian inference can be
sequentially updated. The temporal dependence is hence re-
duced to the incorporation of only one Gaussian component
approximation q(μj

t−1) for the target j. As variational calculus
leads to closed-form expressions of q(μj

t ) and q(λj
t ) [9],

[10], the expectations involved in the predictive distribution
p(αj

t |Z1:t−1) thus have closed forms. However, due to obser-
vation incorporation, the estimate of target state xj

t does not
have a tractable form. By combining the Eq. (5) and (6), we
have the following form,

q(xj
t ) ∝ p(Zt|xj

t )N (〈μj
t 〉, 〈λj

t 〉). (8)
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Thus the state evolution model (1) and the observation model
(2) are incorporated to update q(xj

t ). This form immediately
suggests an Importance Sampling procedure:

x
j,(i)
t ∼N (〈μj

t 〉, 〈λj
t 〉), x

(i)
t = {xj,(i)

t }M
j=1,

w
(i)
t ∝ p(Zt|x(i)

t ), 〈Xt〉 =
N∑

i=1

w
(i)
t x

(i)
t , (9)

III. PROBABILISTIC DATA ASSOCIATION

We assume that only the sensors within the overlapped
area of clusters can detect more than one targets at the same
time. Their observations are also much more vulnerable to
collisions and clutters in the wireless links. We use Zamb

t =
{ziamb

t }Namb

iamb=1 to denote the set of measurements observed by
these sensors, which is composed of detection measurements
and clutter measurements, where the latter are assumed to
be uniformly distributed in the observation area. As we do
not know the origin of each measurement ziamb

t , one has to
introduce a vector Kt to describe the associations between
the measurements and the targets. Each component of Kt is a
random variable that takes value among {0, . . . , M}, where 0
denotes the clutter. Assuming the total amount of ambiguous
observations is Namb, accordingly, Kamb

t = {Kiamb
t }Namb

iamb=1,
where Kiamb

t = j indicates that ziamb
t is associated with the

target j. In this case, ziamb
t is a realization of the stochastic

process:
ziamb

t = Hj,iamb
t (xj

t , σ
iamb
t ). (10)

The noise σiamb
t is supposed to be a white noise independent of

the observation noises. We assume that the hypothesis Hj,iamb
t

can be associated with a functional form F (ziamb
t ; xj

t) such
that

F (ziamb
t ; xj

t) ∝ p(ziamb
t |xj

t , K
iamb
t = j). (11)

If Kiamb
t = 0, the measurement yiamb

t is associated with
the clutter. As the indexing of the ambiguous measurements
is arbitrary, all the measurements have the same a priori
probability to be associated with a given target j. For each
ambiguous measurement, a vector πt = {πj

t }M
j=0 ∈ [0, 1]M+1

is defined for the association probability, where πj
t is a dis-

crete probability that any measurement is associated with the
target j. To solve the data association problem, the following
assumptions are commonly made [11]:

1) One measurement can originate from one target or from
the clutter.

2) One target can produce zero or one measurement at one
time.

The first assumption expresses that the association is exclusive
and exhaustive, namely

∑M
j=0 πj

t = 1. The second assumption
implies that Namb may differ from M and, above all, that
the association variables Kiamb

t for iamb = 1, . . . , Namb are
dependent.

The number of clutter measurements is assumed to arise
from a Poisson density of parameter aS, where S is the size
of the observation area, and a is the number of false alarms per

area unit. The association probability π0
t that a measurement is

associated with the clutter, is a constant that can be computed
as follows,

π0
t =

Namb∑
l=0

P (Kiamb
t = 0|N0

t = l)P (N0
t = l)

=
Namb∑
l=0

l

Namb
exp (−aS)

(aS)l

l!
, (12)

where N0
t is the number of measurements arising from the

clutter at time t. Assuming that there are l clutter originated
measurements among the Namb measurements, the a priori
probability that any measurement comes from the clutter is
equal to l/Namb. Thus, we get the equality P (Kiamb

t =
0|N0

t = l) = l/Namb.
At instant t, if Namb > 0, the data association phase is

invoked, which is initialized by generating a set of N particles
Xt = {x(i)

t , w
(i)
t }N

i=1. For all i = 1, . . . , N , the likelihood of
the particles are formulated as:

p(Zamb
t |x(i)

t ) =
Namb∏

iamb=1

p(ziamb
t |x(i)

t ) (13)

∝
Namb∏

iamb=1

[
π0

t

S
+

M∑
j=1

F (ziamb
t ; xj,(i)

t )πj
t ].

