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Abstract: A Bayesian distributed online change detection algorithm is proposed for monitoring
a dynamical system by a wireless sensor network. The proposed solution relies on modelling
the system dynamics by a jump Markov system with a finite set of states, including the abrupt
change behaviour. For each discrete state, an observed system is assumed to evolve according
to a state-space model. The collaborative strategy ensures the efficiency and the robustness
of the data processing, while limiting the required communications bandwith. An efficient
Rao-Blackwellised Collaborative Particle Filter (RB-CPF) is proposed to estimate the a posteriori
probability of the discrete states of the observed systems. The Rao-Blackwellisation procedure
combines a Sequential Monte-Carlo (SMC) filter with a bank of distributed Kalman filters. In order
to prolong the sensor network lifetime, only few active (leader) nodes are selected according to a
spatio-temporal selection protocol. This protocol is based on a trade-off between error propagation,
communications constraints and information content complementarity of distributed data. Only
sufficient statistics are communicated between leader nodes and their collaborators.
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1 Introduction

A sensor network is a system made up of several tens to
several hundreds of interconnected nodes, each one, of a
sensor, an information processing unit and a communication

block. The nodes have a zone of extremely reduced cover and
are deployed in a dense way in heterogeneous environments.
They are autonomous and have an energy reserve, the renewal
of which could be impossible, limiting thus their lifespan.
Each node must be able to treat the received data, to make a
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local decision and to communicate it in an autonomous way to
the closer nodes to which it is connected. This cooperation is
intended to ensure best decision making in spite of the limits
in terms of power consumption and processing capability.
Collaborative information processing in sensor networks is
thus becoming a very attractive field of research (Special
Issue, 2002, 2005, 2006).

In this paper, the signal processing objective is to online
detect the state change of a system observed by a sensor
network. The efficient online state detection, in an automatic
way, is very important for the system functioning security.
In fact, according to each state, the system should adopt
a specific behaviour. For example, an autonomous robot
must be able to detect its state and carry out repairs
if necessary, without human intervention, by processing
the data received from the on-board sensors (de Freitas,
2002; Washington, 2000). Another challenging application
is tracking a maneuvering target in a surveillance region
(Li and Jilkov, 2003, 2005; Pasha et al., 2006). One can also
mention the use of the sensor networks for the monitoring of
production systems in order to face the industrial risks, the
monitoring of the houses for safety or the house automation,
the air and transport control in general, intelligent alarms
for the prevention of natural disasters. With such systems,
the automatic control of an event or an incident rests on the
reliability of the network for efficient and robust decision
making.

Concerning the data processing at each smart node,
we adopt a probabilistic approach to model the system
dynamics. The system is described by a jump Markov linear
Gaussian model where the conditional Gaussians depend
on the discrete state of the system and also on the sensor.
An extension to non-linear models is also proposed to obtain
an effective solution when dealing with real sensing nodes
tracking a maneuvering target. The state change detection
is resumed in the posterior marginal probability of the discrete
state. To solve the inference problem, we use the particle
filter as an approximate Monte-Carlo inference method able
to deal with the intractable analytical aspect of the dynamical
system update. Our contribution consists of proposing and
implementing a collaborative distributed particle filter for
estimating the marginal a posteriori probabilities of the
system discrete states. Recently, distributed particle filters
were proposed in literature (Ihler et al., 2005; Sheng et al.,
2005). In the previously proposed distributed particle filters,
the conditional distributions of the distributed collected
data (likelihoods) are assumed to be independent. However,
with jump Markov models, the conditional distributions are
no more independent, requiring a more elaborate strategy.
In fact, applying these particle filters to the jump Markov
models, one needs to consider jointly the continuous and
the discrete states of the system. As shown in de Freitas
(2002), in a centralised processing, the particle filtering
of the joint state leads to poor results. Our contribution
consists thus in extending the Rao-Blackwellised approach,
proposed by de Freitas (2002), in a distributed environment.
The leader node collaborates with the remaining nodes
at each time step. The temporal selection of the
leader node is based on a trade-off between information
relevance, communication cost and propagation error. The
spatial selection of the leader collaborators relies on the

same trade-off except that the information relevance takes
an information complementarity form. The main difficulty
of the spatial collaboration, within the Rao-Blackwellised
distributed particle filter, is the fact that the sensors marginal
likelihoods are no more independent. We show in the
proposed collaborative strategy how to circumvent this
difficulty while propagating only sufficient second order
statistics through the sensor network.

