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ABSTRACT

Target tracking in wireless sensor networks (WSN) has
brought up new practical problems. The limited energy sup-
ply and bandwidth of WSN have put stringent constraints on
the complexity and inter-node information exchange of the
tracking algorithm. In this paper, we propose a binary varia-
tional algorithm outperforming existing target tracking algo-
rithms such as Kalman and Particle filtering. The variational
formulation allows an implicit compression of the exchanged
statistics between leader nodes, enabling thus a distributed
decision-making. Its binary extension further reduces the re-
source consumption by locally exchanging only few bits.

1. INTRODUCTION

Target tracking problems in wireless sensor networks (WSN)
have attracted the attention of many researchers [1, 2, 3, 4].
The sensor network constraints inspire designers to achieve
reasonably accurate estimation whilst minimizing overhead
of networks configuration and maximizing networks lifetime
by managing the energy consumption of the sensors and re-
ducing the networks communication.

Recently, distributed particle filters were proposed in liter-
ature [5, 3]. In [3], a message approximating scheme based
on a greedy KD-tree approximation is proposed. In [5], a
full collaborative strategy is proposed with a GMM (Gaussian
Mixture Model) message approximation. The main draw-
back of these methods is the error propagation through the
network when approximating the particle representation by a
few number of Gaussian statistics. A quantized centralized
particle filter is proposed in [6]. According to this method,
the nodes only send a connectivity and a change in proximity
information. Recently, a variational approach suitable to the
communication constraints of sensor networks has been pro-
posed in [7]. The efficiency of the variational approximation
relies on the fact that the online update of the filtering distri-
bution and its compression are simultaneously performed. In
addition, the variational approach has the nice property to be
parameterization-independent ensuring the robustness of the
data processing.

In this contribution, we propose a novel algorithm based on
the variational approximation and the connectivity measure.
The measured energy on the sensor is quantified according to
a fixed threshold, indicating the presence of the target in the
vicinity of the node. At each instant, only a few nodes which
have detected the target send one bit to a selected leader node
to perform target tracking. The leader selection is based on
the relevance of nodes positions with respect to the predicted
target position.

The paper is organized as follows. In section 2, we briefly
recall the SOI-KF filter algorithm (Sign of Innovations-
Kalman Filtering [8]) and the particle filter in tertiary wireless
sensor networks [6]. Section 3 is devoted to the main contri-
bution of this paper, where we propose a distributed binary
variational tracking (BVF) algorithm. In section 4, simula-
tion results corroborate the effectiveness and the robustness
of the proposed algorithm in difficult tracking situations such
as abrupt changes in target trajectory.

2. RELATED WORK

2.1. SOI-KF

The principal contribution of the SOI-KF algorithm [8] is the
quantization function which severely quantize the observation
of each sensor to 1 bit. The message communicated b(n) is
defined as the sign of innovation (SOI):

b(n) = sign[y(n) − ŷ(n|n − 1)]

:=
{

+1 if y(n) ≥ ŷ(n|n − 1)
−1 if y(n) < ŷ(n|n − 1)

where y(n) is the current observation of the nth sensor, and
ŷ(n|n − 1) is the data prediction of it based on past observa-
tion. Relying on the sequence b0:n := [b(0), ..., b(n)]T , an
approximate MMSE estimation of target position is consti-
tuted. The SOI-KF is however implemented in a centralized
way and relies on measuring ranging information from signal
strength which requires hardware that is typically not avail-
able on sensor nodes. In addition, because of the linearity of
the state equation, the filtering algorithm is not able to track
abrupt changes in the target trajectory.



2.2. Particle Filtering in Tertiary WSN

The likelihood models used in target tracking are often non-
linear functions of the state, which result in non-Gaussian
posterior distributions. The tracking recursion is thus analyti-
cally intractable and non- parametric methods such as Particle
Filtering [9] allow a more attractive alternative to KF in pro-
viding numerical approximation to track complex models.

The principle idea of tertiary WSN [6] is similar to that
of SOI-KF to some extent. In both of them, sensors trans-
mit only one bit during the target tracking process. But un-
like SOI-KF, the sensors do not estimate the target’s posi-
tion and can not measure the exact distances between the
target and themselves. In brief, tertiary WSN are composed
of sensors that emit information based on the strength of the
sensed signal in consecutive instants, that is, the i-th sensor
(i = 1, . . . , N) received signal at instant t. If the sensed sig-
nal yi,t > γ, where γ is a threshold of the sensor, the trans-
mitted signal is generated according to

si,t =
{

+1 if yi,t − yi,t−1 ≥ 0 and yi,t > γ
−1 if yi,t − yi,t−1 < 0 and yi,t > γ

So si,t = +1 means that the target is in the vicinity of the i-th
sensor and is approaching it as well; the ”-1” means that the
target is receding from the sensor but still within its sensing
range. If yi,t < γ, the sensor does not emit anything (which
is considered to be 0 in the computation phase). So it pro-
vides highly compressed information about the moving target
but retains its direction and proximity information. Such de-
sign minimizes the power needed for operation in the sensors
as well as the communication bandwidth needed for signal
transmission.

