DATA-DRIVEN ONLINE VARIATIONAL FILTERING IN WIRELESS SENS  OR NETWORKS

Hichem Snoussl), Jean-Yves Tourner&?, Petar M. Djuric ©®), Cedric Richard®

(1) |CD/LM2S, Université de Technologie de Troyes, 10010 y&s) France
(2) Université de Toulouse, IRIT/ENSEEIHT/TéSA, 31071, ltuse, France
() Dept. Elec. and Comp. Eng., Stony Brook University, Stongd; New York 11794-2350

ABSTRACT

In this paper, a data-driven extension of the variationgbiadhm
is proposed. Based on a few selected sensors, target tgaiskin
performed distributively without any information abouktbbser-
vation model. Tracking under such conditions is possibti ex-
ploits the information collected from extra inter-sens@3 mea-
surements.The target tracking problem is formulated asreekena-
trix completion problem. A probabilistic kernel regressiis then
proposed that yields a Gaussian likelihood function. Tkelilhood
is used to derive an efficient and accelerated version of &nia-v
tional filter without resorting to Monte Carlo integratiofithe pro-
posed data-driven algorithm is, by construction, robustliserva-
tion model deviations and adapted to non-stationary enmients.

is a commonly used technique for measuring the proximitywbet

two nodes [5]. However, the RSSI is based on a parametric mode
with parameters to be tuned according to the environmentavhe
the measurements are made. The tracking and localizatidorpe
mances are very sensitive to the relevance of the paranmetie|
and also to the fixed values of its parameters. In fact, thelRSS
model is the used likelihood model in Bayesian filtering téghes.
Deviations from the true model may cause severe degradaiion
tracking performances. A way to circumvent this problenhesdse

of binary sensors as proposed in [3] with a centralized garfilter
implementation and then extended in [6] with a variationkéffi
implementation. Binary sensors are based on thresholdm&8ESI
signal to decide whether the target is in the range of theoseors
not. This minimizes the dependency on the RSSI model bubéspl

Index Terms— Bayesian filtering, sensor networks, machine only part of the available information, leading to a lessunate

learning.

1. INTRODUCTION

In a Bayesian framework, tracking a target in a sensor néteon-
sists in estimating the posterior distribution of ap—dimensional

target tracking.

In this paper, we propose an efficient data-driven variafion
tracking method without the use of an RSSI model. The essence
of the proposed technique is the exploitation of extra R&85h(y
other similarity) measurements exchanged between sdlsetesors.

By considering the extra inter-sensor data as learning gataer-

state vectorz, (target position) given data measured by sensorgy| tools of machine learning can be employed. In particuilae

densely deployed in the region under surveillance. In thigkywe
consider distributed filtering where the online update & pos-
terior is locally performed based on some selected sensbosev
data are considered quite relevant for an accurate trackirgyious
works, related to this problem, have been devoted to theemeh-
tation of Bayesian filtering methods in a wireless sensowordt
Most of the proposed solutions are based on sequential Mzarie
methods [1], [2], [3]. The popularity of this kind of methogdems
from their ability to deal with the nonlinear aspect of thatstdy-
namics and also from their flexibility to deal with any nomlar
likelihood model. However, a crude implementation of distted
particle filters needs the exchange of large sample-basétbdtion
representations between selected leaders. Message @apatiorns
should therefore be considered in order to reduce the cqutsemof
communication energy [1]. However, successive messagexpp
mations may cause the propagation of an inference erroerilge
a collaborative distributed variational filter has beenpmsed in
[4]. Based on an online updating of a free-form approxinmaid
the filtering distribution, the variational approach alkwa natural
adaptive compression of the non-Gaussian filtering digtioh. The

tracking problem is recast into a kernel matrix completionbp
lem. A probabilistic formulation of the kernel matrix regston
solution proposed in [7] allows for a construction of a linéke-

lihood model. The variational filter is then efficiently ingphented
without resorting to Monte Carlo integration as was the ¢asgen-
eral nonlinear likelihood models. As the likelihood modelacally
constructed, the proposed distributed filter is partidyladapted to
nonstationary environments.

In Section 2, the analogy between the tracking without using
an RSSI model and the kernel matrix completion problem igkest
lished. Section 3 is devoted to the implementation of thetianal
filter exploiting the linear likelihood model. Finally, s@rsimula-
tion results corroborating the efficiency of the proposet-dkiven
technique are presented and discussed in Section 4.