This paper is organised as follows: in Section 2, the
probabilistic change detection model and the centralised
particle filter are briefly described. The Rao-Blackwellised
implementation of the centralised particle filter is also
recalled. Section 3 contains the main contribution of this
paper which is an optimal online change detection procedure
resulting from the spatio-temporal collaboration between the
leader nodes and their collaborators. This strategy relies
essentially on:

1 an information theoretic-based criteria for the
spatio-temporal selection of the leader node and
its collaborators, under communication constraints
and

2 an optimal update of the sufficient statistics exchanged
between leader nodes.

Section 4 is devoted to the extension of the proposed
algorithm to the jump Markov non-linear models.
In Section 5, numerical results corroborating the proposed
algorithm effectiveness are shown.

2 Centralised online change detection

In this section, we briefly recall the particle filter method
for online change detection. It is an approximate Monte-
Carlo method estimating, recursively in time, the posterior
probabilities of the discrete state of the system, given
the observations. Moreover, the particle filter provides a
point mass approximation of the distributions of the hidden
continuous states. For more details and a comprehensive
review of the particle filter (see Andrieu et al., 2004; Doucet
et al., 2000, 2001). In the following, we consider jump
Markov linear models. The extension to non-linear models is
considered in Section 4.

2.1 Distributed state space model

The Bayesian change detection algorithm is based on a
discrete time jump Markov linear state-space model. This
model involves two different hidden states: a discrete
state and a continuous state. The discrete state changes in
time according to a first order Markov model. For each
discrete state, the system, observed by a sensor network
composed of M nodes, evolves in time according to a
different linear Gaussian model:⎧⎪⎨
⎪⎩

zt ∼ P(zt | zt−1)

xt = A(zt )xt−1 + B(zt )wt

y(m)
t = Cm(zt )xt + Dm(zt )v

m
t , m = 1, . . . , M

(1)

where y(m)
t ∈ R

ny denotes the observations transmitted
from the sensor Cm at time t to the central processing unit



120 H. Snoussi and C. Richard

(see Figure 1), xt ∈ R
nx denotes the unknown continuous

state and zt ∈ Z = {1, . . . , K} denotes the unknown discrete
state. The transition probability P(zt | zt−1) represents
the prior information about the dynamic variation of the
system. The noises wt and vm

t are distributed according
to i.i.d Gaussians N (0, Inx ) and N (0, Iny ), respectively.
Note that the hidden states and their stochastic a priori
models do not depend on the sensor node as they are
characteristic of the observed system dynamics. The model
parameters {A, B, {Cm}Mm=1, {Dm}Mm=1} are assumed to be
known or learned in a preprocessing step. Unsupervised
learning of these parameters can be solved with an
Expectation-Maximisation (EM) algorithm (Dempster et al.,
1977), exploiting the latent data structure of the problem: the
incomplete data are the observations and the hidden data are
the continuous and the discrete states. For more details about
the EM learning of linear model parameters, refer to Roweis
and Ghahramani (1999).

Figure 1 Centralised processing: the sensors transmit the row
data to the central unit
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In this paper, we assume that, given the states xt and zt , the
sensor noises are stochastically independent:

p
(
y(1)

t , . . . ,y(M)
t | xt , zt

) =
M∏

m=1

pm

(
y(m)

t | xt , zt

)

Consequently, concatenating the observations gathered in
the central unit, yt = [y(1)

t , . . . ,y(M)
t ] and replacing the

distribution product
∏

pm by an observation distribution py ,
the stochastic model (1) is rewritten as:

⎧⎪⎪⎨
⎪⎪⎩

zt ∼ P(zt | zt−1)

xt = A(zt )xt−1 + B(zt )wt

yt ∼ N (C(zt )xt , Ry(zt ))

(2)

where C = [CT
1 , . . . ,CT

M ]T and Ry is the block diagonal
covariance matrix with block matrices equal to DmDT

m.
Hence, the centralised processing relies on the usual jump
Markov state space model.

