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ABSTRACT

Resource limitations in wireless sensor networks have put strin-
gent constraints on distributed signal processing. In this paper, we
propose a cluster-based decentralized variational filtering algorithm
with minimum resource allocation for simultaneous sensor local-
ization and target tracking. At each sampling instant, only one
cluster of sensors is activated according to the prediction of the
target state. Slave sensors employ a binary proximity observation
model to reduce energy consumption and minimize communica-
tion cost. Based on the binary measurements between sensors and
the target, activated sensors and target location estimates are in-
terdependently improved. By adopting the variational method, the
inter-cluster information exchange is reduced to one single Gaussian
statistic, further minimizing resource consumption in the network.
Since the measurement incorporation and the approximation of the
filtering distribution are jointly performed by variational calculus,
an effective and lossless compression is achieved compared to the
classical Particle Filtering. Effectiveness of the proposed approach
is evaluated in terms of tracking accuracy and localization precision.

Index Terms— Cluster-based, variational method, localization,
tracking, binary proximity sensor

1. INTRODUCTION

Wireless sensor networks (WSN) are ”data centric”. The data sensed
by WSN, such as range, bearing, temperature or humidity, are mean-
ingless without supplementary sensor locations information [1, 2, 3].
Sensor localization has thus received considerable attention in liter-
ature [4]. Target tracking is one of the typical location-dependent
WSN applications. The moving target can be well tracked if the
sensor positions and orientations are known exactly [5]. However,
it is not always possible to deploy or localize the sensors precisely.
Sensor location refinement/calibration based on known positions of
a moving target has been proposed in [6, 5]. In this work, by incor-
porating measurement information between sensors and a moving
target, we consider the simultaneous sensor localization and target
tracking problem. This attractive solution poses no restriction on
the mobile target, whose timely position is estimated in the presence
of sensor localization errors, without additional hardware configura-
tion requirement on the sensor. Furthermore, it allows a continuous
improvement of sensor localization, even during the tracking phase,
since each observation adds a geometric constraint and leads to an
improvement in estimation over time. The problem was defined by
Taylor et al. [2] as simultaneous localization and tracking (SLAT). In
earlier works [7, 8], the target to be located is a mobile robot, whose
control input is known a priori. In addition, the incorporated obser-
vations are assumed to be range-bearing measurements, which re-
quire a special antenna configuration and omnidirectional signals. In
this paper, we consider a much more general situation, where the tar-

get moves arbitrarily through the environment, with no constraint on
its direction or velocity. Concerning the sensors, a hierarchical WSN
is formed. Cluster heads (CHs), with high computation and com-
munication capabilities, are sparsely placed to fuse data from their
slave sensors and perform the SLAT algorithm. They are triggered
according to the prediction of the target location. Further informa-
tion on the cluster-activating protocol is stated in [9]. Slave sensors
are randomly and densely deployed through the span of the network.
They belong to clusters with singular cluster head. By employing a
binary proximity observation model [10], they report their observa-
tion in one bit to corresponding CH. A general state evolution model
is proposed to describe the locations of the target and the activated
sensors by a joint probability distribution. We adopt the Bayesian
framework to estimate the joint probability distribution. By incorpo-
rating the binary observation received in the activated CH, the joint
probability distribution is updated on-line. To avoid the representa-
tional complexity, we use the variational method to approximate the
joint state during the observation incorporation phase. To sum up,
a decentralized variational filtering algorithm for SLAT (DVaSLAT)
in binary sensor networks (BSN) is proposed, ensuring the tracking
accuracy and the localization precision with minimum resource al-
location. We will formulate the SLAT problem by a general state
evolution model (GSEM) and a binary proximity observation model
(BPOM) in Section 2. Section 3 is dedicated to a detailed descrip-
tion of the DVaSLAT algorithm. In Section 4, performance of the
proposed algorithm is studied by computer simulations. Section 5
concludes the paper.

