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(3) Dept. Elec. and Comp. Eng., Stony Brook University, Stony Brook, New York 11794-2350

ABSTRACT

In this paper, a data-driven extension of the variational algorithm
is proposed. Based on a few selected sensors, target tracking is
performed distributively without any information about the obser-
vation model. Tracking under such conditions is possible ifone ex-
ploits the information collected from extra inter-sensor RSSI mea-
surements.The target tracking problem is formulated as a kernel ma-
trix completion problem. A probabilistic kernel regression is then
proposed that yields a Gaussian likelihood function. The likelihood
is used to derive an efficient and accelerated version of the varia-
tional filter without resorting to Monte Carlo integration.The pro-
posed data-driven algorithm is, by construction, robust toobserva-
tion model deviations and adapted to non-stationary environments.

Index Terms— Bayesian filtering, sensor networks, machine
learning.

1. INTRODUCTION

In a Bayesian framework, tracking a target in a sensor network con-
sists in estimating the posterior distribution of annx−dimensional
state vectorxt (target position) given data measured by sensors
densely deployed in the region under surveillance. In this work, we
consider distributed filtering where the online update of the pos-
terior is locally performed based on some selected sensors whose
data are considered quite relevant for an accurate tracking. Previous
works, related to this problem, have been devoted to the implemen-
tation of Bayesian filtering methods in a wireless sensor network.
Most of the proposed solutions are based on sequential MonteCarlo
methods [1], [2], [3]. The popularity of this kind of methodsstems
from their ability to deal with the nonlinear aspect of the state dy-
namics and also from their flexibility to deal with any nonlinear
likelihood model. However, a crude implementation of distributed
particle filters needs the exchange of large sample-based distribution
representations between selected leaders. Message approximations
should therefore be considered in order to reduce the consumption of
communication energy [1]. However, successive message approxi-
mations may cause the propagation of an inference error. Recently,
a collaborative distributed variational filter has been proposed in
[4]. Based on an online updating of a free-form approximation of
the filtering distribution, the variational approach allows a natural
adaptive compression of the non-Gaussian filtering distribution. The
approximating message can then be communicated between leader
nodes without loss. In addition to the constraints on exchanging in-
formation between leader nodes, another energy concern in wireless
sensor network is the measurement modality. Equipping nodes with
high performance detectors may compromise the potential ofthe
sensors to be densely deployed with a low cost. For tracking and
localization purposes, the received signal strength indicator (RSSI)

is a commonly used technique for measuring the proximity between
two nodes [5]. However, the RSSI is based on a parametric model
with parameters to be tuned according to the environment where
the measurements are made. The tracking and localization perfor-
mances are very sensitive to the relevance of the parametricmodel
and also to the fixed values of its parameters. In fact, the RSSI
model is the used likelihood model in Bayesian filtering techniques.
Deviations from the true model may cause severe degradations in
tracking performances. A way to circumvent this problem is the use
of binary sensors as proposed in [3] with a centralized particle filter
implementation and then extended in [6] with a variational filter
implementation. Binary sensors are based on thresholding the RSSI
signal to decide whether the target is in the range of the sensor or
not. This minimizes the dependency on the RSSI model but exploits
only part of the available information, leading to a less accurate
target tracking.

In this paper, we propose an efficient data-driven variational
tracking method without the use of an RSSI model. The essence
of the proposed technique is the exploitation of extra RSSI (or any
other similarity) measurements exchanged between selected sensors.
By considering the extra inter-sensor data as learning data, power-
ful tools of machine learning can be employed. In particular, the
tracking problem is recast into a kernel matrix completion prob-
lem. A probabilistic formulation of the kernel matrix regression
solution proposed in [7] allows for a construction of a linear like-
lihood model. The variational filter is then efficiently implemented
without resorting to Monte Carlo integration as was the casefor gen-
eral nonlinear likelihood models. As the likelihood model is locally
constructed, the proposed distributed filter is particularly adapted to
nonstationary environments.

