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ABSTRACT for object recognition in [2], statistical analysis of diff
sion tensor MRI in [3], geodesic-based deconvolution al-

Riemannian manifolds is proposed. In addition to the non- gorithms in [4], tracking principal supspaces in [5] :?md a
linear dynamics, the system state is constrained to lie on ag_eneral scheme for tracking fast-varying states on Rieman-

Riemannian manifoldW, which dimension is much lower nian manifolds in [6]. This paper contribution is devoted

than the whole embedding space dimension. The Rieman-to the application of this differential-geometric frameko

nian manifold formulation of the state space model avoids fgrrjeSé%r;.SZchﬁgt;:;get ;r:rcekltrr]]?a ?)It?;):rth:tq'f).n z\f.sgaégc:r._
the curse of dimensionality from which suffers most of the y : w vatl : varl

particle filter methods. Furthermore, this formulationhie t ance is unknown and time-varying. The Bayesian filtering

. . objective is thus to jointly estimate the hidden targetestat
only natural tool when the embedding Euclidean space Can-and the time-varying noise covariance. As the noise covari
not be defined (the state space is defined in an abstract geo- ying :

metric way) or when the constraints are not easily handledgnizt;fea phoesrlltlt\;&e),(?ke';lnl:ﬁ';n:(grl);}'t:r?ciuf:gtee ‘zjsgige Sllqson?t
(space of positive definite matrices). Ul W Ing fhis covari | ' u

exploit the differential geometric properties of the spate
1. INTRODUCTION positive definite matrices, by constraining the estimatad m
trix to move along the geodesics of this Riemannian man-

Given a dynamical system characterized by a state-spacdfold. The proposed sequential Bayesian updating consists
model, the objective of the online Bayesian filtering is the thus in drawing state samples while moving on the manifold
estimation of the posterior marginal probability of the-id geodesics.
den state given all the observations collected until the cur The paper is organized as follows: Section 2 is a briefin-
rent time. The nonlinear and/or the non Gaussian aspect otroduction to the particle filtering method on the Euclidean
the prior transition distributions and the observation elod spaces. In Section 3, we describe some concepts of differ-
leads to intractable integrals when evaluating the malgjiina ential geometry. In Section 4, we present a general scheme
Therefore, one has to resort to approximate Monte Carlofor the particle filtering method on a Riemannian manifold.
schemes. Particle filtering [1] is such an approximate Monte Section 5 is dedicated to the main contribution of this pa-
Carlo method estimating, recursively in time, the marginal per which is the design of a particle filter jointly tracking
posterior distribution of the continuous hidden state @f th a target state belonging to an Euclidean space and a time-
system. The particle filter provides a point mass approxima-varying noise covariance modeling the evolution over time
tion of these distributions by drawing particles accordimg  of the sensing system imperfections.
a proposal distribution and then weighting the particles in
order to fit the target distribution.

The particle filter method is usually applied to track a 2. BAYESIAN FILTERING ON EUCLIDEAN
hidden state belonging to an Euclidean space. The most SPACES
popular scheme is to sample the particles according to a ran-
dom walk around the previous particles. However, in some The observed system evolves in time according to the fol-
tracking applications, the state may be constrained to be-owing nonlinear dynamics:
long to a Riemannian manifold. Recently, some works have
been dedicated to design algorithms adapted to the Rieman- x o~ po(m | Ty, up)
nian manifold constraints, based on differential geometry (1)
tools: Gradient-descent algorithm on Grassmann manifold v~ py(ye | T, u),

In this contribution, a general scheme of particle filterdmg



wherey, € R"™v denotes the observation at timex; € 3. DIFFERENTIAL GEOMETRY TOOLS

R"= denotes the unknown continuous state, and I/ de-

notes a known control signal. The probability distribution We devote this section to briefly introduce some concepts
p= (@ | -1, 1) models the stochastic transition dynamics of Riemannian geometry. These concepts are necessary to
of the hidden state. Given the continuous state, the obserthe design of the particle filter on Riemannian manifolds
vationsy, follow a stochastic model, (y, | «¢,u.), where (Section 4). For further details on Riemannian geometry,
the stochastic aspect reflects the observation noise. refer to [7].

