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ABSTRACT

In this contribution, a general scheme of particle filteringon
Riemannian manifolds is proposed. In addition to the non-
linear dynamics, the system state is constrained to lie on a
Riemannian manifoldM, which dimension is much lower
than the whole embedding space dimension. The Rieman-
nian manifold formulation of the state space model avoids
the curse of dimensionality from which suffers most of the
particle filter methods. Furthermore, this formulation is the
only natural tool when the embedding Euclidean space can-
not be defined (the state space is defined in an abstract geo-
metric way) or when the constraints are not easily handled
(space of positive definite matrices).

1. INTRODUCTION

Given a dynamical system characterized by a state-space
model, the objective of the online Bayesian filtering is the
estimation of the posterior marginal probability of the hid-
den state given all the observations collected until the cur-
rent time. The nonlinear and/or the non Gaussian aspect of
the prior transition distributions and the observation model
leads to intractable integrals when evaluating the marginals.
Therefore, one has to resort to approximate Monte Carlo
schemes. Particle filtering [1] is such an approximate Monte
Carlo method estimating, recursively in time, the marginal
posterior distribution of the continuous hidden state of the
system. The particle filter provides a point mass approxima-
tion of these distributions by drawing particles accordingto
a proposal distribution and then weighting the particles in
order to fit the target distribution.

The particle filter method is usually applied to track a
hidden state belonging to an Euclidean space. The most
popular scheme is to sample the particles according to a ran-
dom walk around the previous particles. However, in some
tracking applications, the state may be constrained to be-
long to a Riemannian manifold. Recently, some works have
been dedicated to design algorithms adapted to the Rieman-
nian manifold constraints, based on differential geometry
tools: Gradient-descent algorithm on Grassmann manifold

for object recognition in [2], statistical analysis of diffu-
sion tensor MRI in [3], geodesic-based deconvolution al-
gorithms in [4], tracking principal subspaces in [5] and a
general scheme for tracking fast-varying states on Rieman-
nian manifolds in [6]. This paper contribution is devoted
to the application of this differential-geometric framework
to design efficient target tracking algorithms. We particu-
larly consider the case where the observation noise covari-
ance is unknown and time-varying. The Bayesian filtering
objective is thus to jointly estimate the hidden target state
and the time-varying noise covariance. As the noise covari-
ance is a positive definite matrix, the Euclidean space is not
suitable when tracking this covariance. Instead, one should
exploit the differential geometric properties of the spaceof
positive definite matrices, by constraining the estimated ma-
trix to move along the geodesics of this Riemannian man-
ifold. The proposed sequential Bayesian updating consists
thus in drawing state samples while moving on the manifold
geodesics.

The paper is organized as follows: Section 2 is a brief in-
troduction to the particle filtering method on the Euclidean
spaces. In Section 3, we describe some concepts of differ-
ential geometry. In Section 4, we present a general scheme
for the particle filtering method on a Riemannian manifold.
Section 5 is dedicated to the main contribution of this pa-
per which is the design of a particle filter jointly tracking
a target state belonging to an Euclidean space and a time-
varying noise covariance modeling the evolution over time
of the sensing system imperfections.

2. BAYESIAN FILTERING ON EUCLIDEAN
SPACES

The observed system evolves in time according to the fol-
lowing nonlinear dynamics:







xt ∼ px(xt | xt−1, ut)

yt ∼ py(yt | xt, ut),
(1)



whereyt ∈ Rny denotes the observation at timet, xt ∈Rnx denotes the unknown continuous state, andut ∈ U de-
notes a known control signal. The probability distribution
px(xt | xt−1, ut) models the stochastic transition dynamics
of the hidden state. Given the continuous state, the obser-
vationsyt follow a stochastic modelpy(yt | xt, ut), where
the stochastic aspect reflects the observation noise.

The Bayesian filtering is based on the estimation of the
posterior marginal probabilityp(xt | y1:t). Because of the
nonlinear and/or the non Gaussian aspect of the transition
distributions, one has to resort to Monte Carlo approxima-
tion where the joint posterior distributionp(x0:t | y1:t)
is approximated by the point-mass distribution of a set of
weighted samples (called particles){x
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0:t, w
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x

(i)
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(dx0:t) denotes the Dirac function.