Even though the algorithm estimates the target trajectory
and its velocity at low cost, the proposed approach in [6] relies
on a linear state equation, reducing its ability to track abrupt
trajectory changes. Besides, all the information is transmitted
to and then processed in the central unit, which will definitely
aggravate the burden of the central unit.

3. BINARY VARIATIONAL FILTERING

In a distributed context, the variational tracking compresses
the message between leader nodes in a consistent manner [7].
The approximated filtering distribution is updated at each in-
stant in a variational approach allowing the covering of the
whole state space. In other words, the update of the filter-
ing distribution and its approximation are jointly performed.
Thus distributed signal processing is achieved effectively. By
using the observations of the distances between the target and
its three nearest sensors, accurate results are achieved in [7].
However, adding the required hardware for measuring dis-
tances increases the cost and size of the nodes. This mo-
tivates the use of a binary quantization process where each
node emits one bit stating if the target is in its vicinity or

not. An other key point of the variational approach is the
use of a general state model [10] to describe the state evolve-
ment instead of the kinematic parameter models applied in
[6]; Thirdly, the sensors randomly scatter on the field and only
the nearest sensors that sensed the target transmit their obser-
vations to the local leader node, which greatly cuts down the
cost of communication.

3.1. General State Model

The hidden state xt is assumed to be Gaussian distributed,
with a random mean μt and a random precision matrix λt to
further capture the uncertainty about the state distribution:

⎧⎪⎨
⎪⎩

xt ∼ N (xt|μt, λt)
μt ∼ N (μt|μt−1, λ̄)
λt ∼ Wn̄(λt|S̄)

Where λ̄ is a fixed precision matrix to reflect the region of un-
certainty for the new estimation around the old one. The state
precision matrix is modeled by a Wishart distributed with n̄
and S̄ denoting respectively the degrees of freedom and pre-
cision matrix, both assumed to be fixed.

3.2. Variational Tracking Algorithm

Given the model above, the distribution of interest for track-
ing is the posterior p(αt|y1:t), where αt = (xt, μt, λt) de-
notes the extended hidden state. It is approximated by a distri-
bution q(αt) that minimizes the Kullback-Leibler (KL) diver-
gence error. Supposing that q(αt) =

∏
i q(αi), where {αi}

denotes the subsets of αt that are xt, μt, λt, q(αt) is of the
form,

q(αi) ∝ exp < logp(y1:t, αt) >∏
j �=i q(αj)

where < . >q denotes the expectation operator relative to the
distribution q.

Taking into account the separable approximate distribution
at time t − 1, the filtering distribution at time t is written,

p(αt|y1:t) ∝ p(yt|xt)p(xt|μt, λt)p(λt)qp(μt),

with qp(μt) =
∫

p(μt|μt−1)q(μt−1)dμt−1.

The temporal dependence on the past is hence reduced to the
incorporation of only one component approximation q(μ t−1).
The density q(μt−1) turns out to be a Gaussian distribution,
limiting the communication between two successive leaders
to only sending the mean and the covariance of it. The ap-
proximate distribution yields thus a natural and adaptive com-
pression of the filtering distribution which is propagated in the
sensor network without lossy compression.

Taking into account the prior mean-scale mixture transition
model, the updated separable distribution q(α t) has the fol-
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Fig. 1. Binary Variational Filtering (BVF)

lowing form:

q(xt) ∝ p(yt | xt)N (xt | 〈μt〉, 〈λt〉)
q(μt) ∝ N (μt | μ∗

t , λ
∗
t )

q(λt) ∝ Wn∗(λt | S∗
t )

where the parameters are iteratively updated according to the
following scheme:

μ∗
t =λ∗−1

t (〈λt〉〈xt〉 + λp
t μ

p
t )

λ∗
t =〈λt〉 + λp

t

n∗ =n̄ + 1
S∗

t =(〈xtx
T
t 〉 − 〈xt〉〈μt〉T − 〈μt〉〈xt〉T + 〈μtμ

T
t 〉 + S̄−1)−1

μp
t =μ∗

t−1

λp
t =(λ∗−1

t−1 + λ̄−1)−1

Note that the mean state and the precision matrix have closed
forms such that their means are easily derived:

〈μt〉 = μ∗
t , 〈λt〉 = n∗S∗

t , 〈μtμ
T
t 〉 = λ∗−1

t + μ∗
t μ

∗T
t .

