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ABSTRACT

An efficient, economical and robust strategy for target track-
ing in binary sensor network is proposed in this paper. By
adopting the binary variational filtering algorithm, consider-
able tracking quality is ensured, while decreasing communi-
cation between sensors compared to a particle filtering algo-
rithm. Based on the proactive clustering, the entire sensornet-
work is subdivided into several clusters. Only cluster heads
are configured with more available energy and high process-
ing capability, reducing thus the hardware expenditure. Fur-
thermore, precise prediction of the target position and the
cluster activation protocol ensure that the most potentialclus-
ter is activated to perform target tracking, reducing consumed
energy during the hand-off operation. Employing of the bi-
nary variational filtering algorithm and the exception handle
scheme ensure robustness in coping with the case of highly
non-linear and non-Gaussian environments.

1. INTRODUCTION

Wireless sensor network (WSN) is an emerging technology,
which has found its application in several potential areas.
Among them, target tracking has attracted considerable at-
tention in both literature and application domains. Aimingto
detect the presence of an object and determine its path in an
area of interest, target tracking thus requires effective coor-
dination among sensor nodes. In order to retain a low con-
figuration spending, the deployed sensors are equipped with
small batteries. Therefore, a trade-off exists between theen-
ergy expenditure and the tracking quality. These constraints
inspire ones to design a reasonably accurate estimation whilst
minimizing the overhead of network configuration and maxi-
mizing the network lifetime by reducing the network commu-
nication.

In this paper, we investigate the problem of target tracking
using a WSN composed of binary proximity sensors. As a
power and bandwidth efficient solution, the binary proximity
sensor can only make a binary decision based on the strength
of sensed signal. Only when it senses the presence of the

target that one bit is transmitted for further processing. The
realistic binary sensor network (BSN) suffers from problems
of a noisy link and low estimation precision. We have de-
veloped the binary variational filtering algorithm (BVF)[1, 2]
that solves these problems while perfectly fits the highly non-
linear conditions and eliminates the error propagation.

In this contribution, in order to further reduce the en-
ergy consumption in BSN and minimize the configuration
overhead, BVF is executed on a fully decentralized cluster
scheme. At every instant, only one cluster is triggered ac-
cording to the prediction of the target location and its ten-
dency. The cluster head (CH) collects information from its
slave sensors and determines the target position, then predicts
the target location of the next instant as well. Based on the re-
liable prediction, we can choose the most potential clusterto
provide more accurate tracking while cutting down dramat-
ically the number of hand-off operations between the CHs.
Thus advanced resource conservation is achieved. The pro-
posed architecture is also robust to the rare events of abrupt
changes in target trajectory. In fact, in addition to the capabil-
ity of BVF in dealing with non-linear/non-gaussiansituations,
the adopted exception handle scheme is robust to prediction
failures.

The rest of the paper is organized as follows. In section
2, we briefly summarize the related existing work. Then the
BVF algorithm is introduced in section 3. In section 4, we
describe the proposed prediction-based proactive clusterpro-
tocol (PPCP) and discuss the achieved resource conservation.
The exception handle scheme introduced in section 5 is to en-
sure the system robustness. Finally, the proposed scheme is
evaluated by simulations in section 6. Section 7 concludes.

2. RELATED WORK

The problem of target tracking using binary sensors has been
explored by many references [3, 4, 5]. Shrivastava et al. [3]
explore the fundamental performance limits of target track-
ing by binary sensing models. The authors of [4] consider
the piecewise linear path approximations and fix the scale of



target velocity, their simulations depend on the error-free as-
sumption as well. The sensing model employed in [5] is to
provide direction information of the target of interest. How-
ever, without additional proximity information, it can notdis-
tinguish parallel trajectories.