In the Bayesian importance sampling (IS) method, the
particles{x(i)

0:t}
N
i=1 are sampled according to a proposal dis-

tribution π(x0:t | y1:t) and{w(i)
t } are the corresponding

normalized importance weights:

w
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π(x
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.

Sequential Monte Carlo (SMC) consists of propagat-
ing the trajectories{x(i)

0:t}
N
i=1 in time without modifying the

past simulated particles. This is possible for the class of
proposal distributions having the following form:

π(x0:t | y1:t) = π(x0:t−1 | y1:t−1)π(xt | x0:t−1,y1:t).

The normalized importance weights are then recursively com-
puted in time as:

w
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t ∝ w
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p(yt | x
(i)
t )p(x
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t | x
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The simplest implementation consists of adopting the
transition prior as the proposal distribution:

π(x
(i)
t | x

(i)
0:t−1,y1:t) = px(xt | xt−1, ut).

in which case the weights are updated according to the like-
lihood function:

w
(i)
t ∝ w

(i)
t−1p(yt | x

(i)
t ).

The particle filter algorithm consists of2 steps: (i) the
sequential importance sampling step and (ii) the selection
step. The selection (resampling) step replaces the weighted
particles by unweighted particles in order to avoid the col-
lapse of the Monte Carlo approximation caused by the vari-
ance increase of the weights.

3. DIFFERENTIAL GEOMETRY TOOLS

We devote this section to briefly introduce some concepts
of Riemannian geometry. These concepts are necessary to
the design of the particle filter on Riemannian manifolds
(Section 4). For further details on Riemannian geometry,
refer to [7].

In differential geometry, one is interested in intrinsic ge-
ometric properties which are invariant with respect to the
choice of the coordinate system. This can be achieved by
imposing smooth transformations between local coordinate
systems (see figure 1). The following definition of differen-
tiable manifold formalizes this concept in a global setting:

Definition 1 A differentiable (or smooth) manifoldM is a
topological manifold with a familyU = {Uα, φα} of coor-
dinate neighborhoods such that:

1. TheUα coverM,

2. for anyα, β, if the neighborhoods intersectionUα ∩
Uβ is non empty, thenφα ◦ φ−1

β andφβ ◦ φ−1
α are

diffeomorphisms of the open setsφβ(Uα ∩ Uβ) and
φα(Uα ∩ Uβ) ofRn,

3. any coordinate neighborhood(V, ψ) meeting the prop-
erty (2) with everyUα, φα ∈ U is itself inU

φβ

ξ1

φβ ◦ φ−1
α

Uβ

φα

ξ2

ρ2

M

Uα

ρ1

Fig. 1. Differentiable manifold

Geodesics. A geodesic between two endpointsγ(a) and
γ(b) on a Riemannian manifold(M, g) endowed with a
Riemannian metricg is a curveγ : [a, b] −→ M which
is locally defined as the shortest curve on the manifold con-
necting these endpoints. More formally, the definition of a
geodesic is given by:

Definition 2 The parametrized curveγ(t) is said to be a
geodesic if its velocity (tangent vector)dγ/dt is constant
(parallel) alongγ, that is if it satisfies the condition
(δ/dt)(dγ/dt) = 0, for a < t < b.



Geodesic distance. The geodesic distanceD(p, q) between
two pointsp andq on a Riemannian manifold(M, g) is the
length of the geodesic curveγg : [a, b] −→ M connecting
p andq:

D(p, q) = ||γg|| =

∫ b

a

√

gij γ̇iγ̇jdt. (3)

The geodesic distance can also be defined as the shortest
distance (over smooth curves) between two points on the
manifold endowed by a Riemannian connection.

Exponential mapping. Theexponential mappingis a cen-
tral concept when designing filtering methods on Rieman-
nian manifolds. In fact, it represents an interesting tool to
build a bridge between an Euclidean space and the Rieman-
nian manifold. For a pointp and a tangent vectorX ∈
Tp(M), let γ : t =⇒ γ(t) be the geodesic such thatγ(0) =

p and dγ
dt (0) = X . The exponential mapping ofX is de-

fined asEp(X) = γ(1). In other words, the exponential
mapping assigns to the tangent vectorX the endpoint of the
geodesic whose velocity at timet = 0 is the vectorX (see
figure 2). It can be shown that there exist an neighborhood
U of 0 in Tp(M) and a neighborhoodV of p in M such
thatEp |U is a diffeomorphism fromU toV . Also, note that
since the velocitydγ/dt is constant along the geodesicγ(t),
its lengthL from p to Ep(X) is:

L =

∫ 1

0

‖
dγ

dt
‖dt =

∫ 1

0

‖X‖dt = ‖X‖.