In Section 2, the analogy between the tracking without using
an RSSI model and the kernel matrix completion problem is estab-
lished. Section 3 is devoted to the implementation of the variational
filter exploiting the linear likelihood model. Finally, some simula-
tion results corroborating the efficiency of the proposed data-driven
technique are presented and discussed in Section 4.

2. KERNEL REGRESSION FORMULATION

2.1. Target tracking as a matrix completion problem

At each time stept, we assume that a set ofn sensors{s(t)
1 , ..., s

(t)
n }

are selected to be activated for tracking the unknown targetposition
xt. We further assume that all pairwise RSSI signals (or any other
similarity measurement) between the sensors and the targetand be-
tween the selected sensors themselves are available and collected
in one selected node in charge of updating of the filtering distribu-
tion. The extra inter-sensor RSSI measurements will play here the
role of learning data to be exploited for circumventing the absence



of any information about the RSSI model. In order to establish a
connection with the kernel matrix completion problem, we consider
the RSSI measurements as pairwise similarities. Followingthe ker-
nel trick, commonly used in the machine learning community,the
similarity measurements are considered as scalar productsin a re-
producing kernel Hilbert space (RKHS). In other words, the RSSI
between a sensors(t)

i and another sensors(t)
j is considered as the

Euclidean scalar product of their featuresφ(s
(t)
i ) andφ(s

(t)
j ) in the

RKHS:RSSI(s
(t)
i , s

(t)
j ) = k(s

(t)
i , s

(t)
j ) =< φ(s

(t)
i ), φ(s

(t)
j ) >.

According to this formulation, the RSSI(N × N)-matrix (with
N = n + 1) corresponds to the fully available kernel matrixK

whose elements can be defined as follows:
8
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(K)i,j = RSSI(s
(t)
i , s

(t)
j ) 1 ≤ i 6= j ≤ n,

(K)i,n+1 = RSSI(s
(t)
i , xt) 1 ≤ i ≤ n,

(K)l,l = c = const. 1 ≤ l ≤ n + 1.

As the target position is unknown, the(N × N)-matrix G formed
by the pairwise Euclidean scalar products of elements belonging to
the set{s(t)

1 , s
(t)
2 , ..., s

(t)
n , xt} has missing entries corresponding to

the scalar products between the sensors and the target. The objective
of matrix completion is then the estimation of the missing entries
of the matrixG exploiting a form of correlation with the complete
kernel matrixK . By splitting the matrixG into 4 blocksGtt, Gtp,
Gpt andGpp corresponding respectively to sensor set versus itself,
sensor set versus target, target versus sensor set and target versus
itself, the completion problem can be illustrated by the following
diagram:

Ktt Ktp

Kpt Kpp

| {z }

K

→ Gtt Gtp

Gpt Gpp

| {z }

G

(1)

where the objective is the prediction of the unknown blocks (in gray)
Gtp, Gpt andGpp by learning a mapping betweenKtt andGtt.
As we have only one missing object, the blockGtp (resp.Ktp) is a
column, the blockGpt (resp.Kpt) is a row andGpp (resp.Kpp) is
a scalar. More precisely, the elements ofGtt are the scalar products
between the sensor position vectors〈s

(t)
i , s

(t)
j 〉, for i, j = 1, ..., n,

Gtp is a vector containing the scalar products between the sensors
and the target:

Gtp = [(s
(t)
1 )T

xt, . . . , (s
(t)
i )T

xt, . . . , (s
(t)
n )T

xt]
T , (2)

with Gpt = GT
tp andGpp = ‖xt‖

2. Note thatGtt is a known
matrix and that the unknown matrixGtp is linear with respect to the
target positionxt. This property will be exploited in designing the
likelihood function and in efficiently implementing the variational
filter, both shown in the next section.

2.2. Probabilistic matrix regression

In order to solve the kernel matrix completion, a matrix regression
method has been proposed in [7]. This method assumes that theele-
mentsKij are obtained by applying a kernelk on a set of ofN ex-
planatory random variables{ei ∈ Rd}N

i=1. Similarly, the elements

Gij are obtained by applying a kernelg on a set ofN response ran-
dom variables{ri ∈ Rl}N

i=1. Both data sets can be considered as
two different representations of the same objects. Solvingthe matrix
completion problem is essentially based on modifying the features
of the explanatory variables so that their similarities match the sim-
ilarities of the response variables. We follow here the sameidea but
rather than predicting the missing blockGtp, we compute its proba-
bility distribution.