The Bayesian filtering is based on the estimation of the In differential geometry, one is interested in intrinsie ge
posterior marginal probability(z; | y1.:). Because of the  ometric properties which are invariant with respect to the
nonlinear and/or the non Gaussian aspect of the transitionchoice of the coordinate system. This can be achieved by
distributions, one has to resort to Monte Carlo approxima- imposing smooth transformations between local coordinate
tion where the joint posterior distributiop(xo.: | y1.t) systems (see figure 1). The following definition of differen-
is approximated by the point-mass distribution of a set of tiable manifold formalizes this concept in a global setting
weighted samples (called partlcle{sr)0 D W

Definition 1 A differentiable (or smooth) manifolé4 is a
topological manifold with a family/ = {U,, ¢} of coor-
P (@0t | Y1) Zwt G (d o), dinate neighborhoods such that:

Where5mm (dxo.;) denotes the Dirac function. 1. TheU, coverM,

In the Bayesian importance sampling (IS) method, the
particles{wéﬂ N | are sampled according to a proposal dis-
tribution 7(x.¢ | y1..) and {wgi)} are the corresponding
normalized importance weights:

2. for anya, 33, if the neighborhoods intersectidn, N
Ug is non empty, them,, o (;551 and ¢g o ¢! are
diffeomorphisms of the open sets(U, N Ug) and
¢a(Ua NUg) of R,

@ _ Py | 20)p(@6) . - -

wy X (i)o‘t %L, 3. any coordinate neighborhod#l’ 1/) meeting the prop-
(. | Yi:e) erty (2) with evenylU,,, ¢, € U is itself ini
Sequential Monte Carlo (SMC) consists of propagat-
ing the trajectorie$m((;1 N | in time without modifying the
past simulated particles. This is possible for the class of
proposal distributions having the following form:

W(fﬂo:t | yl:t) = 7T(ivo:t—l | yl:t—l)ﬂ'(wt | wO:t—laylzt)-

The normalized importance weights are then recursively-com
puted in time as:

(7) (i) p(ye | fﬂgz) )p(, % | x Ot 1)
Wy~ X Wy @ :
m(x, |f‘30t 1 Y1:t)

The simplest implementation consists of adopting the
transition prior as the proposal distribution:

()

Fig. 1. Differentiable manifold

(1) | (D) _
T\ oy _1,Y1:t) = Pz \ X LTy _1,Ut). . . i
(@ [ @oa-1 Y1) (@t | @1, ) Geodesics A geodesic between two endpointéa) and

in which case the weights are updated according to the like-(h) on a Riemannian manifoldM, g) endowed with a
lihood function: Riemannian metrig is a curvey : [a,b] — M which
() (%) () is locally defined as the shortest curve on the manifold con-
wi ow (Y [ @), necting these endpoints. More formally, the definition of a
The particle filter algorithm consists afsteps: (i) the  geodesic is given by:

sequential importance sampling step and (ii) the selection
step. The selection (resampling) step replaces the weighte Definition 2 The parametrized curve(t) is said to be a
particles by unweighted particles in order to avoid the col- geodesic if its velocity (tangent vectaty/dt is constant
lapse of the Monte Carlo approximation caused by the vari- (parallel) along~, that is if it satisfies the condition
ance increase of the weights. (6/dt)(dvy/dt) =0,fora <t <b.