The Bayesian online change detection is based on the
estimation of the posterior marginal probability P(zt | y1:t ).
However, the probabilistic system model (2) involves hidden
continuous variables x0:t . Therefore, the computation of

the marginal distribution involves two intractable integrals:
integration with respect to the past of the discrete time
Markov chain z0:t−1 and integration with respect to the hidden
continuous states x0:t :

P(zt | y1:t ) =
∑
z0:t−1

∫
p(z0:t , x0:t | y1:t )dx0:t

Therefore, one has to resort to Monte-Carlo approximation
where the joint posterior distribution p(z0:t , x0:t |y1:t ) is
approximated by the point-mass distribution of a set of
weighted samples (called particles) {z(i)

0:t , x
(i)
0:t , w

(i)
t }Ni=1:

P̂N (z0:t , x0:t | y1:t ) =
N∑

i=1

w(i)
t δ

z
(i)
0:t ,x

(i)
0:t

(dx0:t , z0:t )

where δ
z
(i)
0:t ,x

(i)
0:t

(dx0:t , z0:t ) denotes the Dirac function.

Based on the same set of particles, the marginal posterior
probability (of interest) P(zt | y1:t ) can also be approximated
as follows:

P(zt = k | y1:t ) �
N∑

i=1

w(i)
t I

(
z(i)
t = k

)

where I(.) denotes the indicator function.
Backward estimation of the marginal discrete state

probability is also possible given the particles {z(i)
0:t+t∗ , x(i)

0:t+t∗ ,

w
(i)
t+t∗}Ni=1:

P(zt = k | y1:t+t∗) �
N∑

i=1

w
(i)
t+t∗I(z

(i)
t | t+t∗ = k)

In the Bayesian Importance Sampling (IS) method,
the particles {z(i)

0:t , x
(i)
0:t }Ni=1 are sampled according to a

proposal distribution π(z0:t , x0:t | y1:t ) and {w(i)
t } are the

corresponding normalised importance weights:

w(i)
t ∝

p
(
y1:t | z(i)

0:t , x
(i)
0:t

)
p

(
z
(i)
0:t , x

(i)
0:t

)

π
(
z
(i)
0:t , x

(i)
0:t | y1:t

)

2.2 Sequential Monte-Carlo

Sequential Monte-Carlo (SMC) consists of propagating the
trajectories {z(i)

0:t , x
(i)
0:t }Ni=1 in time without modifying the past

simulated particles. This is possible for the class of proposal
distributions having the following form:

π(z0:t , x0:t | y1:t ) = π(z0:t−1, x0:t−1 | y1:t−1)

× π(zt , xt | z0:t−1, x0:t−1, y1:t )

The normalised importance weights are then recursively
computed in time as:

w(i)
t ∝w

(i)
t−1

p
(
yt |z(i)

t , x(i)
t

)
p

(
z
(i)
t , x(i)

t |z(i)
0:t−1, x

(i)
0:t−1

)

π
(
z
(i)
t , x(i)

t |z(i)
0:t−1, x

(i)
0:t−1, y1:t

) (3)

For the considered jump Markov linear state-space model (2),
one can adopt the transition prior as the proposal distribution:

π
(
z(i)
t , x(i)

t |z(i)
0:t−1, x

(i)
0:t−1, y1:t

)
=px(xt |xt−1, zt )P (zt |zt−1)
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in which case the weights are updated according to the
likelihood function:

w(i)
t ∝ w

(i)
t−1 p

(
yt | z(i)

t , x(i)
t

)
(4)

The centralised online change detection algorithm (shown
in Figure 2) consists of 2 steps: the sequential importance
sampling step and the selection step. The selection
(resampling) step replaces the weighted particles by
unweighted particles to avoid the collapse of the Monte-
Carlo approximation that caused the variance increase of the
weights. It consists of selecting the trajectories {z(i)

0:t , x
(i)
0:t }

with probabilities w
(i)
t . The trajectories with weak weights

are eliminated and the trajectories with strong weights are
multiplied. After the selection step, all the weights are equal
to 1/N .