2. PROBLEM FORMULATION

2.1. General State Evolution Model

Since the mobile target travels arbitrarily in the sensor field, instead
of a traditional kinematic parameter model [10], we employ the gen-
eral state evolution model (GSEM) [11, 12, 13]. The model is more
adaptive to practical situation and has no restriction on the velocity
and moving direction of the target. At instant t, the hidden state to be
estimated contains the target position xt and a set of activated sensor
locations St = {s1

t , s
2
t , . . . , s

m
t }, where m denotes the number of

sensors in the activated cluster. The sensor position si is assumed
to be a Gaussian variable, whose expectation is its latest estimate
value ŝi, and the precision matrix is ηi. The initial value of ŝi is
the assumed deployment position s̄i, and ηi indicates the position
offset due to deployment error and other spatial factors. The target
xt is assumed to follow an extended Gaussian model, where the ex-
pectation μt and the precision matrix λt are both random, with a
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Fig. 1. The Binary Proximity Observation Model is described by a
simple example. With respect to the 1st sensor, the target and the 2nd

sensor are within its sensing range at instant t. Observation y1
t = 1

and y1,2 = 1 is thus transmitted to the CH. The same principle holds
true for the 2nd sensor. Concerning the 3rd and the 4th sensors,
they keep silence at instant t. The CH then assign a ”zero” to the
observation of them after waiting a given time slot. The situation at
instant t + 1 can be similarly deduced.

Gaussian distribution and a Wishart distribution respectively:
⎧⎪⎪⎨
⎪⎪⎩

si
∼ N (ŝi, ηi)

xt ∼ N (μt, λt)
μt ∼ N (μt−1, λ)
λt ∼ Wd(V , n)

, αt ≡ {xt, μt, λt, St} (1)

where λ is the initial precision matrix reflecting the uncertainty of
the target position expectation at instant t with respect to the previ-
ous one. The target state precision matrix λt is modeled by a d di-
mensional Wishart distribution, with V and n denoting respectively
its precision matrix and degree of freedom. Notice that · denotes
initial fixed parameter. We use αt to denote the extended hidden
state.

2.2. Binary Proximity Observation Model

We investigate the SLAT problem using binary proximity sensors.
As shown in Fig. 1, such simple sensors only provide one single
bit per instant, which indicates the presence or absence of a target
within their detection range. The binary signal yi

t is constructed and
transmitted in the following form:

yi
t =

{
1, if ‖ xt − si ‖≤ γ
0, otherwise

(2)

where γ is the sensing range of sensors, xt is the location of the
target at instant t, and si is the location of the ith sensor. In order
to minimize energy and bandwidth consumption, only those slave
sensors that detected the presence of the target transfer their binary
proximity information and identify themselves to their CH. Due to
the noisy wireless link, the signal received at the CH is distributed
according to p(zi,x

t |yi
t) ∼ N (βiyi

t, σ
2
ε ), where βi is the attenua-

tion coefficient associated with the ith sensor, and σ2
ε is the noise

covariance. Assuming the noise samples εi
t are independently and

identically distributed, we have

p(zi,x
t |xt, s

i) =
∑
yi

t

p(zi,x
t |yi

t)P (yi
t|xt, s

i). (3)

As shown in the formulation (2), the mapping between xt, si and yi
t

is deterministic. Therefore, p(zi,x
t |xt, s

i) = p(zi,x
t |yi

t). Similarly,
if the jth activated sensor is in the sensing range of the ith one,
yi,j = 1, else yi,j = 0. The binary observations received at the
activated CH from the ith sensor is thus defined as follows:

p(zi,x
t |xt, s

i) = N (βiyi
t, σ

2
ε )

p(zi,j |si, sj) = N (βiyi,j , σ2
ε ). (4)

Defining m as the number of slave sensors in the activated cluster,
the observations gathered in the CH at instant t are denoted by zt ≡{
zi

t

}
i=1,··· ,m

, where zi
t ≡

{
zi,x

t ,
{
zi,j

}j �=i

j=1,··· ,m

}
.