Geodesic distanceThe geodesic distan@®(p, ¢) between  a Riemannian manifold M, g, V) endowed with a Rie-
two pointsp andq on a Riemannian manifold\1, g) is the mannian metrigy and an affine connectiowi. The system
length of the geodesic curvg : [a,b] — M connecting evolves according to the following nonlinear dynamics:
p andg:
b xy ~ po(®e | o1, up) , xEM
Do) = Ihll = [ oid @ (4)
a Yo~ Py(Ys | Te,u),
The geodesic distance can also be defined as the shortest

distance (over smooth curves) between two points on theWhere the Markov chain (random wal).(z; | 1, u)
manifold endowed by a Riemannian connection. on the manifoldM is defined according to the following

generating mechanism:

1. Draw a sample; on the tangent spacg,, , M ac-

Exponential mapping. Theexponential mappingis a cen- cording to a pdipe ().

tral concept when designing filtering methods on Rieman-

nian manifolds. In fact, it represents an interesting tool t 2.  is obtained by the exponential mappingof ac-
build a bridge between an Euclidean space and the Rieman- cording to the affine connecticn.

nian manifold. For a poinp and a tangent vectak €

T,(M), lety : t = ~(t) be the geodesic such thaf0) = In other words, a random vectos is drawn on the tan-

p and %(0) = X. The exponential mapping of is de- gent space/,, , M by the usual Euclidean random tech-
fined as&,(X) = ~v(1). In other words, the exponential nics. Then, the exponential mapping allows the transforma-
mapping assigns to the tangent vectbthe endpoint of the  tion of this vector to a point; on the Riemannian manifold.
geodesic whose velocity at tinte= 0 is the vectorX (see  The pointz; is the endpoint of the geodesic starting from
figure 2). It can be shown that there exist an neighborhoodx:—1 with a random initial velocity vectoo,. Figure 3 il-

U of 0 in T,(M) and a neighborhool of p in M such lustrates the transition dynamics on a Riemannian manifold
that€, | is a diffeomorphism frond/ to V. Also, note that M.

since the velocityly/dt is constant along the geodesi@),
its lengthL fromp to &,(X) is:

1 1
dy
L= [ W5 = [ 1= |x].
0 0

The exponential mapping,(X) corresponds thus to the
unigue point on the geodesic whose distance fgois the
length of the vectoX .

Tp(M)

—

Fig. 3. Markov chain on a Riemannian manifold

As a generating stochastic mechanism is properly de-
fined on the manifold, the particle filtering is naturally ex-
tended. It simply consists in propagating the trajectories
on the manifold by the random walk process, weighting the
particles by the likelihood function and sampling with re-
placement. The proposed general scheme is depicted in fig-
ure 1.

Fig. 2. Exponential mapping on the manifold

4. PARTICLE FILTERING ON RIEMANNIAN ) )
MANIFOLDS 4.2. Point estimates

Any quantity of interesh(x) can be estimated by isspos-
teriori expectation, minimizing the expected mean square
The aim of this section is to propose a general scheme forerror. The empirical mean of the transformed partible&tl))
the extension of the particle filtering method on a Rieman- represents an unbiased Mont-Carlo estimation oftpes-
nian manifold. The hidden state is constrained to lie in  teriori expectation. Averaging in the manifold context is no

4.1. General scheme



Algorithm 1 Particle filter algorithm on a Riemannian man- mization of an approximated expectation expression:
ifold M

1: function PF(PP) R X, ;

2. Initializationz(" ~ po(z) T = argg};nz wi (D(a, 5"))” (6)

3 for t = 1 to T do ' =1

4 (Sequefg?ail Ir:nplorf?r}ffedsoa?;gmgle from the random Wheresgi) andwt(i) are the particles and their weights com-
’ walk on M) T puted recursively by the particle filter algorithm.

N 5 po(®) on Ta M Concerning the constrained optimization in (6), a gra-
: t ~ v Tt—1

(@) ) dient descent like algorithm can be designed on the mani-
6: Ty = 5,3;91 (o) fold based on the exponential mapping which plays again a

7. set(:i:éf%) _ (:if), wé?&—l) key r_ole in transferring El_JcIidean technics t(_) a Riemannian

8 end for manifold context. Denoting by/ (x;) the objective func-

9 Update the importance weights tion to be minimized with respect to,,

10: for i =1, ..., N do (evaluate and normalize the N

| weights) . " T(xs) = ngz) (D(z, ng)))2’