Let u(e) refer to the new feature of the explanatory variablee.
The new feature lies in the RHKS defined by the kernelk. In order
to compute the Euclidean scalar product between two featuresu(e)
and u(e′), it is sufficient to define their coordinates with respect
to an orthonormal basis. A common approach in kernel methods,
based on the representer theorem, is to define the coordinates as a
combination of learning data kernels as follows:

ul(e) =

nX

j=1

wj,lk(ej , e), l = 1, · · · , m,

where we have consideredm coordinates. By defining the matrix
W = (wj,l)

l=1..m
j=1..n , the new featureu(e) may be written in a matrix

form,
u(e) = W

T [k(ej , e)]j=1..n. (3)

The regression problem consists in finding the coefficientsW
such that the scalar products of the new features fit the similarities
of the response variables. The regression problem can be formulated
as follows:

g(ri, rj) = u(ei)
T
u(ej) + ǫi,j , (4)

whereǫi,j is a zero-mean normally distributed noise with variance
σ2

ij . Using the vector form (3), equations (4) can be put in a compact
matrix form as according to

Gtt = KttAKtt + Ψtt (5)

Gtp = KttAKtp + Ψtp (6)

Gpp = KptAKtp + Ψpp (7)

whereA is the unknown matrixW W T andΨ = (ǫi,j)i,j=1..N is
an (N × N)-matrix of Gaussian random variables. For simplicity,
we assume that the variablesǫi,j are independent and identically
distributed (i.i.d) withσ2

ij = σ2.
According to the above statistical formulation of the matrix re-

gression problem, it is straightforward to show that, giventhe matri-
cesGtt, Ktt andKtp, the matrixGtp is normally distributed with
the following expressions for its mean and covariance:


µg = GttK

−1
tt Ktp

Σg = σ2(KptK
−2
tt Ktp + 1)In

(8)

whereIn is the(n × n) identity matrix.
The Gaussian distribution of the vectorGtp is the key point for

the remainder of the paper. By denotingS = [s
(t)
1 , s

(t)
2 , ..., s

(t)
n ]T

the (n × 2) matrix of sensor locations and taking into account that
the kernelg is the Euclidean scalar product, the Gaussianity of the
vectorGtp could be rewritten as

Gtp = Sxt = GttK
−1
tt Ktp + γt (9)

whereγt is a zero-mean Gaussian noise with a diagonal covariance
Σg defined in (8). Expression (9) can be considered as the result-
ing statistical model linking the measured data and the unknown tar-
get positionxt and plays thus the role of the likelihood function
when tracking the target in a Bayesian framework. The quantity



GttK
−1
tt Ktp on the right hand side of (9) can be interpreted as a

sufficient statistic obtained from the available data basedon a kernel
matrix regression formulation.

3. ONLINE VARIATIONAL FILTERING

3.1. State-space model

In the remainder of the paper, the likelihood function is based
on the linear model (9). Concerning the transition dynamics
px(xt | xt−1), we adopt a mean-scale mixture model. Accord-
ing to this model, introduced in [8], the hidden statext ∈ Rnx

has a Gaussian distribution with a random meanµt and a random
precision matrixλt. The mean vector dynamics are described by a
Gaussian random walk reflecting the time correlation of the system
trajectory, and the precision matrix is distributed according to a
Wishart distribution, that is,

8
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µt ∼ N (µt | µt−1, λ̄)

λt ∼ Wn̄(λt | S̄)

xt ∼ N (xt | µt, λt)

(10)

where the fixed hyperparametersλ̄, n̄ andS̄ are respectively the ran-
dom walk precision matrix, the degrees of freedom and the precision
of the Wishart distribution. Note that assuming a random mean and
a random covariance for the statext leads to a prior probability dis-
tribution covering a wide range of tail behaviors allowing discrete
jumps in the target trajectory.