2. KERNEL REGRESSION FORMULATION
2.1. Target tracking as a matrix completion problem

At each time step, we assume that a setmfsensors{sf), . s,(f)}

approximating message can then be communicated betwedsr lea are selected to be activated for tracking the unknown tgrgsition

nodes without loss. In addition to the constraints on exghmnin-
formation between leader nodes, another energy conceriréless
sensor network is the measurement modality. Equipping s1adth
high performance detectors may compromise the potentidhef

x:. We further assume that all pairwise RSSI signals (or angroth
similarity measurement) between the sensors and the t@ngebe-
tween the selected sensors themselves are available dedted|
in one selected node in charge of updating of the filteringritis-

sensors to be densely deployed with a low cost. For trackig a tion. The extra inter-sensor RSSI measurements will plag ke

localization purposes, the received signal strength atdic(RSSI)

role of learning data to be exploited for circumventing thsence



of any information about the RSSI model. In order to esthbéis
connection with the kernel matrix completion problem, wesider
the RSSI measurements as pairwise similarities. Followhegker-
nel trick, commonly used in the machine learning commuritig,
similarity measurements are considered as scalar produetse-
producing kernel Hilbert space (RKHS). In other words, tH&SR
between a sensmf.t) and another sensmét) is considered as the

Euclidean scalar product of their featuze($§t)) and¢(s§t)) in the
RKHS: RSSI(s(”,s") = k(s{",s{") =< ¢(s{"), 6(s{") >.

i 19
According to this formulation, the RS$N x N)-matrix (with
N = n + 1) corresponds to the fully available kernel mat#g
whose elements can be defined as follows:

(K)iy = RSSI(s{”,s{")  1<i#j<n,
(K)ins1 = RSSI(sgt),mt) 1<i<n,
(K)11 = ¢ = const. 1<i<n+1

As the target position is unknown, tHé&V x N)-matrix G formed
by the pairwise Euclidean scalar products of elements aigrto

the set{s{"), s\, ..., s x,} has missing entries corresponding to

the scalar products between the sensors and the targetbjeuotive
of matrix completion is then the estimation of the missingries
of the matrixG exploiting a form of correlation with the complete
kernel matrixK . By splitting the matrixG into 4 blocksG+:, G+p,

G, andG,,, corresponding respectively to sensor set versus itsel

sensor set versus target, target versus sensor set antlvarges
itself, the completion problem can be illustrated by thddfeing
diagram:

Ky Kiy| —> G Gip 1)
Kpt Kpp G,,/ G/)/)
—_———— —————
K G

where the objective is the prediction of the unknown blodkg(ay)
G, G, and G, by learning a mapping betwedi;; and G:.
As we have only one missing object, the bla@k, (resp.K,) is a
column, the blockG,: (resp.K,.) is a row andG,,, (resp.K,,) is
a scalar. More precisely, the elementd®f; are the scalar products
between the sensor position vectdss"” s§t)), fori,j = 1,..,n,

G, is a vector containing the scalar products between the senso

and the target:
Gip = (i) @, (i) @y () ", (2)
with Gp: = GI, andG,, = |z:||>. Note thatG, is a known

matrix and that the unknown matri¥,, is linear with respect to the
target positionz:. This property will be exploited in designing the
likelihood function and in efficiently implementing the iational
filter, both shown in the next section.

2.2. Probabilistic matrix regression

In order to solve the kernel matrix completion, a matrix esgion
method has been proposed in [7]. This method assumes thalethe
mentsK;; are obtained by applying a kernkelon a set of ofV ex-
planatory random variablgse; € R¢},. Similarly, the elements

i=1"

Tas follows:

G,; are obtained by applying a kerngbn a set ofV response ran-
dom variables{r; € R'}Y ;. Both data sets can be considered as
two different representations of the same objects. Solthiagnatrix
completion problem is essentially based on modifying tteduiees
of the explanatory variables so that their similaritieschahe sim-
ilarities of the response variables. We follow here the sitea but
rather than predicting the missing blo€k,,, we compute its proba-
bility distribution.

Let u(e) refer to the new feature of the explanatory variable
The new feature lies in the RHKS defined by the kerneln order
to compute the Euclidean scalar product between two fesiue)
andu(e’), it is sufficient to define their coordinates with respect
to an orthonormal basis. A common approach in kernel methods
based on the representer theorem, is to define the coorsliaata
combination of learning data kernels as follows:

ul(e)zzwﬁlk(eﬁeL l:17 5 M,
j=1

where we have considered coordinates. By defining the matrix
W = (w;,)}Zh 7, the new feature (e) may be written in a matrix
form,
u(e) = Wlk(ej, )lj=1.n. (3)
The regression problem consists in finding the coefficidhits
such that the scalar products of the new features fit the amiitigs
of the response variables. The regression problem can treifated

T
g(ri, ;) = u(e:) ule;) + ey, 4
whereg; ; is a zero-mean normally distributed noise with variance

afj. Using the vector form (3), equations (4) can be putin a canpa
matrix form as according to

Gy = KuAKy+ Py %)
Gy = KuAKy + Py (6)
Gy = KpAKy + ¥y, (7)

where A is the unknown matriW W7 and® = (¢; ;)i j—1..n iS

an (N x N)-matrix of Gaussian random variables. For simplicity,
we assume that the variableg; are independent and identically
distributed (i.i.d) witho}; = o*.