Figure 2 Centralised particular filter algorithm

Step 0: Initialisation

(i) z
(i)
0 ∼ P0(z)

(ii) x(i)
0 ∼ p0(x)

Step 1: For t = 1 to T ,
a- Sequential importance sampling:
- For i = 1, ..., N , sample from the transition priors:

ẑ
(i)
t ∼ P(zt | z(i)

t−1)

x̂(i)
t ∼ px(xt | x(i)

t−1, ut , ẑ
(i)
t )

and set

(ẑ
(i)
0:t , x̂

(i)
0:t ) = (ẑ(i)

t , x̂(i)
t , z

(i)
0:t−1, x

(i)
0:t−1)

b- Update the importance weights:
- For i = 1, ..., N , evaluate and normalise the weights:

w(i)
t ∝ p(yt | ẑ(i)

t , x̂(i)
t )

c- Resampling:

- Select with replacement from {ẑ(i)
0:t , x̂

(i)
0:t }Ni=1 with

probability {w(i)
t } to obtain N particles z

(i)
0:t , x

(i)
0:t }Ni=1

2.3 Rao-Blackwellised SMC

Considering the joint state {xt , zt }, the SMC algorithm yields
poor online detection results. An efficient Rao-Blackwellised
SMC, proposed by de Freitas (2002), considerably improves
the state estimation. The principle of this procedure consists
of noting that given the discrete state, the continuous
state is a posteriori Gaussian. Thus, based on a bank of
Kalman filters, one can sequentially update the marginal a
posteriori probability p(zt | y1:t ). In fact, the probability of
the trajectory z0:t satisfies the following recursion:

p(z0:t |y1:t ) = p(z0:t−1|y1:t−1)
p(yt |y1:t−1, z0:t )P (zt |zt−1)

p(yt | y1:t−1)

In the SMC algorithm, predicting the discrete states {z(i)
t }

according to the transition prior P(zt |zt−1) leads to the
following particle weight updating:

w(i)
t ∝ w

(i)
t−1 p

(
yt | y1:t−1, z

(i)
0:t

)
(5)

The computation of the Gaussian data prediction distribution

p(yt |y1:t−1, z
(i)
0:t ) is based on the mean yt |t−1 = E

[
yt |y1:t−1

]
and covariance St = cov(yt |y1:t−1) online updates. These
second order statistics are jointly updated with the mean
and covariance of the continuous state by a Kalman filter
as follows:

µ
(i)
t |t−1 = A

(
z(i)
t

)
µ

(i)
t−1|t−1

�
(i)
t |t−1 = A

(
z(i)
t

)
�

(i)
t−1|t−1A

(
z(i)
t

)T + B
(
z(i)
t

)
B

(
z(i)
t

)T

S(i)
t = C

(
z(i)
t

)
�

(i)
t |t−1C

(
z(i)
t

)T + Ry

(
z(i)
t

)
y(i)

t |t−1 = C
(
z(i)
t

)
µ

(i)
t |t−1

µ
(i)
t |t = µ

(i)
t |t−1 + �

(i)
t |t−1C

(
z(i)
t

)T
S−1(i)

t

(
yt − y(i)

t |t−1

)

�
(i)
t |t = �

(i)
t |t−1 − �

(i)
t |t−1C

(
z(i)
t

)T
S−1(i)

t C
(
z(i)
t

)
�

(i)
t |t−1

where µt |t−1 = E[xt | y1:t−1], �t |t−1 = cov(xt | y1:t−1),
µt |t = E[xt | y1:t ] and �t |t = cov(xt | y1:t ). The predictive
density is then simply evaluated by:

p
(
yt | y1:t−1, z

(i)
0:t

)
= N

(
yt ; y(i)

t |t−1, S
(i)
t

)

The centralised Rao-Blackwellised SMC algorithm is
summarised in Figure 3.

Figure 3 Centralised Rao-Blackwellised particular filter
algorithm

Sequential sampling step:
- For i = 1, . . . , N , sample from the transition prior:

ẑ(i)
t ∼ P(zt | z(i)

t−1)

Weight updating step:
-For i = 1, . . . , N , update the sufficient statistics (jointly
with the Kalman filter) and evaluate the importance
weights:

w(i)
t ∝ p(yt | y1:t−1, z

(i)
0:t )

Resampling step:

- Select with replacement from {ẑ(i)
0:t }Ni=1 with probabilities

{w(i)
t } to obtain N particles {z(i)

0:t }Ni=1

3 Collaborative online change detection

In a sensor network, each node must be able to treat
the received data, to make a local decision and to
communicate it in an autonomous way with the closer
nodes to which it is connected. This cooperation is intended
to ensure best decision-making possible in spite of the
limits in terms of power consumption and processing
capability. In the following, we propose a collaborative
Rao-Blackwellised particle filter where the smart nodes
collaborate in sequentially updating the filtering distribution.
They only exchange few statistics characterising message
approximations. The observed data {y(m)

t }Mm=1 are not
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propagated in the sensor network. The proposed distributed
algorithm is characterised by a spatial and a temporal
collaborative processing of the sequentially collected
observations.