The exponential mappingEp(X) corresponds thus to the
unique point on the geodesic whose distance fromp is the
length of the vectorX .

Ep(X)

M

Tp(M)

p

X

Fig. 2. Exponential mapping on the manifold

4. PARTICLE FILTERING ON RIEMANNIAN
MANIFOLDS

4.1. General scheme

The aim of this section is to propose a general scheme for
the extension of the particle filtering method on a Rieman-
nian manifold. The hidden statex is constrained to lie in

a Riemannian manifold(M, g,∇) endowed with a Rie-
mannian metricg and an affine connection∇. The system
evolves according to the following nonlinear dynamics:







xt ∼ px(xt | xt−1, ut) , x ∈ M

yt ∼ py(yt | xt, ut),
(4)

where the Markov chain (random walk)px(xt | xt−1, ut)
on the manifoldM is defined according to the following
generating mechanism:

1. Draw a samplevt on the tangent spaceTxt−1M ac-
cording to a pdfpv(.).

2. x is obtained by the exponential mapping ofvt ac-
cording to the affine connection∇.

In other words, a random vectorvt is drawn on the tan-
gent spaceTxt−1M by the usual Euclidean random tech-
nics. Then, the exponential mapping allows the transforma-
tion of this vector to a pointxt on the Riemannian manifold.
The pointxt is the endpoint of the geodesic starting from
xt−1 with a random initial velocity vectorvt. Figure 3 il-
lustrates the transition dynamics on a Riemannian manifold
M.

T (M)
vt

xt = Ep(vt)

xt+1

xt−1

M

vt+1

vt+2

Fig. 3. Markov chain on a Riemannian manifold

As a generating stochastic mechanism is properly de-
fined on the manifold, the particle filtering is naturally ex-
tended. It simply consists in propagating the trajectories
on the manifold by the random walk process, weighting the
particles by the likelihood function and sampling with re-
placement. The proposed general scheme is depicted in fig-
ure 1.

4.2. Point estimates

Any quantity of interesth(x) can be estimated by itsa pos-
teriori expectation, minimizing the expected mean square
error. The empirical mean of the transformed particlesh(x

(i)
t )

represents an unbiased Mont-Carlo estimation of thea pos-
teriori expectation. Averaging in the manifold context is no



Algorithm 1 Particle filter algorithm on a Riemannian man-
ifold M

1: function PF(PP)
2: Initializationx

(i)
0 ∼ p0(x)

3: for t = 1 to T do
(Sequential importance sampling)

4: for i = 1, ..., N do (sample from the random
walk onM)

5: v̂
(i)
t ∼ pv(v) on Txt−1M

6: x̂
(i)
t = E

x
(i)
t−1

(v̂
(i)
t )

7: set(x̂(i)
0:t) = (x̂

(i)
t ,x

(i)
0:t−1)

8: end for
9: Update the importance weights

10: for i = 1, ..., N do (evaluate and normalize the
weights)

11: w
(i)
t ∝ p(yt | x̂

(i)
t )

12: end for
13: Resampling:

14: Select with replacement from{x̂(i)
0:t}

N
i=1 with

probability{w(i)
t } to obtainN particlesx(i)

0:t}
N
i=1

15: end for
16: end function

more a valid operation: The empirical mean could be lo-
cated outside the manifold or the averaging itself does not
have a meaning in the absence of a summation operator on
the manifold. In order to obtain a valid point estimate, one
should rather minimize the mean square error, where the
error is evaluated by the geodesic distanceD on the mani-
fold (related to the connection∇). Following the work of
Fréchet [8], the point estimate can be defined by the intrin-
sic mean (also called Riemannian barycenter). The intrinsic
mean has the following expression:

x̂t = argmin
xt∈M E

[

(D(xt, st))
2
]

= argmin
xt∈M

∫

(D(xt, st))
2p(st | y1..T )dµst

(5)
where the expectation operator is computed with respect to
thea posterioriprobability densityp(st | y1..T ) and a dom-
inating measuredµ.

