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Abstract—This paper introduces a framework based on the
LMS algorithm for sequential deconvolution of hyperspectral
images acquired by industrial pushbroom imaging systems.
Considering a sequential model of image blurring phenomenon,
we derive a sliding-block zero-attracting LMS algorithm with
spectral regularization. The role of each hyper-parameter is
discussed. The performance of the algorithm is evaluated using
real hyperspectral data.

I. INTRODUCTION

Hyperspectral imaging has received considerable attention
in the last decade as it combines the power of digital imag-
ing and spectroscopy. Every pixel in a hyperspectral image
provides local spectral information about a scene of interest
across a large number of contiguous bands. This information
can be used to characterize objects with great precision and
detail in a number of areas, including agricultural monitoring,
industrial inspection, and defense. The core characteristics of
hyperspectral images raise new data processing issues ranging
from image restoration to pattern recognition [1], [2]. Several
sensing techniques have been developed for hyperspectral
imaging. They can be categorized into four main groups [3],
[4]: whiskbroom (point scan), pushbroom (line scan), tunable
filter (wavelength scan), and snapshot.
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Fig. 1: Data acquisition by a pushbroom imaging system

Figure 1 depicts schematically how a hyperspectral image
is captured by a pushbroom imager, and how the spatial-
spectral arrays are stacked within a hyperspectral image
datacube. With the pushbroom technique, pixel spectra are
sensed line-by-line at each time instant. The scene is typically
scanned by moving the imager or its field of view across the
scene. Pushbroom systems are used in many areas such as
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food safety [5], [6], georeferencing [7] and material sorting
[8], [9]. This paper is a first step towards the development
of advanced online hyperspectral image processing methods
which are required in industrial processes aiming at controlling
and sorting input materials right after each line scanning. For
example, this is the case for paper plants and chipboard plants
that use recycled materials in the manufacturing process. The
aim of this paper is to address the fast online (sequential)
deconvolution of hyperspectral images provided by pushbroom
imaging systems' to improve image resolution. Multichannel
image restoration was carried out with Wiener methods in [10],
[11]. Other strategies such as those in [12]-[15] were also
introduced, but only in an offline setting. Let us mention the
works of Jemec et al. [16], [17] which specifically address the
calibration and (offline) deconvolution of pushbroom hyper-
spectral images.

Consider a hyperspectral image Y € RV*P*K collected

by a pushbroom hyperspectral imaging system, where N, P,
and K denote the number of spatial, spectral and time measure-
ments, respectively. The samples to be imaged are carried by a
conveyor moving at constant speed. The hyperspectral image is
then obtained slice by slice, each is denoted by Y, € RV*P,
k = 1,...,K. The size of Y increases with & which can
possibly grow to infinity. The acquisition parameters are the
spectral sampling A, (controlled by the spectral binning),
the spatial sampling A and integration time 7. We consider
situations where the spectral response is smooth enough to
choose a spectral sampling Ay greater than the support of
the spectral blurring, a spatial sampling Ay smaller than the
support of the point spread function and a short integration
time (for fast scanning). This results in a degradation model
involving only spatial blurring (possibly depending on the
wavelength) of the hyperspectral image and a low signal to
noise ratio (SNR). The main contribution of this work is to
introduce an LMS framework for sequential deconvolution
of hyperspectral images. While our algorithm operates in the
spirit of LMS-based algorithms used, for instance, for adaptive
system identification [18]—[20] and super-resolution restoration
of image sequences [21], [22], sequential image deconvolution
of hyperspectral images based on the LMS has never been
reported in the literature. Accounting for the specificity of

1t is worth to be noted that the proposed sequential deconvolution algorithm
can straightforwardly be extended to whiskbroom systems.



the degradation process, we propose a sliding-block LMS
algorithm that allows to sequentially restore the hyperspectral
image of interest with a delay ). We also introduce a zero
attracting regularization term promoting the restoration of
objects on a background which should be zero-valued.