The vectors Xt, Kt and πt are considered to be random
variables with known prior densities. Samples are then ob-
tained iteratively from their joint posterior using a proper
Markov Chain Monte Carlo (MCMC) technique, namely,
the Gibbs sampler [7]. Let Θt = (Xt, Kt, πt), the Gibbs
algorithm consists of generating a Markov chain that converges
to the distribution p(Θt|Zamb

t ), which cannot be sampled
directly. In order to implement the Gibbs sampler, we choose
the following partition:⎧⎨

⎩
Θi

t = Ki
t , for i = 1, . . . , Namb

ΘNamb+j
t = πj

t , for j = 1, . . . , M

ΘNamb+M+j
t = xj

t , for j = 1, . . . , M

. (14)

The initialization of the Gibbs sampler consists of assigning
uniform association probabilities, i.e., πj

t = (1 − π0
t )/M , and

taking the predictive target states made by Eq.(??) to initialize
Xt = 〈Xt〉qt|t−1 . The Kt variables do not need initialization,
which are sampled conditioned on πt and Xt at the first
step of the Gibbs sampler. After a finite number of iterations,
estimations of the random variables are obtained, namely
Θ̂t = (X̂t, K̂t, π̂t). Therefore, the ambiguous observations
are assigned by K̂t and are incorporated to update the target
estimates X̂t. The particles {x(i)

t , w
(i)
t }N

i=1 generated by the
data association phase are directly employed to incorporate
the rest of observations Zt \ ZNamb

t , according to (9). After
the run of the variational filtering algorithm, estimates on the
targets are refined, especially the distributions of the particles
are naturally approximated by a simple Gaussian distribution
q(μj

t ) for each of the target.
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IV. SIMULATIONS

In the simulations, to ensure the 4-coverage condition [12],
400 sensors were assumed to be uniformly deployed in a 2
dimensional field (100 × 100 m2), and their sensing ranges
were identically fixed to 10 m. Two targets of different
velocities and distinct trajectories were tracked, where both the
trajectories were of the same duration of 100 s. Performance
of the proposed scheme is shown in Fig. 2, where accurate
tracking performances are achieved. It is shown in Fig. 3 that
the hybrid MTT scheme succeeded in tracking the targets sep-
arately. When the two targets encountered each other (between
t = 62 and t = 88), the tracking performances degrade be-
cause of data association ambiguity. However, the performance
degradations (maximal estimate error for the target A is 1.3043
and that for the target B is 1.7612) are still acceptable. Owing
to the diversity of the general state evolution model, the target
states are successfully described despite of their distinctions,
which leads to similar tracking performances of both targets
in simulations. Monte Carlo simulations were performed on
the same configuration, whose results are reported in Table
I. The tracking accuracy is evaluated by the average Root
Mean Square Error (RMSE) of the 100 runs of Monte Carlo
simulations. Notice that the execution time is evaluated by
the average time consumed per sampling slot. Compared to
the sampling slot 1s, the average execution time of 0.1181s
guarantees the on-line implementation of our scheme.
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Evaluation Target A Target B
Tracking accuracy 0.1621 0.1850
Maximal estimate error (m) 1.3043 1.7612
Execution time for MTT (s) 0.1181

TABLE I: Evaluation of the hybrid MTT Scheme
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V. PERSPECTIVES

However, in this study, the number of targets to be tracked is
assumed to be known a priori, which may not be reasonable
in real situations. Therefore, we are thinking of integrating the
hypothesis test into the hybrid scheme, to deal with the cases
of arrivals of new targets and disappearances of the tracked
targets.
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