Computation of the point estimate (5) involves an inte-
gration operation (with respect tost ∈ M and according
to the posterior distribution) and a constrained optimization
operation on the manifoldM. The integral can be approx-
imated (as in the Euclidean case) by an empirical weighted
sum of the geodesic distances applied on the particles which
are obtained with their weights by the particle filter algo-
rithm. The point estimate is then computed by the mini-

mization of an approximated expectation expression:

x̂t = argmin
xt∈M

N
∑

i=1

w
(i)
t (D(xt, s

(i)
t ))2 (6)

wheres
(i)
t andw(i)

t are the particles and their weights com-
puted recursively by the particle filter algorithm.

Concerning the constrained optimization in (6), a gra-
dient descent like algorithm can be designed on the mani-
fold based on the exponential mapping which plays again a
key role in transferring Euclidean technics to a Riemannian
manifold context. Denoting byJ (xt) the objective func-
tion to be minimized with respect toxt,

J (xt) =

N
∑

i=1

w
(i)
t (D(xt, s

(i)
t ))2,

a gradient flowx
(l)
t , starting from an initial guessx(l)

t and
converging to the solution̂xt, can be defined by moving in
the direction of the opposite of the objective function deriva-
tive ∇J (x

(l)
t ). As the function derivative∇J (x

(l)
t ) lies in

the tangent spaceT
x

(l)
t

(M), the exponential mapping can
be used to map the opposite derivative vector to the next
point x

(l+1)
t . The gradient-like descent algorithm is then

derived as follows:

x
(l+1)
t = E

x
(l)
t

(−∇J (x
(l)
t )) (7)

Figure 4 illustrates an iteration of the gradient descent
algorithm on a Riemannian manifold.

T

x

(l)
t

(M)

M

x
(l+1)
t = E

x
(l)
t

(−∇J )∇J x
(l)
t

Fig. 4. A gradient descent step on a Riemannian manifold

5. APPLICATION TO TRACKING WITH
UNKNOWN TIME-VARYING NOISE COVARIANCE

5.1. General algorithm

In classical filtering methods applied on state-space models,
it is usually assumed that the noise statistics are known. In
other words, given the hidden statext, the likelihood func-
tion p(yt | xt) can be exactly computed. However, in real



situations, the noise is generally related to the sensor imper-
fections which may be varying and unknown. For instance,
assuming (for simplicity) an additive Gaussian noise, the
variation of the noise covarianceΣt is related to the degra-
dation of the sensing system. Fixing a constant value for the
noise covariance may lead to poor tracking performances.
An optimal procedure to deal with the unknown time-varying
covariance matrix is to design a Bayesian filter to jointly
track the hidden state of interestxt and the noise covari-
anceΣt. In this section, we consider the tracking of a mo-
bile target. The hidden statext contains the position and
the velocity of the target. It belongs thus to the Euclidean
spaceR4. However, the noise covariance matrix lies in the
Riemannian manifold of positive definite matricesS+. The
general scheme defined in the previous Section 4 should be
applied in order to track the target and to online estimate the
noise covariance.

The hidden statextis assumed to follow a general para-
metric prior modelp(xt | xt−1,α), where the parame-
tersα are assumed to be known. In order to describe the
temporal correlation of the noise covariance trajectory on
the Riemannian manifold of positive definite matricesS+,
we define theGeneralized Gaussian random walkΣt ∼
GN (Σt | Σt−1,Λ) as follows:

1. Sample a Gaussian symmetric velocity matrixB ∈

S with a precisionΛ (nx(nx+1)
2 × nx(nx+1)

2 matrix):
B ∼ N (0;Λ)

2. The next matrixΣt is then obtained by:

Σt = EΣt−1
(B) = Σ

1/2
t−1 exp

[

Σ
−1/2
t−1 BΣ

−1/2
t−1

]

Σ
1/2
t−1

The state-space model is then described by the follow-
ing equations,























xt ∼ px(xt | xt−1,α)

Σt ∼ GN (Σt | Σt−1,Λ)

yt ∼ N (yt | f(xt),Σt),

(8)

wheref(.) is the sensing function andN (.) stands for the
Gaussian distribution. Contrary to the usual assumption of
a constant known covariance, the case of a stochastic vary-
ing noise covariance represents an elegant way to deal with
temporal degradation of the sensing system.