3.1 Temporal leader node selection

The temporal collaboration consists of selecting, after the
sequential probability update, the leader node at the next time
step. The selection procedure is based on ranking the nodes
according to an information-theoretic cost function J (m).
The first ranked node m∗ (arg maxm J (m)) is the next leader
candidate. At time step t − 1, the chosen cost function is a
trade-off between information gain and compression loss:

Jt (m) = I(m) + αE(m) (6)

where the first term of the above criteria represents the
information content relevance of the measured data on the
node m, at the time step t :

I(m)=E
[
DKL

(
p

(
ym

t | xt , zt

) ||p (
ym

t | y1:t−1, z0:t
))]

(7)

where DKL is the Kullback-Leibler divergence between the
likelihood and the data predicted density, the expectation
is evaluated according to the joint filtering distribution
p(xt , z0:t | y1:t−1). This can be considered as a data
augmentation version of criteria proposed by Doucet et al.
(2002) for sensor management. The second term E(m) is
the message error when transferring sufficient statistics from
the leader node m∗(t) to node m under the communication
constraint cm < cmax, where cm is the communication cost
of transferring information to node m. Therefore, one can
easily obtain the bound N ×cmax on the communication cost,
where N is the number of message transmissions. Note that if
the budget cmax is very low, then the propagation error will be
higher leading to a poor inference performance. The negative
coefficient α represents the trade-off between the information
gain and compression loss. Note that E(m∗(t − 1)) = 0,
meaning that the leader node may select itself as the next
leader, when the increase of the data relevance of the other
nodes does not compensate the compression loss. Figure 4
illustrates the proposed selection protocol.

Figure 4 The selection of the leader node (and the hand-off) at
time t is based on a trade-off between the data
relevance and the communication cost (constraining
the message size)

3.1.1 Computation of the information gain

In Doucet et al. (2002), a Monte-Carlo procedure is proposed
to compute the first term of the cost function (6). However,
in our problem setting, using the jump Markov linear state
model, the term I can be evaluated with a Rao-Blackwellised
scheme. In fact, given the discrete state trajectory z

(i)
0:t ,

the likelihood p(ym
t | xt ) and the predictive distribution

p(ym
t | y1:t−1, z

(i)
0:t ) are both Gaussians and the expectation

of the Kullback-Leibler divergence1 in expression (7) can be
exactly evaluated as follows:

I
| z(i)

0:t
(m) = 1

2
log

∣∣Im + (
Dm(zt )Dm(zt )

T
)−1

× Cm(zt )�
(i)
t |t−1Cm(zt )

T
∣∣

where the subscript ‘z0:t (i)’ means that the expectation
is evaluated conditioned on the discrete state, Im

denotes the identity matrix and �
(i)
t |t−1 is the predicted

covariance A(z
(i)
t )�

(i)
t−1|t−1A(z

(i)
t )T + B(z

(i)
t )B(z

(i)
t )T .

It can be easily noted that maximising the term I| z(i)
0:t

(m)

relies on the maximisation of the information/noise ratio,
where the information content is evaluated by the matrix
Cm(zt )�

(i)
t |t−1Cm(zt )

T (norm of the observation matrix in

the state covariance basis). The trajectory z
(i)
0:t is composed

of the particle past trajectory z
(i)
0:t−1 having w

(i)
t−1 as the

importance weight and the predicted z
(i)
t according to

the transition prior P(zt |zt−1). The information criteria
I(m) is thus approximated by a Monte-Carlo scheme
as follows:

I(m) = E
[
I| z0:t

] =
∑
z0:t

I| z0:t p(z0:t | y1:t−1)

≈
∑
z0:t

I| z0:t w
(i)
t−1

3.1.2 Computation of the compression loss

Propagating all the particles {µ(i)
t |t , �

(i)
t |t , w

(i)
t } is not allowed

in a wireless sensor network because of communication
constraints. The KD-tree Gaussian mixture is a suitable
approximation when communicating distribution messages
(Ihler et al., 2004). The KD-tree is a multiscale mixture
of Gaussian approximation of a given dataset. It consists
of describing a large data set (particles) with a set a few
subtrees, each subtree is a Gaussian whose statistics can
be recursively computed. The top node of the tree is the
largest scale and the leaf nodes represent the finest scales.
The internal nodes represent intermediate resolutions. See
Figure 5 for an illustration.