3. DVASLAT ALGORITHM

The SLAT problem can be viewed as an optimal estimation problem,
consisting of recovering the unobserved hidden state αt from a set
of observations zt. In the Bayesian context, it can be formulated as
recursively calculating the predictive distribution p(αt|z1:t−1) and
the posterior distribution p(αt|z1:t).

p(αt|z1:t−1) =

∫
p(αt|αt−1)p(αt−1|z1:t−1)dαt−1;

p(αt|z1:t) = p(zt|αt)p(αt|z1:t−1)/p(zt|z1:t−1). (5)

The non-linear and non-Gaussian aspects of the GSEM in Eq.
(1) lead to intractable integrals, when calculating the marginal dis-
tributions above. We propose a Variational Filtering to approximate
the density distribution p(αt|z1:t) by a separable distribution q(αt)
in minimizing the Kullback-Leibler (KL) divergence error:

DKL(q||p) =

∫
q(αt) log

q(αt)

p(αt|z1:t)
(dαt), (6)

where q(αt) =
∏

i

q(αi
t) = q(xt)q(μt)q(λt)q(St),

and q(St) =
m∏

i=1

q(si
t).

Since
∫

q(αi
t)dαi

t = 1, by using a Lagrange multiplier, the follow-
ing approximate distribution yields [14],

q(αi
t) ∝ exp〈log p(z1:t, αt)〉∏

j �=i q(α
j
t )

, (7)

where 〈.〉q denotes the expectation operator relative to the distribu-
tion q. Taking into account the separable approximate distribution at
time t − 1, that is, p̂(αt−1|z1:t−1) = q(αt−1), the filtering distri-
bution at time t is deduced,

p̂(αt|z1:t) =
p(zt|αt)

∫
p(αt|αt−1)q(αt−1)dαt−1

p(zt|z1:t−1)

∝ p(zt|xt, St)p(xt|μt, λt)p(λt)p(St)qp(μt),

where qp(μt) =

∫
p(μt|μt−1)q(μt−1)dμt−1. (8)

Thanks to the separable form of q(αt), the filtering distribution
p(αt|z1:t) is sequentially updated by a simple integration with re-
spect to μt−1. Considering the GSEM proposed in (1), the evolution
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of μt−1 is Gaussian, namely p(μt|μt−1) ∼ N (μt−1, λ̄). Defin-
ing q(μt−1) ∼ N (μ∗t−1, λ

∗
t−1), qp(μt) is also Gaussian [15],

namely qp(μt) ∼ N (μp
t , λp

t ). Therefore, the filtering distribution
is jointly updated and approximated, yielding a natural and adaptive
compression, which is propagated without lossy compression. As
the location estimates of sensors are locally stored in the activated
CH, the temporal dependence on the past is hence reduced to incor-
porate only one component approximation q(μt−1). Accordingly,
communication between two successive active CH is then reduced
to sending the mean and the precision matrix of it. Equation (7)
gives a Gaussian distribution for μt and a Wishart distribution for
λt, namely q(μt) ∼ N (μ∗t , λ∗t ), q(λt) ∼ Wd(V

∗
t , n∗), where

the parameters are iteratively updated until convergence, according
to the following scheme:

μ
p
t = μ

∗
t−1, λ

p
t = ((λ∗t−1)

−1 + (λ)−1)−1

μ
∗
t = (λ∗t )

−1(〈λt〉〈xt〉 + λ
p
t μ

p
t )

λ
∗
t = 〈λt〉 + λ

p
t , n∗ = n + 1

V ∗t
−1

= 〈xtxt
T 〉 − 〈xt〉〈μt〉

T − 〈μt〉〈xt〉
T + 〈μtμt

T 〉 + V
−1

〈μt〉 = μ
∗
t , 〈λt〉 = n∗t V ∗t , 〈μtμ

T
t 〉 = λ

∗−1
t + μ

∗
t μ
∗T
t

However, the target state distribution q(xt) and the activated sen-
sors positions distribution q(St) do not have closed forms. In or-
der to compute their means and precision matrices (required for the
iteration update above), we resort to the importance sampling (IS)
method, where samples are drawn from Gaussian distributions and
are weighted according to their likelihoods. Combining the equation
(7) and (8), we have the likelihood expression for q(xt) and q(si

t)
as follows:

q(xt) ∝
m∏

i=1

p(zi,x
t |xt, ŝ

i
t)N (〈μt〉, 〈λt〉)