The proposed particle filter jointly estimates the hidden
target positionxt (belonging to an Euclidean space) and the
noise covarianceΣt (belonging to the Riemannian manifold
S+) as follows,

1. Propagate the trajectories(Σ
(i)
0:t−1,x

(i)
0:t−1) by gener-

ating the samples(Σ(i)
t ,x

(i)
t ) according to the prior

modelsGN (Σt | Σt−1,Λ) andp(xt | xt−1,α).

2. Update the importance weights which are proportional
to the likelihood functionN (yt | f(xt),Σt).

The explicit solution of the geodesic distance allows also
the implementation of the intrinsic mean for the tracking of
the covariance matrix. In fact, approximating the expected
error by the empirical weighted sum of geodesic distances,
the point estimate is defined as follows:

Σ̄t = argmin
Σ∈S+

N
∑

i=1

w
(i)
t (D(Σ,Σ

(i)
t ))2

= argmin
Σ∈S+

N
∑

i=1

w
(i)
t

1

2
trLn2(Σ−1/2

Σ
(i)
t Σ

−1/2)

The gradient of the objective function, belonging to the
tangent spaceTΣS+, has the following expression:

∇J (Σ) =
Σ

N

N
∑

i=1

Ln((Σ
(i)
t )−1

Σ) (9)

Given the explicit expression of both the gradient (9)
and the exponential mapping on the manifoldS+, the gradient-
descent algorithm scheme for the computation ofΣ̄t is ef-

ficiently implemented. Given an initial guess̄Σ
(0)

, a gra-

dient flow Σ̄
(l)

evolving towards the solution is defined as
follows:

Σ̄
(l+1)

= E
Σ̄

(l)(−∇J (Σ̄
(l)

))

= (Σ̄
(l)

)1/2 exp
[

(−Σ̄
(l)

)−1/2∇J (Σ̄
(l)

)−1/2
]

(Σ̄
(l)

)1/2

5.2. Simulation results

We consider the tracking of a target moving over a 2-D field.
The statext = [xp

t ,x
v
t ] is formed by the position and the

velocity of the target. For simplicity, we assume a kinematic
parametric model for the transition dynamics of the hidden
state:

(

x
p
t

xv
t

)

=









1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 0









(

x
p
t−1

xv
t−1

)

+









T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts









ut

where the sampling interval isTs = 0.1s andut is a zero-
mean white Gaussian noise.

The observations are obtained through a network of400
range-bearing sensors deployed randomly in the field under
surveillance. At each timet, a selected node (according to



the proximity to the target) obtains an observation of the
target position through a range-bearing model:

(

yr
t

yθ
t

)

=

( p
‖sm−xt‖+0.5

arctan s2−x2

s1−x1

)

+ Σtvt

wheresm = (s1, s2) andxt = (x1, x2) are the node and the
target positions at timet, p (set to10) is the energy emitted
by the target (measured at a reference distance of 1 meter)
andvt is a white Gaussian random vector. The corrupting
noise has a covarianceΣt evolving in time as depicted in
figure 6: constant for the firstT/4s, increasing with a linear
slope forT/2s and constant for the lastT/4s.

The particle filter is applied to jointly estimate the tar-
get position and the noise covariance matrix. Figure 5 illus-
trates the target tracking performances. The trajectory ofthe
target is recovered with a mean square error of0.39m. Fig-
ure 6 illustrates the performance of the algorithm to online
track the covariance variation over time. Note that, despite
their fluctuation, the estimated covariance elements follow
the tendency of the true covariance elements. The fluctua-
tion of the estimated noise covariance is mainly due to the
fact that the data are less informative with respect to the
covariance matrix. In fact, unlike the target position esti-
mation, the online estimation of the covarianceΣt is an ill-
posed problem based on only one observationyt. The suc-
cess of the algorithm to approximately recover the tendency
of the covariance matrix is due to the Markov prior regular-
ization defined by the Generalized Gaussian random walk
GN (Σt | Σt−1,Λ) defined in the previous subsection.

6. CONCLUSION

A differential-geometric framework is proposed to imple-
ment the particle filtering algorithm on Riemannian mani-
fold. The exponential mapping plays a central role in con-
necting the manifold-valued particles to the samples gener-
ated on the tangent space by the usual random generating
techniques on Euclidean spaces. The proposed algorithm
has been applied to jointly track the target position with the
time-varying noise covariance.
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