For the detection purpose, the KD-tree is separately
applied on K particle groups, each group corresponding to
a discrete state. This is an interesting feature of the KD-tree
approximation as it maintains the multimodality aspect of
the Kalman mixture structure. The set of weighted sufficient
statistics {µ(i)

t |t , �
(i)
t |t , w

(i)
t }i∈Tk

, where Tk = {i|z(i)
t = k}, is

approximated by a set of nodes S containing one and only
one ancestor of each leaf node:
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p̂(xt | y1:t , zt = k) =
∑
i∈Tk

w(i)
t N

(
µ

(i)
t |t , �

(i)
t |t

)

≈
∑
s∈S

αsN (xt ; µs , �s)

where N (.) denotes the Gaussian density and |S| � |Tk|.
Another interesting feature of the KD-tree approximation
is the fact that the second order moments (µs , �s) can
be considered as Kalman mean and covariance updates

(µ̃
(i)
t |t , �̃

(i)

t |t ). The weight αs is the sum of the leaf nodes

weights w
(i)
t corresponding to the subtree s. Figure 5

illustrates the KD-tree approximation adapted to the mixture
Kalman filter.

Figure 5 KD-tree approximation of the Kalman mixture
updates: components 1–4 are the leaf nodes for the
state zt = 1 and components 5–8 are the leaf nodes for
the state zt = 2

14

1 2 3 4 5 6 7 8

9 10 11 12

13

Increasing the resolution of the KD-tree representation is
simply done by replacing the nodes s ∈ S by their
left and right children nodes. In order to control error
propagation, one needs a divergence measure between
probability densities. Following the arguments in Ihler et al.
(2004), the maximum log-error:

ML(p, q) = max
x

∣∣∣∣ log p(x)

q(x)

∣∣∣∣ (8)

is very suitable for bounding the belief propagation error and
also it is adapted to the KD-tree representation. In fact, the
error ML(p̂, qS) between the particle representation p̂ and
the KD-tree approximation qS is bounded as follows:

ML(p̂, qS) ≤ max
s∈S

ML(p̂s, qs) (9)

where ML(p̂s, qs) is the error measure between the
Gaussian stored at the node s and its corresponding
leaf nodes.

Therefore, controlling the temporal propagation error
while respecting the communication constraints consists
of a trade-off between the resolution of the KD-tree
representation and its encoding cost. As the resolution
increases (going from top to bottom in the tree), the
approximation error decreases while the communication
cost increases. This can be easily implemented by
recursively dividing the node s ∈ S having the
maximum error measure in (9) while respecting the allowed
communication cost.

Deciding the hand-over consists of comparing the
information gain/compression loss ratio, computed for the

selected leader candidate m∗
t , with a threshold β. In words,

the hand-over to the node m∗
t is allowed if:

I
(
m∗

t

)
I

(
m∗

t

) + αE
(
m∗

t

) > β

The thresholdβ is an increasing function of the energy reserve
communicated by the active node’s battery. If the energy
reserve is very low (β ≈ 0), the hand-over is almost surely
done. However, if the energy reserve is at a correct level, the
active node will take into consideration the information gain
before performing the hand-over.

3.2 Spatial collaborative detection

A simple approach for spatial collaboration consists of local
data transmission: the selected leader m∗

t at time t receives
data sent by its neighbouring nodes. The neighbourhood
is defined on a proximity basis in order to minimise the
communication energy consumption. For instance, the nodes
located at a distance less than a predetermined threshold
(fixed according to consumption requirements and sensor
technology) can be considered as neighbours. The leader
node updates thus the system state based on its measured
data and the data sent by its neighbours. Figure 6 illustrates
this approach.