Cluster-based tracking schemes have gained extensive at-
tention recently, but to our knowledge, none of these algo-
rithms aims at providing accurate target tracking and mini-
mizing the energy consumed in the binary sensor networks.
Heinzelman et al. [6] developed a low-energy adaptive clus-
tering hierarchy (LEACH). It randomly rotates the CH to
evenly distribute the energy load among sensors. Tseng et al.
[7] use the mobile agent technology. They select the agent by
comparing the signal strength, and also dynamically choose
two nearby sensors as slave sensors to cooperatively triangu-
late the target. But for the case of irregular network topolo-
gies, it may be energy or time intensive to choose the master
and its slave sensors. The energy and memory spendings for
the tracking histories in the moving agent is not calculated
too. Chen et al. [8] provide a hierarchical WSN composed
of a static backbone of CHs and dynamically formed clusters.
Their design concentrates on dealing with the collision dur-
ing the clustering phase. The performance of it degrades as
the target speed increases.

Aiming at conserving the resources, we adopt binary sen-
sors to form networks, and the entire BSN is subdivided into
several clusters. Only CHs are configured with more available
energy and higher processing capability. Other slave sensors
just perform the sensing function, and only if the target are
detected, will they transmit one bit in a small distance to their
master. Furthermore, by accurately predicting the target po-
sition and tendency, the energy consumed in hand-off opera-
tions reduces dramatically. To ensure accurate target tracking,
the BVF algorithm is employed, which provides considerable
precision while further decreasing communication between
sensors compared to that of [9]. Robustness of the proposed
approach is ensured by the exception handling scheme.

3. BINARY VARIATIONAL FILTERING
ALGORITHM

The target positionxt is assumed to be Gaussian distributed,
with a random meanµt and a random precision matrixλt to
further capture the uncertainty about the state distribution:







xt ∼ N (xt|µt, λt)
µt ∼ N (µt|µt−1, λ̄)
λt ∼ Wn̄(λt|S̄)

Whereλ̄ is a fixed precision matrix to reflect the region of un-
certainty for the new estimation around the old one. The state
precision matrix is modeled by a Wishart distributed withn̄
and S̄ denoting respectively the degree of freedom and the
precision matrix, both assumed to be fixed. Instead of the
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Fig. 1. Only one Gaussian statisticsq(µt−1) is exchanged
between leader cluster heads.

kinematic parameter models applied in [10], the use of a gen-
eral state model [11] is more adaptive to the non-linear cir-
cumstance.

The observed binary datazj,t communicated to the leader
CH from its slaves are distributed according to the following
mode:

P ({zj,t} |xt) =
∏m

j=1 N (βjsj,t, σ
2
ǫ ),

sj,t =

{

1, if yj,t < γ
0, otherwise

whereβj is the attenuation coefficient associated with thej-
th sensor,σ2

ǫ the noise variance,yj,t denotes the distance ob-
served by thej-th sensor to the target at instantt.

Given the model above, the distribution of interest for
tracking is the posteriorp(αt|z1:t), whereαt = (xt, µt, λt)
denotes the extended hidden state andzt = {zj,t} means the
observations gathered at CH. It is approximated by a distri-
butionq(α) that minimizes the Kullback-Leibler (KL) diver-
gence error. Supposing thatq(α) =

∏

i q(αi), where{αi}
denotes the subsets ofα that arext, µt, λt, thenq(α) is of the
form,

q(αi) ∝ exp < logp(z1:t, αt) >∏

j 6=i
q(αj)

where< . >p denotes the expectation operator relative to the
distributionp.

Taking into account the separable approximate distribution
at timet − 1, the filtering distribution at timet is written,

p̄(αt|z1:t) ∝ p(zt|xt)p(xt|µt, λt)p(λt)qp(µt),
with qp(µt) =

∫

p(µt|µt−1)q(µt−1)dµt−1.