1%L wy” o< p(ye | &) i=1

12: end for

13: Resampling a gradient flovxa:gl), starting from an initial guessgl) and

14: Select with replacement froniz ()} Y, with converging to the solutios;, can be defined by moving in

probability{wgi)} to obtain particleswéfi N the direction of the opposneT of the _objt_actlve functpn dz_m

15: end for tive Vj(mgl)). As the function derlvatlv&j(ccgl)) lies in

16: end function the tangent spac@;w (M), the exponential mapping can
be used to map the opposite derivative vector to the next
point wgl“). The gradient-like descent algorithm is then

derived as follows:
more a valid operation: The empirical mean could be lo-
cated outside the manifold or the averaging itself does not m§l+1) = 5w<z>(—Vj(m§l))) @)
have a meaning in the absence of a summation operator on '
the manifold. In order to obtain a valid point estimate, one Figure 4 illustrates an iteration of the gradient descent
should rather minimize the mean square error, where thealgorithm on a Riemannian manifold.
error is evaluated by the geodesic distafiten the mani-
fold (related to the connectiowr). Following the work of
Fréchet [8], the point estimate can be defined by the intrin-
sic mean (also called Riemannian barycenter). The intrinsi
mean has the following expression:

(D(w, 8¢))*p(st | y1.7)dps:

)
where the expectation operator is computed with respect to
thea posterioriprobability density(s; | y1..r) and a dom-
inating measuré,,.

= argming, .\

T, = argming, . ?(D(wt,st))ﬂ

Fig. 4. A gradient descent step on a Riemannian manifold

5. APPLICATION TO TRACKING WITH

Computation of the point estimate (5) involves an inte- UNKNOWN TIME-VARYING NOISE COVARIANCE

gration operation (with respect t§ € M and according
to the posterior distribution) and a constrained optinidrat
operation on the manifoldA. The integral can be approx-
imated (as in the Euclidean case) by an empirical weightedIn classical filtering methods applied on state-space nsodel
sum of the geodesic distances applied on the particles whicht is usually assumed that the noise statistics are known. In
are obtained with their weights by the particle filter algo- other words, given the hidden staitg, the likelihood func-
rithm. The point estimate is then computed by the mini- tion p(y: | ;) can be exactly computed. However, in real

5.1. General algorithm



situations, the noise is generally related to the sensoelimp 2. Update the importance weights which are proportional

fections which may be varying and unknown. For instance, to the likelihood functionV'(y; | f(x:), ¢).
assuming (for simplicity) an additive Gaussian noise, the o _ o
variation of the noise C()varianaiE is related to the degra- The eXleClt solution of the geOdESIC distance allows also

dation of the sensing system. Fixing a constant value for thethe implementation of the intrinsic mean for the tracking of
noise covariance may lead to poor tracking performances the covariance matrix. In fact, approximating the expected
An optimal procedure to deal with the unknown time-varying €rror by the empirical weighted sum of geodesic distances,
covariance matrix is to design a Bayesian filter to jointly the point estimate is defined as follows:

track the hidden state of interesf and the noise covari-

anceX;. In this section, we consider the tracking of a mo- _ . al i i

bile target. The hidden state, contains the posgion and % = argmingegs, Zwt )(D(E’ Eg )))2

the velocity of the target. It belongs thus to the Euclidean N

spaceR*. However, the noise covariance matrix lies in the = argmingcg, Y w!? Lo LA 1/2xs-1/2)
Riemannian manifold of positive definite matricgs. The i—1 2

general scheme defined in the previous Section 4 should be _ o _ _
applied in order to track the target and to online estimate th ~ The gradient of the objective function, belonging to the

noise covariance. tangent spac&x S, , has the following expression:
The hidden state;is assumed to follow a general para- N
metric prior modelp(x; | @;-1, ), where the parame- > (i)\—1
tersa are assumed to be known. In order to describe the VI(E) = N ZLH((Et )7 %) ©)