II. BLURRING AND CAUSALITY ISSUES

We shall now discuss issues related to the causality of
convolution kernel and associated estimates. Following [14],
hyperspectral image blurring can be seen as P simultaneous
spatial convolutions. For each wavelength )\,, the blurred
spatial image Y? € RN*K ig given by the 2D convolution:

Y? = HP+XP + ZP (1)

where * is the 2D convolution operator, X? € RV*K ig the
image to restore, H? € RM*Z is a convolution kernel (filter),
and ZP is a noise supposed to be additive and i.i.d. We first
derive a sequential causal formulation of model (1). Without
loss of generality, we shall focus on the sequential model for
2D images, by omitting the dependence with respect to p. The
image Y, collected in an online way, can be represented as a
sequence of vectors yi == [Y1 k.-, ynil k= 1,..., K,
where " denotes the transpose of a matrix. We shall use
the same notation for X. We assume a finite length blurring
kernel of size L along the time dimension, centered around
0 which means that past and future values of xj contribute
to the observation yx. In order to make the blurring kernel
causal?, it has to be shifted by (L — 1)/2, which means that
the observations needs to be delayed by (L — 1)/2 samples,

that is, ¥ = yr—(L—1)/2- Writing H = [hz,... h;] with
h;=[hme,---, hl,g]T, model (1) can be expressed as:
L
Yk = Ye—(L-1)/2 = ZHZXk—Z+1 + zy, 2)
(=1

where z;, is a zero-mean measurement noise, statistically
independent of the other signals. H, is the N x N
Toeplitz matrix with first column and first row given by
[hie,---share,0,...,0] and [h14,0,...,0], respectively. Re-
lation (2) introduces a delay in both time dimension and spatial
dimension because the filter is made causal along these two
dimensions. Another consequence of causality issues concerns
the estimation process of xj. First, xj, is involved in past and
future observations (Yi—(n—1)/2,- - Yks - Yht(L—1)/2)-
Secondly, let us consider the problem of estimating only xj
from the dataset y = col{y,}/ , where col{-} stacks its
vector arguments on top of each other. The least squares
criterion can be written as ||y — Fx|[* where x is built
similarly to y and F is a Toeplitz-block-Toeplitz matrix of
proper dimensions. To make the dependence of the crite-
rion on xj explicit, we introduce the following partitions
X = [Xlk_leIvXLLK]T and F = [Fr.p—1,Fp, Frii.x]
where x;; = col{xy},_, and F;; is the matrix formed
using the columns (i — 1)V + 1 through jN. This results in
Iy —Fx|]* = ||y = Frp—1X16-1 — Frqr.x Xpr1.0 — Frxp|[2
It is now clear that optimally estimating xj requires all the
past estimations Xj.;—1 and future estimations Xj.y1.x, which
precludes the estimation of x in a sequential manner. To ad-
dress these issues, we recommend to produce the estimates Xy,

2For simplicity, L is assumed to be odd.
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with a delay (). This means that we shall estimate X1
given (Yii(L—1)/2—Q+1s-- > Yk+(L—1)/2), coarse posterior
estimates (X, Xk—1,...,Xk_Q+2) refined as k increases, and
past estimates (Xy_qQ,Xg—Q—1,- - -, Xk—Q—L+2) Which are no
more updated. This is the key idea of the sliding-block LMS
deconvolution algorithm developed in the next section.

III. ONLINE IMAGE DECONVOLUTION

We shall first address the adaptive deconvolution problem
in the case of 2D images. Then the proposed algorithm will
be extended to hyperspectral images. Consider the problem of
estimating X;_q+1 in a sequential manner based on obser-
vations (Y4 (L—1)/2—Q+1»- -+ Yk+(L—1)/2) Of, equivalently,
on the delayed ones (yiy—g+1,.-.,¥%). In what follows, to
simplify notations, yj, refers to the delayed observation yy.
To account for their dependencies on X, ..., Xkp—Q—r+2, W€
consider the following criterion where, for clarity, the variables
are partitioned in two sets (those to be updated and those
fixed):

updated fixed
TXky ooy X Q1> K= Q) - -+ Xh—Q—L42) =
Q L 2
Z]E Yh—q+1 — ZHeXk—q—e+2 + 1| Xk—gr1ll1 3)
g=1 =1
where || - |1 = Zgil |{-},,| denotes the ¢;-norm, and {-},

stands for the n-th entry of a vector. The zero-attracting
regularizer ||x;_q1]/1, whose strength is controlled by 7, > 0,
promotes the removal of the conveyor background, and is
motivated by the targeted application, namely, the inspection
of objects put on the conveyor belt. At a given wavelength, the
response of the conveyor after background removal is close to
zero while that of the objects is not.