3.2. Updating free form approximate distributions

According to the model (10), the augmented hidden state is now
αt = (xt, µt, λt). At each time stept, the observed datayt con-
sist of the matrices{Ktt, Ktp, Gtt}. Instead of approximating the
filtering distributionp(αt | y1:t) (with the standard notationy1:t =
(y1, ..., yt)) by a point-mass distribution (particle filtering), the vari-
ational approach [4] consists in approximating the filtering distribu-
tion by a more tractable posterior distributionq(αt). The variational
approach determines the approximate filtering distribution by mini-
mizing the the Kullback-Leibler divergence between the true filter-
ing distribution and the approximate distribution,

DKL (q||p) =

Z

q(αt) log
q(αt)

p(αt | y1:t)
dαt, (11)

to obtain the optimal approximate distribution. In order toen-
sure that the best model is automatically chosen, we assume a
free form (non parametric) approximate distribution. Choosing a
separable distributionq(αt) = q(xt)q(µt)q(λt) and minimizing
the Kullback-Leibler divergence (11) with variational calculus, one
obtains the following approximate distributions:

8

<

:

q(xt) ∝ exp 〈log p(y1:t, αt)〉q(µ
t
)q(λt)

q(µt) ∝ exp 〈log p(y1:t, αt)〉q(xt)q(λt)

q(λt) ∝ exp 〈log p(y1:t, αt)〉q(xt)q(µt
)

(12)

The update of the approximate distributionq(αt) can be sequen-
tially implemented given only the approximate distribution q(µt−1).
Using the separable approximate distribution at timet−1, the filter-
ing distribution is written as

p(αt|y1:t)∝p(yt|xt)p(xt, λt|µt)
R

p(µt|µt−1)q(µt−1)dµt−1

(13)

where only integration with respect toµt−1 remains due to the sep-
arable form of the approximate distributionq(αt−1). The temporal
dependence on the past is hence limited to only one of the component
approximate distributions. Communication between two successive
sets of activated nodes is then limited to sendingq(µt−1) which is
the sufficient statistic for updating the filtering distribution. As it will
be shown in the following, it turns out thatq(µt−1) is a Gaussian dis-
tribution and thus it can be communicated by sending only a mean
and a covariance. The variational algorithm is then implemented in
a collaborative sensor network without lossy compression.

After substituting the filtering distribution (13) into (12) and tak-
ing into account the prior mean-scale mixture transition model (10),
one obtains the updated separable distributionq(αt) in the following
form:

q(xt) ∝ p(yt | xt)N (xt | 〈µt〉, 〈λt〉) ∝ N (xt | x∗

t ,Γ∗

t )
q(µt) ∝ N (µt | µ∗

t , λ∗

t )
q(λt) ∝ Wn∗(λt | S∗

t )

where the parameters are iteratively updated according to the follow-
ing scheme:

x∗

t =Γ
∗−1
t (ST

Σ
−1
g GttK

−1
tt Ktp + 〈λt〉〈µt〉)

Γ
∗

t =ST
Σ

−1
g S + 〈λt〉

µ∗

t =λ∗−1
t (〈λt〉〈xt〉 + λ

p
t µ

p
t )