. . . . =1
temporal correlation of the noise covariance trajectory on ’

the Riemannian manifold of positive definite matrices, Given the explicit expression of both the gradient (9)
we define theGeneralized Gaussian random Walkzt ~ and the exponentia' mapp|ng onthe manitﬁm th9 gradient_
GN (| Xi-1, A) as follows: descent algorithm scheme for the computatio®gfis ef-
1. Sample a Gaussian symmetric velocity mafixc ficiently im_plemented. Given an initial gueﬁ(o), agra-
S with a precisionA (”I(";“) X ”I(”;“) matrix): dient flow =" evolving towards the solution is defined as
B~ N(0;A) follows:
2. The next matrix; is then obtained by: s+ _ Es (—Vj(fi(l)))

_ v(Dy1/2 5 (My=1y2 s (Dy—1/2] (sa(Dy1/2
5, = £, . (B) = /2 e [ 2B 7] 12 = @) 2exp |(-20) v 20) 2] 27

The state-space model is then described by the follow-5.2. Simulation results

ing equations, . . . '
We consider the tracking of a target moving over a 2-D field.

T, o~ (T |1, ) The stater; = [z¥, z}] is formed by the position and the
velocity of the target. For simplicity, we assume a kinemati

¥ ~ GN(Z| X1, A) (8) parametric model for the transition dynamics of the hidden
state:

Yy ~ Ny | f(z), 20),

wheref(.) is the sensing function andl(.) stands for the xy \
Gaussian distribution. Contrary to the usual assumption of -

oo o
SO = O

0
1
a constant known covariance, the case of a stochastic vary- 0
ing noise covariance represents an elegant way to deal with T:/2 0
temporal degradation of the sensing system.
The proposed particle filter jointly estimates the hidden T
target positione, (belonging to an Euclidean space) and the
noise covarianc®; (belonging to the Riemannian manifold
S.) as follows, where the sampling interval i, = 0.1s andw, is a zero-
. . mean white Gaussian noise.
1. Propagate the trajeC_torié_Eéfi_la (1) by gener- The observations are obtained through a networkof
ating the samplesEf), :nff)) according to the prior  range-bearing sensors deployed randomly in the field under
modelsGN (Z; | £i—1, A) andp(x; | z—1, o). surveillance. At each timg a selected node (according to



the proximity to the target) obtains an observation of the
target position through a range-bearing model:

. P
Yy Tom—a: 705

= g IR + 3w

( y? arctan =12 Lo

wheres,,, = (s1, s2) andx; = (z1, z2) are the node and the
target positions at timg p (set to10) is the energy emitted

by the target (measured at a reference distance of 1 meter)
andwv, is a white Gaussian random vector. The corrupting
noise has a covariand, evolving in time as depicted in
figure 6: constant for the fir§t/4s, increasing with a linear
slope forT'/2s and constant for the lagt/4s.

The patrticle filter is applied to jointly estimate the tar-
get position and the noise covariance matrix. Figure 5-illus
trates the target tracking performances. The trajectotlyef
target is recovered with a mean square errdr.89m. Fig-
ure 6 illustrates the performance of the algorithm to online
track the covariance variation over time. Note that, despit
their fluctuation, the estimated covariance elementsviollo
the tendency of the true covariance elements. The fluctua-
tion of the estimated noise covariance is mainly due to the
fact that the data are less informative with respect to the
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Fig. 5. Target tracking with unknown noise covariance.

1.4

covariance matrix. In fact, unlike the target position esti
mation, the online estimation of the covariar®eis an ill-

posed problem based on only one observationThe suc-

cess of the algorithm to approximately recover the tendency
of the covariance matrix is due to the Markov prior regular- 0:6
ization defined by the Generalized Gaussian random walk ,
GN (2 | £;-1, A) defined in the previous subsection.

1.2
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6. CONCLUSION

A differential-geometric framework is proposed to imple-
ment the particle filtering algorithm on Riemannian mani-
fold. The exponential mapping plays a central role in con-
necting the manifold-valued particles to the samples gener
ated on the tangent space by the usual random generatingl]
techniques on Euclidean spaces. The proposed algorithm
has been applied to jointly track the target position with th
time-varying noise covariance. [5]
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