According to the above statistical formulation of the matg-
gression problem, it is straightforward to show that, gitleematri-
cesGy, Kyt and Ky, the matrixG, is normally distributed with
the following expressions for its mean and covariance:

GuK; 'Ky

Hy =
{ 2, = (KuKi Ky + 1)1,
wherel, is the(n x n) identity matrix.

The Gaussian distribution of the veci@;,, is the key point for
the remainder of the paper. By denotisg= [s!", s{" ..., s{"]T
the (n x 2) matrix of sensor locations and taking into account that
the kernelg is the Euclidean scalar product, the Gaussianity of the
vectorG, could be rewritten as

(8)

Gip = Sz = GuK ;' Kip +7, )
where~, is a zero-mean Gaussian noise with a diagonal covariance
3, defined in (8). Expression (9) can be considered as the tesult
ing statistical model linking the measured data and the owkrtar-

get positionz: and plays thus the role of the likelihood function
when tracking the target in a Bayesian framework. The gtianti



G« K ;' K, on the right hand side of (9) can be interpreted as avhere only integration with respect to_, remains due to the sep-

sufficient statistic obtained from the available data based kernel
matrix regression formulation.

3. ONLINE VARIATIONAL FILTERING

3.1. State-space model

In the remainder of the paper, the likelihood function is duhs
on the linear model (9).

arable form of the approximate distributigfice:—1). The temporal
dependence on the pastis hence limited to only one of the coemp
approximate distributions. Communication between twaessive
sets of activated nodes is then limited to sendj(g,_,) which is
the sufficient statistic for updating the filtering distrilmn. As it will

be shown in the following, it turns out thgfu, _, ) is a Gaussian dis-
tribution and thus it can be communicated by sending only arme

Concerning the transition dynamicsand a covariance. The variational algorithm is then impleted in

pe(x+ | T+—1), we adopt a mean-scale mixture model. Accord-a collaborative sensor network without lossy compression.

ing to this model, introduced in [8], the hidden state € R"~
has a Gaussian distribution with a random megrand a random

After substituting the filtering distribution (13) into (12nd tak-
ing into account the prior mean-scale mixture transitiordet@10),

precision matrixA\;. The mean vector dynamics are described by aone obtains the updated separable distribuji@#; ) in the following

Gaussian random walk reflecting the time correlation of gstesn
trajectory, and the precision matrix is distributed acomydto a
Wishart distribution, that is,

e o~ N g1, N)
At~ Wi(A: | S) (10)
e~ N(ze| py, M)

where the fixed hyperparametexsi andsS are respectively the ran-
dom walk precision matrix, the degrees of freedom and theigion
of the Wishart distribution. Note that assuming a randomnraeal
a random covariance for the stateleads to a prior probability dis-
tribution covering a wide range of tail behaviors allowingalete
jumps in the target trajectory.

3.2. Updating free form approximate distributions

According to the model (10), the augmented hidden state s no

ar = (x4, gy, A¢). At each time step, the observed datg con-
sist of the matrice§ K¢, K, G+ }. Instead of approximating the
filtering distributionp(a | y1:¢) (with the standard notatiog.: =
(y1, ..., y+)) by a point-mass distribution (particle filtering), the ivar
ational approach [4] consists in approximating the filtgmistribu-
tion by a more tractable posterior distributigfr: ). The variational
approach determines the approximate filtering distrilmukip mini-
mizing the the Kullback-Leibler divergence between the filter-
ing distribution and the approximate distribution,

g(ou)

_ 1Y) ga,
plae [yie)

D (qllp) = /q(at) log (11)

to obtain the optimal approximate distribution. In orderen-

form:
a(@e) o< p(ye [T )N (e | (1e), (Ae)) ox N(ze | 27, T7)
a(pe) o< N(py | iy, A7)

where the parameters are iteratively updated accordirgetfotiow-
ing scheme:

@y =T; (STS, ' Gu Ky, Kip + (M) (1)
[;=8"2,'S + (A)
=X () (@) + AT )
Af=(A) + A
n*=n-+1 ~
S§:(<gtm?> — (@) ()" = () (@) + (pepi) + 87171
pr=p; B
M=+
In the above expressions, all the variable expectatione bibsed
forms, i.e.,
{ () = af, (wmx])=T;"+aiz;",
(o) = ppy (popd) = X7+ pipw () =n*S¢