The temporal dependence on the past is hence reduced to the
incorporation of only one component approximationq(µt−1),
which is Gaussian, limiting the communication between two
successive leaders to simply sending the mean and the covari-
ance ofq(µt−1) (as shown in Fig.1). The update of the filter-
ing distribution and its approximation are jointly performed,
yielding thus a natural and adaptive compression of the fil-
tering distribution [1], which is propagated in the BSN with-
out lossy compression. The whole process is demonstrated in
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Fig. 2. BVF process during consecutive sampling instants.

Fig.2, while dashed lines mean that information transferring
may not occur, as the leader stays the same during consecu-
tive time slots. On contrast, the real line denotes the operation
executed at every instant. Byp(µt+1|µt), the leader of next
instant is chosen.

4. PREDICTION-BASED PROACTIVE CLUSTER
PROTOCOL

A cluster scheme is employed here to facilitate collabora-
tive signal processing and to ensure resource conservationin
target tracking sensor network. The clustering protocol em-
ployed is proactive, which means that clusters are formed in
advance. So instead of assuming the identical configuration
for all sensors, we present a hierarchical BSN: a large num-
ber of slave sensors are randomly and densely deployed over
the span of the network, and are subdivided into clusters ac-
cording to their distances to CHs; CHs with high capability
are sparsely placed and will be triggered by certain events.
There are several benefits of using this cluster scheme: firstly,
the spending of hardware configuration drops sharply. For
proactive clustering scheme, as there is no need for CH com-
petition, only CHs are configured with more available energy
and higher computation capability, slave sensors just sense
and transfer data upon their CH’s request. Secondly, band-
width needed and energy consumed during communication
phases reduced dramatically. Since signal processing taskis
distributed among CHs, only when hand-off operations occur
do CHs need to change more information for a considerable
long distance. The number of hand-off operations is reduced
by the reliable prediction of the target tendency too. For most
of the time, just the slave sensors that belong to the leader and
have detected the target are required to transmit one bit in a
small distance. Thirdly, the lifetime of BSN is extended to
a great degree. Though slave sensors are densely spread out,
at every sampling instant, only a few of them are requested
to sense and only one CH is activated to locate the target. It
is well known that when sensors are in the sleeping mode,
they consume only 0.1% of the energy consumed in the ac-
tive mode. Experimental data shows that sensors can last for

more than a year on a 1% duty cycle [12].

4.1. Coverage problem

We assume that slave sensors are uniformly and randomly dis-
tributed with densityd. A straightforward way to locate tar-
get by using binary sensors is to obtain a bounded intersection
area from sensor readings. Hence the coverage problem is of
critical significance. There have been many research works
focusing on the coverage problem. In this paper, we directly
employ the analysis of [13], according to which, with the sen-
sor densityd, the target is within the distance of

D̃ =
1√
d

(

1

2
+ 4

√

1

π
− 1

4

)

to the closest sensor at probability≥ 99%. For a100×100m2

fields, if we randomly deploy 400 slave sensors, the sens-
ing radius of them need to be at least 3.09 meters. While
for a set ofn sensor readings, onlyn − 1 out of the total
n(n − 1)/2 intersection areas are independent. Therefore,
in order to locate the target, at least four sensor are required
to sense the target within their range [8]. To guarantee the
four-coverage problem we need to either increase the slave
sensors density or to extend the sensing range of each sen-
sor. Since the slave sensors can simply make judgement of
the presence or the absence of a target, extending the sens-
ing range results in smaller resolution in target tracking.On
the other hand, increasing the number of slave sensors brings
on tremendous rise in hardware and energy expenditure, since
also the number of CHs has to increase. Otherwise, CHs have
to be equipped with multiplied memory, higher signal pro-
cessing capability and much more available energy to support
the computation and communication requirement. The BVF
algorithm [1, 2] helps balancing the trade-off between the
tracking accuracy and the cost. By the probabilistic strategy,
the stringent constraint of four-coverage could be relaxed. We
prefer extending the sensing range rather than increasing the
sensor density as the tracking quality is ensured by the BVF
algorithm.