Figure 6 Spatial collaboration based on a clustering approach

Temporal collaboration

In this paper, we propose a new spatial collaboration protocol
based on the selection by the leader node of its collaborators
at each time step. The spatial collaboration is based on two
alternating steps:

1 the selection of the collaborator nodes path with a
recursive procedure ensuring the distributed data
information complementarity and

2 the spatial update of the particle weights, the particles
being predicted in the leader node.

In the following, we outline the above two steps. For
the clarity of presentation and notation convenience,
(µ

(i,0)
t |t , �

(i,0)
t |t ) will denote the predicted Kalman mean

and covariance (µ
(i)
t |t−1, �

(i)
t |t−1), {w(i,0)

t } denotes their
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corresponding importance weight computed in the leader
node C0. The prediction is performed in the leader
node C0.

3.2.1 Particle weight updating

In this paragraph, we show how the weight of a predicted
state is updated taking into account the data of the leader node
and also the data collected by the collaborator nodes. The
communication constraints do not allow the propagation of
raw data. Therefore, only sufficient statistics are exchanged
between the leader node and its collaborators. The data
measured at the leader node C0 and its L collaborators
C1, . . . , CL are denoted {y0

t , y
1
t , . . . ,y

L
t }, respectively.

Contrary to the previously proposed distributed particle
filters in literature, in the jump Markov model, the
likelihood of the discrete state p(y0

t , y
1
t , . . . ,y

L
t | y1:t−1, z0:t )

cannot be factorised into
∏L

l=0
p(yl

t | y1:t−1, z0:t ). In fact,
the predictive densities are dependent through the hidden
continuous state. Consequently, the weight w

(i)
t ∝

p(y0
t , y

1
t , . . . ,y

L
t | y1:t−1, z0:t ) of the predicted state z

(i)
t

cannot be updated by a simple cumulative product. However,
the computation of the complete likelihood can be performed
with a Kalman filter procedure. In fact, the complete
likelihood can be decomposed with the sequential Bayes’
rule as follows:

p
(
y0

t , y
1
t , . . . ,y

L
t | y1:t−1, z0:t

) = p
(
y0

t | y1:t−1, z0:t
)

×
L∏

l=1

p
(
yl

t | yl−1
t , . . . ,y0

t , y1:t−1, z0:t
)

(10)

The predictive density p(y0
t | y1:t−1, z0:t ) in the product (10)

is updated according to the usual Kalman filter based on the
data y0

t :

w(i,0)
t ∝ p

(
y0

t | y1:t−1, z
(i)
0:t

)

∝ N
(
y0

t ; yi,0
t |t−1, S

i,0
t

)

where the sufficient statistics (yi,0
t |t−1, S

i,0
t ) are evaluated as

follows:

y(i,0)
t |t−1 = C0

(
z(i)
t

)
µ

(i)
t |t−1

S(i,0)
t = C0

(
z(i)
t

)
�

(i)
t |t−1C0

(
z(i)
t

)T + D0
(
z(i)
t

)
D0

(
z(i)
t

)T

The mean and covariance updates are then,

µ
(i,1)
t |t = µ

(i)
t |t−1 + �

(i)
t |t−1C0

(
z(i)
t

)T
S−1(i,0)

t

(
y0

t − y(i,0)
t |t−1

)

�
(i,1)
t |t = �

(i)
t |t−1 − �

(i)
t |t−1C0

(
z(i)
t

)T
S−1(i,0)

t C0
(
z(i)
t

)
�

(i)
t |t−1

Similarly, the subsequent predictive data densities
p(yl

t |yl−1
t , . . . ,y0

t , y1:t−1, z0:t ) are evaluated by a Kalman
filter, where the predicted mean and covariance are the
updated mean and covariance computed and sent by the
node Cl−1. Thus, the main difference with the usual

Kalman filter is the fact that there is not a temporal
prediction, the predicted statistics are the updated statistics
by the previous collaborator node. The predictive density
p(yl

t |yl−1
t , . . . ,y0

t , y1:t−1, z0:t ) is calculated as follows:

w(i,l)
t ∝ p

(
yl

t | yl−1
t , . . . ,y0

t , y1:t−1, z0:t
)