A. Sliding-block zero-attracting LMS (SBZA-LMS)

Consider vectorized data: x); £ col{Xp_q+1 }?;L -1 Vi

col{yk,qﬂ}q@jf*l. A subgradient of (3) is given by:
oJ oJ

Vj(x;)écol{a—m,,m

4

70(L1)N><1} 4

where 07 s denotes the I x J zero matrix. Note that it is nec-
essary to include the variables X;_q, Xx—Q—1, ..., Xk—Q—L+2
in x) because x;_g+1 depends on them. But as they are
fixed, the subgradient w.r.t. these variables is equal to zero.
Approximating the subgradient in (4) by its instantaneous
value yields:

VI (xi) = = 2% (v, — Gxi,) +esign(x,) ()
where @ and G are matrices of size (Q +L — 1)N x (Q +
L —1)N. Matrix @ is given by:
H 0

OoNx(L-1)N

OL—1)NxQN

with Hy = O« v for £ > L, and G a Toeplitz-block-Toeplitz
matrix whose first block column is [H1,0nxn, ..., 0nxN]

| O(L—1)Nx(L—1)N



and first block row is [Hy,...,Hr,OnxnN,-..,0nxn]. The
sign function is defined as sign(z) = 0 for z = 0, and
sign(z) = z/|z| otherwise. Finally, the SBZA-LMS algorithm
for image deconvolution is given by:

%1 = Q% — £V (%)
= Q% + pu® (v}, — GX) — psign(x;)  (6)

where p is a step size parameter that controls the balance
between convergence rate and algorithm stability. The matrix
Q is given by

Ig-yn 0 O 0@-1)NxN
Q2 0 In O Onx N

0 Iy O Onx N ’

0 0 Iz oy Ou_2onxw

where I; denotes the J x J identity matrix. The upper part
of matrix €2 corresponds to the set of updated variables and
the lower part corresponds to the set of fixed variables. The
parameter p, = un,/2. The final result X;_g12 is obtained
by selecting the Q-th block of vector X ,, that is,

Xp-Qt2 = SXj 4y @)

where S £ Onx@-1)N,IN,Onx(z—1)n]. It is worth to
mention that the proposed algorithm is different from the
standard block-LMS algorithm for which the output xj is
updated once for every block of size (). On the contrary,
in the proposed algorithm, to account for the causality issues
discussed in section II, xj, is updated () times. When @ = 1,
algorithm (6) reduces to the Zero-Attracting LMS (ZA-LMS)
algorithm proposed in [19] for sparse system identification.

B. Online hyperspectral image deconvolution

Consider now the problem of 3D hyperspectral image
deconvolution, which aims at restoring sequentially spatial-
spectral arrays X; € RV*P 1In an equivalent way, we shall
consider vectorized data

x}, £ col {x%p}:;l , Y = col {y;p};j:l

where superscript p refers to the spectral band. Adding a
spectral regularization term to promote spectral smoothness
of the image leads to the criterion:

P
Cxp) =Y T(P) + mal Aaxg |2 (8)

p=1

where Ay £ (diag(c; ...,cp—1) Dp)®I(g+r—1)n- The oper-
ator ® stands for the Kronecker product and D p is the Toeplitz
matrix of size (P — 1) x P with first column [1,0,...,0]
and first row [1,—1,0,...,0]. The matrix Ay is a first-order
filtering operator along the spectral dimension weighted by the
coefficients {cp};:ll. The parameter 7, controls the strength
of the spectral smoothness penalty term. Finally, the SBZA-
LMS algorithm for hyperspectral image deconvolution can be
expressed as:

X1 = I'% + p¥ (v}, — YX,) — p.sign(x})
— pma AT AX), )

with T' £ Ip ® Q, ¥ £ blkdiag{®”}/"_, a block-diagonal
matrix and Y £ blkdiag{G*}[",.
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C. Comments

The statistical analysis of the SBZA-LMS algorithm per-
formed in [23] provides an accurate model for its steady-state
and non-stationary behavior. Based on this model, we were
able to derive stability conditions for the algorithm, and to
analyze the influence of the hyperparameters (Q, i, P, 1))-
We also evaluated its computational complexity. We give here
the main conclusions: (i) following the lines of [24], it can
be proved that the stability of the SBZA-LMS is essentially
controlled by the stability of the SB-LMS; (ii) the best tradeoff
between accuracy and computational cost is obtained for
@ = L; (iii) the SB-LMS (p., = 0) can be interpreted as
a delayed Tikhonov-like algorithm (with regularization along
time and spectral dimensions) where the time regularization
parameter is proportional to the inverse of y. This equivalence
can be formally proved for the denoising problem (i.e. identity
convolution kernel); (iv) the ZA term plays a key role to
recover the background at low noise levels. It induces an
asymmetric transient behavior: as compared to the SB-LMS,
the convergence of the SBZA-LMS is faster when starting from
a non-zero value toward a zero value and slower when starting
from a zero value toward a non-zero value.