4.2. Details of PPCP

The proposed protocol is composed of three pivotal com-
ponent mechanisms: initial proactive clustering, prediction-
based CH leader selection, slave sensors activating and reply-
ing.

4.2.1. Initial proactive clustering

After the deployment of all sensors, each slave sensor trans-
mits its position (assumed to be known) to the CHs within
its transmission range (which is set to be twice of its sensing
range according to the result of [8]). Owing to the greater
sensing ranges of CHs, the position information transmitted
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Fig. 3. Prediction-based CH leader selection.

by slave sensors is almost certainly to be received by at least
one CH. Based on distance and signal power comparing, each
CH can form its cluster. During the clustering process, the
CHs can also confirm its neighboring CHs. When the clus-
tering phase finishes, two kinds of lists are maintained in
the CHs: the neighboring CHs list and the slave sensors list,
which contain the node IDs and the node positions.

4.2.2. Prediction-based CH leader selection

To reach accurate target tracking while minimizing energy
consumption, the CH selection strategy is of critical signif-
icance during the tracking phase. An intuitive solution is
to choose the CH that is nearest to the target as the leader.
But this strategy would incur unnecessary energy expenditure.
First, at every sampling instant all the CHs need to measure
the distance between the target and themselves then compare
with each other to choose the nearest one. Thus the possi-
bility of distributed signal processing is prevented and exces-
sive energy is consumed. Second, frequent changes between
CHs result in continuous communications of large informa-
tion, which lead to unacceptable additional energy and band-
width consumption.

To minimize energy expenditure, a hierarchical solution is
proposed in our scheme. At the lower layer, the BVF algo-
rithm [1, 2] is adopted, which means that instead of maintain-
ing a large scale of particles and their weights in the particle
filtering [14, 9], only one Gaussian statistic is transmitted to
perform target tracking. At the higher layer, the leader CH is
selected based on the exact prediction of target position and
its trajectory tendency.

The leader CH not only processes the data from its slaves to
estimate the target position, but also predicts the target future
position to determine whether to execute the hand-off opera-
tion and which CH would take over. As mentioned above, the
deployment of CHs ensures the coverage problem of target
tracking. Generally, even if the target goes out of the sensing
range of the leader CH, there is a great probability that it is
sensed by its neighbors. As demonstrated in Fig.3, based on

the prediction of the target, we define a decision function that
performs only between the leader and its neighboring CHs:

Ŝ(x) = argmax
cos(θ)

d

whereθ is the angle between the predicted target direction
and the vector from the leader to its neighbor,d is the distance
from the predicted target to the neighbor. Based on this func-
tion, the most potential leader is chosen, as the target is most
probably sensed by it for a considerably long period. This de-
cision rule avoids unnecessary hand-off operations and con-
serves energy expenditure as well.

4.2.3. Slave sensors activating and replying

After the initial clustering phase, each slave sensor is in-
formed by its master. Slave sensors rest in sleeping mode
in general. They are awakened only when being scheduled to
sense or when an activate message is received. For the for-
mer case, it senses the target presence in its vicinity while
starting a local timer. When it has sensed the target, one bit
is transmitted to the leader CH; For the latter, by comparing
the source of the message with its master ID, the slave sensor
decides whether to change into sensing mode or not. If yes,
when the target is detected, it transmits the sensing resultto
the leader automatically.

5. EXCEPTION HANDLING SCHEME

As described in [2], the BVF algorithm is more favorable
than other algorithms in non-linear and non-gaussian environ-
ments. While by employing the cluster strategy, observation
data come only from the activated cluster. There are cases that
the chosen cluster can not provide reasonable tracking quality
because of its restriction in observation scope. Especially in
cases when the target has changed abruptly not only its veloc-
ity but also the moving direction. Exception handling scheme
is introduced here to cope with these situations.