λ∗

t =〈λt〉 + λ
p
t

n∗ =n̄ + 1
S∗

t =(〈xtx
T
t 〉 − 〈xt〉〈µt〉

T − 〈µt〉〈xt〉
T + 〈µtµ

T
t 〉 + S̄−1)−1

µ
p
t =µ∗

t−1

λ
p
t =(λ∗−1

t−1 + λ̄
−1

)−1

In the above expressions, all the variable expectations have closed
forms, i.e.,


〈xt〉 = x∗

t , 〈xtx
T
t 〉 = Γ

∗−1
t + x∗

t x
∗T
t ,

〈µt〉 = µ∗

t , 〈µtµ
T
t 〉 = λ∗−1

t + µ∗

t µ∗T
t , 〈λt〉 = n∗S∗

t

4. NUMERICAL RESULTS

In this section, we illustrate the effectiveness of the proposed data-
driven variational filter (DDVF) for target tracking in a wireless sen-
sor network. We also compare the DDVF algorithm with a classi-
cal variational filter algorithm (VF) where the observationmodel is
known. We considered the tracking of a target moving according to
a trajectory composed of two sinusoids in a two-dimensionalfield
(figure 1), for a duration ofT = 200 time slots. An abrupt change
was simulated at timeta = 100 in order to test the ability of the
algorithm to track the target in a difficult discontinuous situation. A
set of500 nodes were randomly deployed in a120m × 120m area.
Each node has a sensing range set to 20m. At each time stept, the
known matricesKtt andKtp (input of the algorithm) were simu-
lated according to the following stationary model:

(

Ktt(i, j) = exp{−‖s
(t)
i − s

(t)
j ‖/2σ2} + ǫ

(t)
ij , 1 ≤ i, j ≤ n

Ktp(j) = exp{−‖s(t)
j − x∗

t ‖/2σ2} + ǫ
(t)
j , 1 ≤ j ≤ n

(14)
wheres

(t)
m = (sm

1 , sm
2 ) andx∗

t = (x1, x2) were the activated node
and the true target positions at timet, σ was set to10 andǫ

(t)
ij was the

corrupting noise due to modeling error, instrumental noiseand back-
ground additive interfering signals. The noise variance depended
on the inter-sensor distance. The elements of the matrixGtt were



obtained as the scalar products between the known sensor position
vectors〈s(t)

i , s
(t)
j 〉, for i, j = 1, ..., n.

The number of selected sensors was fixed to10. The selection
protocol was based on the Gaussian predictive distribution. More
details about the selection protocol are reported in [6].

The hyperparameters of the transition dynamical state model
were set to the following values:

λ̄ = 10−2
I , n̄ = 1, S̄ = 102

I ,

where the hyperparameters values allow a general non informative
prior. It is worth noting that in target tracking applications, an infor-
mative prior, involving the target velocity and acceleration, is usually
assumed. Here, the transition prior has a more general form which
can be used in other sensor network applications.

The proposed DDVF algorithm was applied to simulated data,
without using the observation model (14). Figure 1 depicts the es-
timated trajectory superimposed with the true simulated trajectory.
The target position was estimated by its expectation (x̂t = 〈xt〉)
according to the approximate filtering distributionq(xt). Note the
accuracy of the tracking with a mean square errormse =

P

t
‖xt−

x̂t‖
2/T = 0.29. In the same figure, the10 selected sensors are plot-

ted in circles, for four chosen instants:t = 40, t = 80, t = 160 and
t = 190. The algorithm is able to select the relevant nodes based on
a compact (Gaussian) approximation of the predictive distribution.

For comparison purposes, the classical variational filter (VF) [4]
was applied to track the target in the same configuration as above,
with 10 selected nodes at each time slot. In one set of experiments,
the classical VF algorithm was applied assuming the exact knowl-
edge of the observation model (14). Figure 2 depicts the tracking
performances of the classical VF filtering with a mean squareerror
mse = 1.3. Note that the classical VF algorithm was less accurate
than the proposed data-driven DDVF algorithm. It should be kept in
mind that, although the classical VF filter is based on the true obser-
vation model, the DDVF algorithm exploits more data obtained by
the extra inter-sensor RSSI signals. This is a very interesting result.
The difference between the DDVF algorithm and the classicalVF
should be even more contrasted when the observation model isnot
known exactly or when the environment is non-stationary. Indeed,
the DDVF is not sensitive to the observation model and its parame-
ters contrary to the classical VF algorithm.

5. CONCLUSION
The paper studied a data-driven target tracking algorithm,based on
extra inter-sensor similarity measures. The key point of the pro-
posed algorithm was to formulate the tracking problem as a kernel
matrix completion problem. The kernel matrix completion problem
was solved by using training data coming from intra-sensor measure-
ments. The Gaussian likelihood function, obtained by a probabilistic
formulation of the regression problem, was used to implement a fast
variational filter. Preliminary results showed the efficiency of the
proposed algorithm. Perspectives include the study of moreexten-
sive tests on simulated and real data.
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