IV. EXPERIMENTAL RESULTS

To assess the influence of the hyperparameters @, p and
pz, numerical simulations are conducted on a 2D image. The
original image is blurred by a Gaussian kernel of size 15 x 15
with full width at half-maximum set to 7 pixels. A Gaussian
noise is added to reach a 10 dB SNR. This blurred and noisy
image is shown in Figure 2(a). Figures 2(b) to 2(d) show
the results corresponding to the ZA-LMS algorithm obtained
by setting @ = 1, 4 = 0.06 and p, = 0.02, the SB-LMS
algorithm (sliding block LMS without zero-attracting term)
with hyperparameters () = 15, u = 0.006 and the SBZA-LMS
with hyperparameters () = 15, ;1 = 0.006 and p, = 0.05.
The image restored with ZA-LMS in Figure 2(b) exhibits
lower noise level than the original image but deblurring is
limited. Better results were obtained when the block size
increases as shown in Figure 2(c). The image restored by
SBZA-LMS has a better resolution and a lower noise level
as illustrated in Fig. 2(d). As mentioned in section III-C,
the SB-LMS and SBZA-LMS induce a time (and no spatial)
regularization resulting in horizontal structures visible on the
restored images. This effect can be attenuated by introducing
a spatial regularization (see [23] for details). Figures 2(e)
and 2(f) show the evolution of the mean squared error (MSE)
as a function of i and 7, respectively for different values of the
SNR. For each value of SNR, the MSE has a minimum value
(red point) corresponding to the best tradeoff between bias
and variance: the optimal value of i decreases as the noise
level increases and the optimal value of p, increases as the
noise level increases which conforms with intuition. Results
obtained (but not presented here) for the spectral regularization
parameter p, are similar to that of p,.

The second experiment aims at illustrating the performance
of the SBZA-LMS algorithm on a real blurred hyperspectral
image of size 121 x 171 x 16 with wavelengths varying from
501.1 nm to 868.6 nm with an increment of 24.5 nm. The
spectral response of the conveyor (background) was estimated
from data in an area of size 120 x 120. It was then subtracted
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Fig. 2: Influence of different hyperparameters

from each pixel of the hyperspectral image. The imaged object
on the background was an integrated circuit including pieces
of metal and electronic components. The convolution filter
was estimated from data (using a calibration target) to be a
Gaussian kernel of size 21 x 21. Its full width at half-maximum
was 10 pixels. To avoid the storage of matrix Hy, convolution
was performed in the frequency domain. Figure 3 presents the
deconvolution result obtained on the whole real hyperspectral
image (only 3 slices corresponding to wavelengths 501.1 nm,
672.6 nm and 844.1 nm are shown). The coefficients c, were
all set to 1. The original image is shown in Figure 3(a).
The image restored with SBZA-LMS (1 = 0.008, @ = 21,
p. = 3-107% n, = 0.001) is shown in Figure 3(b). The
restored images are of better quality from both denoising and
deblurring points of view. The SBZA-LMS result is compared
to classical off-line deconvolution algorithms proposed in [14].
Figure 3(c) corresponds to the Tikhonov approach with (5
spatial and spectral regularizers and Figure 3(d) corresponds
to the non-negative version of the Tikhonov approach. The
hyperparameters of the non-negative Tikhonov approach were
estimated by the minimum distance criterion proposed in [25]
and the same values were used for the standard Tikhonov
approach. The results of the sequential deconvolution have
almost the same resolution compared to both Tikhonov ap-
proaches. The noise level on the background is similar to that
of the non-negative Tikhonov but the computational burden of
the SBZA-LMS remains of the same order with that of the
standard Tikhonov and is much lower than that of the non-
negative Tikhonov.
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Fig. 3: Hyperspectral image restoration at 3 wavelengths.

V. CONCLUSION

In this work, we addressed the online deconvolution prob-
lem of hyperspectral images collected by pushbroom imaging
systems. We discussed some issues related to the non-causality
of the model. Then, we proposed the SBZA-LMS and the
influence of the hyperparameters were assessed. We evaluated
the performance of the algorithm by comparing it with the
state-of-the-art on real hyperspectral data. The SBZA-LMS
improves the data resolution right after each line scanning with
a reasonable computational burden. Future works will focus on
the derivation of an algorithm to estimate the hyperparameters
in an automatic manner.
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