However, the state xt does not have a closed form approx-
imate distribution. In order to compute its mean and covari-
ance, one can resort to an importance sampling scheme where
samples are drawn from the Gaussian N (xt | 〈μt〉, 〈λt〉) and
weighted according to their likelihoods (taking into account
the binary quantization):

x
(i)
t ∼ N (xt | 〈μt〉, 〈λt〉), w

(i)
t ∝

m∏
j=1

p(zj,t|x(i)
t ),

where m is the number of sensors, and zj,t is the observation
transmitted to leader node by the j-th sensor at instant t. The
distribution p(zj,t|sj,t) is supposed to be N (βjsj,t, σ

2
ε ), βj is
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Fig. 2. SOI-KF estimation

the attenuation coefficient associated with the j-th sensor, and
σ2

ε the noise parameter. sj,t is the connectivity measurement
defined as follows:

sj,t =
{

1, if yj,t > γ
0, otherwise

Note that only the sensors which detected presence of the tar-
get transfer proximity information to the leader node.

The mean and covariance are then obtained by their empir-
ical approximations:

〈xt〉 =
N∑

i=1

w
(i)
t x

(i)
t , 〈xtx

T
t 〉 =

N∑
i=1

w
(i)
t x

(i)
t x

(i)T
t

To reach the convergence of transition parameters (μ p
t and

λp
t ), a lot of iterations are involved in BVF. Thus the computa-

tion complexity of BVF is much more than that of PF. Thanks
to the fast growing of processor development, the computa-
tion problem can be resolved easily. On the other side, the
main energy expenditure in WSN lies in the communication
phase. BVF dramatically reduces the number of bits transmit-
ted between the sensors and also that of leaders without accu-
racy loss, cutting down the hardware configuration of sensing
module at the same time.

4. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed Binary Vari-
ational Filtering (BVF) algorithm, we have considered the tar-
get tracking of a fixed trajectory during 100 time slots, where
an abrupt change occurred at instant 51 ( the target jumps
from position [100, 50] to [80, 50]). A set of 100 sensors are
uniformly randomly deployed in a 2- dimensional square field
(100m× 100m). The sensing range of each node is 9m, and
all βj are fixed to 1, which means that all the sensor in the
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Fig. 3. Tertiary Particle Filtering

field have the same capability of sensing and communication.
The parameters of the transition dynamical state model are set
to the following values:

λ̄ =
[

1/625 0
0 1/25

]
, n̄ = 100, S̄ =

[
10 0
0 10

]

where the low mean state precision λ̄ and the high degree of
freedom n̄ allow a general non informative prior. The perfor-
mances of the BVF tracking algorithm are plotted in Fig. 1.
Note the accuracy of the BVF to track the target, especially in
the instant of abrupt change.

For the SOI-KF [8], despite the fact that the communication
between sensors is reduced to one bit, it still requires sens-
ing the distance information and comparing it to the predicted
value. Instead of sensing the much more simple connectivity
information required in BVF, it needs more complex sensing
configuration of WSN. Furthermore, due to the linearization
in the data processing phase, it cannot provide correct esti-
mation in highly non-linear conditions, as shown in Fig. 2.
At instant t = 50, the target changes its direction and posi-
tion immediately. Only by a long series of modifications that
SOI-KF can catch the target.

For the PF in tertiary wireless sensor network [6]( See
Fig. 3 ), the large amount of particles and their correspond-
ing weights make it impossible to realize distributed signal
processing. Furthermore, the dependence on the estimation
of former instants leads to deviation in judgment of the target
direction and may aggravate the error propagation at the same
time, especially in the case of abrupt change in the target tra-
jectory.

By employing GMM to approximate the distribution of
particles at every instant, distributed signal processing can
be achieved, while new problem of error propagation is in-
volved. The information transferred between leaders is still
more complex than that of BVF, since BVF transmits just one
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Fig. 4. GMM-PF estimation

Gaussian statistic. Furthermore, it takes too much time to
generate the GMM approximation of particles by KD-Tree[3]
or EM [5, 11]). The performance of this algorithm is shown
in Fig. 4. In Fig. 6, we compare the MSE of the BVF and that
of the GMM-PF.

Algorithm Mean of MSE Max of MSE
BVF 1.8371 5.5928

SOI-KF 2.8125 20.4862

Tertiary-PF 1.8968 7.4431

GMM-PF 2.0274 5.6481

Table 1. MSE comparison of the four algorithms

Fig. 5 and Fig. 6 show that under the same experimental
conditions, the BVF algorithm succeeds in tracking the target
with a more acceptable MSE at lower communication cost.
Thanks to the distributed signal processing, the energy con-
sumption is distributed among the region covered by the tar-
get, prolonging the lifetime of the WSN. Table.1 compares the
average and the maximum MSE of the different target track-
ing algorithms.

5. CONCLUSION

A binary variational filtering algorithm is proposed in the con-
text of collaborative wireless sensor networks. The key points
of the proposed algorithm are (i) the implicit compression
of the filtering distribution (ii) the distributed implementation
(iii) the lossless encoding by sending only Gaussian statistics
between leader nodes and (iv) the binary quantification of the
measured energy avoiding distance measure on the nodes.
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