≈
N∑

k=1

w
(k)
t δ

x
(k)
t

(xt)/
N∑

k=1

w
(k)
t ,

where x
(k)
t ∼ N (〈μt〉, 〈λt〉), w

(k)
t ∝

m∏
i=1

p(zi,x
t |x(k)

t , ŝi
t);

q(si
t) ∝ p(zi,x

t |x̂t, s
i
t)

m−1∏
j �=i

p(zi,j
t |si

t, ŝ
j
t )N (ŝi, ηi)

≈
N∑

k=1

w
i,(k)
t δ

s
i,(k)
t

(si
t)/

N∑
k=1

w
i,(k)
t , (9)

where s
i,(k)
t ∼ N (ŝi, ηi),

w
i,(k)
t ∝ p(zi,x

t |x̂t, s
i,(k)
t )

m−1∏
j �=i

p(zi,j
t |si,(k)

t , ŝj
t ),

where δ
x
(k)
t

and δ
s

i,(k)
t

denote the Dirac delta functions located at

x
(k)
t and s

i,(k)
t , respectively. By minimizing mean square errors

(MMSE), estimations of the target state and the activated sensors
positions are interdependently updated as follows:

x̂t = Eq(xt)[xt|{z
i
t}i=1,··· ,m]

ŝ
i
t = Eq(si

t)
[si

t|{z
i
t}i=1,··· ,m]. (10)

4. EVALUATION AND SIMULATION

The performance of the proposed DVaSLAT algorithm is shown on
a synthetic example, the purpose of which is to establish a base-
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Fig. 2. Target tracking result.

line performance on a relatively difficult problem. Thus no con-
straint is put on the target velocity or moving direction (see Fig.
2). Concerning the sensors, 400 binary sensors belonging to 16
clusters were uniformly deployed in a 2 dimensional field (100 ×
100 m2), with sensing ranges identically fixed to 15 m. Due to the
spatially varying environment factors and deployment errors, sen-
sors were in fact randomly distributed around their initially set lo-
cations s̄i, with precision ηi identical for all the sensors (see Fig.
3, where the red lines denote the distances between the true posi-
tions of sensors and their deployment values). The parameters in-
volved were set as, V = diag([5 5]), ηi = diag([1/4 1/4]), λ =
diag([1/900 1/900]), n = 10, σε = 0.1. The low state precision
λ and the high degree of freedom n allow a general non informative
prior. Performance of the DVaSLAT algorithm is shown in Fig. 2
and Fig. 3. Fig. 3 demonstrated the central part of the network to
clearly show the improvement in sensor localization. As the central
part happens to be the high traffic area, the sensors located there are
thus frequently re-located. Fig. 4 quantifies the tracking accuracy
and the localization precision in Root Mean Square Error (RMSE).
Because of the cluster-based scheme, only the sensors that have been
activated are localized. The peak points in Fig. 4-(b) reflect corre-
sponding resting sensors. One can notice that accurate tracking per-
formance and sensor localization is achieved, despite the absence of
exact a priori information and the lack of accurate observation.

5. CONCLUSION

A decentralized variational filtering solution to simultaneously lo-
calize sensors and track mobile target was proposed in the context of
BSN. To minimize resource consumption, the algorithm is executed
on a fully decentralized cluster scheme. Furthermore, the BPOM
quantifies the detected signal to a single bit, not only reducing the en-
ergy consumption of sensors but also the communication cost. The
variational method allows an implicit compression of the exchanged
statistics during the observation incorporation phase. In conclusion,
as the target move freely in BSN, a number of observations are gen-
erated, which facilitate both the activated sensors localization and
the target tracking. By incorporating these measurements into the
DVaSLAT algorithm, estimations of sensors and that of the target
are interdependently and continuously improved.
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Fig. 4. Performance of the DVaSLAT algorithm
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