There are two kinds of exceptions: Firstly, when the newly
chosen leader can not sense the target even by its slaves. With-
out observation data provided in the update phase, the BVF
cannot yield out precise estimation. Then all CHs in the net-
work are informed with a ’failure’ signal, which means that
an abrupt change has taken place during the target movement.
The CHs who detected the target or whose slaves did, respond
to the current leader with their observations. The current
leader then chooses the best leader by performing the decision
function mentioned above, whered is the observation instead
of the prediction. Furthermore, the ’failure’ signal informs
that the prediction provided by the BVF at the previous in-
stant is not adaptable to the abrupt change. To ensure tracking
accuracy, the mean ofq(µt−1) is replaced by the position of
the newly chosen CH. Another exception occurs when the tar-
get moves between different clusters. In this case, the sensing
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nodes that have detected the target belong to different clusters.
Thus, charging only one cluster with the task of data process-
ing results in poor tracking quality. To handle this problem,
the average of other cluster observations is transfered to the
current leader and is considered as the mean ofq(µt−1) to
counteract the activated cluster observation. Unbiased esti-
mation is reached then.

The reason for changing the mean ofq(µt−1) is demon-
strated in section 3. Sinceq(µt−1) is the sufficient statistic
for computing the filtering distribution, it contains all tempo-
ral dependence information. Substituted by the observation
data makes it robust to exceptions while integrating more in-
formation.

6. EVALUATION AND SIMULATION

To demonstrate the effectiveness and the energy consumption
of the proposed protocol, we compared its performance with
two similar approaches – Prediction-based Reactive BVF
(PRBVF) and Reactive BVF (RBVF). By PRBVF, we mean
that cluster is dynamically formed depending on the same de-
cision function in section 4.2.2. RBVF means that the active
cluster is formed by choosing the nearestm sensors (m = 10
in the simulation here) to the target. Intuitively, besidesthe
hardware expenditure, additional energy consumption during
the clustering phrase is included in these two approaches. To
calculate the energy expenditure during the whole process,we
adopted two hypothesis[15]: 1) the communication between
the active sensors is via single hop, 2) the energy consumed
in scheduling and computing can be neglected relative to the
energy consumed during communication.

According to the energy consumption model proposed in
[16, 15], the energy consumed in transmission per bit is

ET = ǫe + ǫad2

whereǫa is the energy dissipated in Joules per bit perm2, ǫe
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is energy consumed by the circuit per bit,d is the transmission
distance.

The power consumed when receiving data is given by

ER = ǫrN

whereǫr denotes the energy expended in receiving one bit of
data.

Similarly, the power consumed in sensing is defined by

ES = ǫsN

whereǫr is the energy expending parameter for sensing one
bit of data.

Following the energy model, we chooseǫa =
100pJ/bit/m2, ǫe = 50nJ/bit, ǫr = 135nJ/bit, ǫs =
50nJ/bit. The energy consumption of the three approaches
is demonstrated in Fig. 6

Considering a target tracking duration of 100 time slots,
400 sensors are randomly deployed in a 2 dimensional field



(100 × 100m2) and belong to 25 sparsely positioned CHs,
while PRBVF and RBVF have also employed the same con-
figuration but without fixed CHs. Fig. 4, Fig. 5 and Fig. 6
show that our protocol successfully balances the trade-offbe-
tween the tracking quality and the energy consumption even
with several abrupt changes in the trajectory.

7. CONCLUSION

An efficient, economical and robust strategy for target track-
ing is proposed in the context of BSN. The effectiveness of
tracking is ensured by the BVF algorithm and the reasonably
chosen clusters to perform distributed signal processing.As
for economical reasons, in the hardware layer, the deploy-
ment of binary sensors saves greatly energy and bandwidth; in
the software layer, the BVF algorithm decreases the informa-
tion exchanged between CHs to one Gaussian statistic; Proac-
tive clustering reduces the hardware expenditure; Prediction-
based selection of CH terminates unnecessary hand-off oper-
ation considerably, thus most of the communication is con-
strained within the vicinity of CH leaders. The robustness is
ensured by exception handling scheme.
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