4. NUMERICAL RESULTS

In this section, we illustrate the effectiveness of the pegal data-
driven variational filter (DDVF) for target tracking in a wiless sen-
sor network. We also compare the DDVF algorithm with a classi
cal variational filter algorithm (VF) where the observatimodel is
known. We considered the tracking of a target moving acogrtt

a trajectory composed of two sinusoids in a two-dimensidiedd
(figure 1), for a duration of' = 200 time slots. An abrupt change

sure that the best model is automatically chosen, we assumeveas simulated at timé¢, = 100 in order to test the ability of the

free form (non parametric) approximate distribution. Céing a
separable distributiog(at) = q(x+)q(p,)g(A:) and minimizing
the Kullback-Leibler divergence (11) with variational calus, one
obtains the following approximate distributions:

q(wt) X exp <10gp(y1:t7at)>q(p,t)q()\t)
q(p,) o< exp (log p(yi:t, &t))g(we)a(re) 12)
q(A) o< exp(logp(Yi:t, ) glar)q(n,)

The update of the approximate distributigfie;) can be sequen-
tially implemented given only the approximate distributig s, ;).
Using the separable approximate distribution at timel, the filter-
ing distribution is written as

placlyr)op(yele)p(@e, Aelpy) fp(ﬁ"t|”t—1)qo1't71)d”t—1
(13)

algorithm to track the target in a difficult discontinuoutuation. A
set of500 nodes were randomly deployed in20m x 120m area.
Each node has a sensing range set to 20m. At each time, step
known matricesK; and K, (input of the algorithm) were simu-
lated according to the following stationary model:

Ku(i,j) = exp{—|s{” = s\ /20} + e}, 1 < i j<n
Kip(j) = exp{|ls}” —a}]|/20°} + €’ 1< j<n

(14)
wheres'}) = (s1", s5') andx; = (z1, z2) were the activated node
and the true target positions at timer was set td 0 andeﬁ? was the
corrupting noise due to modeling error, instrumental naise back-
ground additive interfering signals. The noise variancpedeled
on the inter-sensor distance. The elements of the métfixwere



obtained as the scalar products between the known sensitibpos
vectors(s'", s§.“>, fori,j=1,..,n.

The number of selected sensors was fixedo The selection
protocol was based on the Gaussian predictive distributidore
details about the selection protocol are reported in [6].

The hyperparameters of the transition dynamical state mode

were set to the following values:
A=10"%I, a=1, § =101,

where the hyperparameters values allow a general non iaforen
prior. It is worth noting that in target tracking applicat& an infor-

mative prior, involving the target velocity and accelesatiis usually

assumed. Here, the transition prior has a more general fdrichw
can be used in other sensor network applications.

The proposed DDVF algorithm was applied to simulated data,

without using the observation model (14). Figure 1 depicésds-
timated trajectory superimposed with the true simulategettory.
The target position was estimated by its expectati&n € (xz:))
according to the approximate filtering distributigfw). Note the
accuracy of the tracking with a mean square etiee = 3, ||z —
@4||?/T = 0.29. In the same figure, thi selected sensors are plot-
ted in circles, for four chosen instants= 40, ¢ = 80, ¢ = 160 and

t = 190. The algorithm is able to select the relevant nodes based on

a compact (Gaussian) approximation of the predictive idistion.
For comparison purposes, the classical variational filt€) (4]
was applied to track the target in the same configuration ageab

with 10 selected nodes at each time slot. In one set of experiments,

the classical VF algorithm was applied assuming the exaoivkn
edge of the observation model (14). Figure 2 depicts theitrgc
performances of the classical VF filtering with a mean sqearer

mse = 1.3. Note that the classical VF algorithm was less accurate

than the proposed data-driven DDVF algorithm. It should dyet kn
mind that, although the classical VF filter is based on the tiloser-
vation model, the DDVF algorithm exploits more data obtdiy
the extra inter-sensor RSSI signals. This is a very intergsesult.
The difference between the DDVF algorithm and the classial
should be even more contrasted when the observation modet is
known exactly or when the environment is non-stationarylebd,
the DDVF is not sensitive to the observation model and itsupa-
ters contrary to the classical VF algorithm.

5. CONCLUSION

The paper studied a data-driven target tracking algorithesed on
extra inter-sensor similarity measures. The key point ef piho-

posed algorithm was to formulate the tracking problem asraete
matrix completion problem. The kernel matrix completionlgem

was solved by using training data coming from intra-senseaisure-
ments. The Gaussian likelihood function, obtained by agibdistic

formulation of the regression problem, was used to impldradast

variational filter. Preliminary results showed the effiggrof the

proposed algorithm. Perspectives include the study of rerten-

sive tests on simulated and real data.
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