∝ N
(
yl

t ; yi,l
t |t−1, S

i,l
t

) (11)

where the sufficient statistics (yi,l
t |t−1, S

i,l
t ) are evaluated as

follows:

y(i,l)
t |t = Cl

(
z(i)
t

)
µ

(i,l)
t |t

S(i,l)
t = Cl

(
z(i)
t

)
�

(i,l)
t |t Cl

(
z(i)
t

)T + Dl

(
z(i)
t

)
Dl

(
z(i)
t

)T

The mean and covariance updated by the collaborator node
Cl are then,

µ
(i,l+1)
t |t = µ

(i,l)
t |t + �

(i,l)
t |t Cl

(
z(i)
t

)T
S−1(i,l)

t

(
yl

t −y(i,l)
t |t

)

�
(i,l+1)
t |t = �

(i,l)
t |t − �

(i,l)
t |t Cl

(
z(i)
t

)T
S−1(i,l)

t Cl

(
z(i)
t

)
�

(i,l)
t |t

(12)

Figure 7 illustrates the collaborative updating of the particle
weights at each time step.

Figure 7 Spatial Kalman update of the mean, covariance and
particle weight

Until now, we have considered the spatial update of
one particle weight w

(i)
t . As we have mentioned in

the previous section, updating all the particles is not
possible under communication constraints. Fortunately, the
KD-tree approximation preserves the same structure of the
Kalman mixture scheme. The computed means, covariances
and weights of the KD-tree Gaussian mixture can be put in
correspondence with the updated Kalman means µ

(i)
t |t , the

updated Kalman covariances �
(i)
t |t and the particle weights

w
(i)
t . Then, the same spatial Kalman updating is applied on

the KD-tree Gaussians.

3.2.2 Recursive path selection

The selection of collaborator nodes can be performed
in a recursive manner: each selected collaborator, after
updating the particle weights, selects one and only one
next collaborator (see Figure 8). This recursion is necessary
to ensure the information complementarity and thus avoid
unnecessary redundant information. The selection is based
on the same cost function (6) as in the temporal case, leading
to similar expressions. The information gain I(m) computed
by the node Cl to select the next collaborator Cl+1 takes the
form of information content complementarity. In fact, given
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the discrete state trajectory z
(i)
0:t , the likelihood p(ym

t | xt , z0:t )
and the predictive distribution p(ym

t | yl
t , ..., y

0
t , y1:t−1, z0:t )

of the candidate Cm data are both Gaussians and the
expectation of the Kullback-Leibler divergence in expression
(7) can be exactly evaluated as follows:

I
| z(i)

0:t
(m) = 1

2
log

∣∣Im + (
Dm(zt )Dm(zt )

T
)−1

× Cm(zt )�
(i,l+1)
t |t Cm(zt )

T
∣∣

where the subscript ‘z0:t (i)’ means that the expectation is
evaluated conditioned on the discrete state, Im denotes the
identity matrix and �

(i,l+1)
t |t is the updated covariance by the

node Cl . Note that the basic difference with the temporal
selection procedure is that the predicted covariance �

(i)
t |t−1 is

replaced by the updated covariance �
(i,l+1)
t |t . The information

gain is then simply computed as:

I(m) ≈
∑
z0:t

I| z0:t w
(i,l)
t

Figure 9 illustrates the global spatio-temporal path of selected
leader and auxiliary collaborator nodes.

Figure 8 Recursive spatial collaborator path selection

Figure 9 Temporal leader selection + Recursive spatial
collaborator path selection

4 Non-linear jump Markov systems

In many real situations such as tracking manoeuvering targets
with range sensors, the system dynamics as well as the
measurement models are non-linear. The state-space model
describing the transition prior and state/measurement relation
takes the following form:

⎧⎪⎨
⎪⎩

zt ∼ P(zt | zt−1)

xt = f (xt−1, zt ) + B(zt )wt

y(m)
t = h(xt , m, zt ) + Dm(zt )v

m
t , m = 1, . . . , M

(13)

where f (.) and h(.) are non-linear functions depending on
the discrete state zt . In addition, the function h(.) depends
on the sensor Cm. The noises wt and vm

t can still be assumed
to be distributed according to i.i.d Gaussians N (0, Inx )

and N (0, Iny ), respectively. In a manner similar to
the Extended Kalman Filter (EKF), the distributed
Rao-Blackwellised Particle Filter, proposed in the previous
section, can be extended to the non-linear jump Markov
model (13). In other words, given a particle z

(i)
0:t , the predicted

Kalman means µ
(i)
t |t−1 and the predicted data y(i)

t |t−1 are exactly
computed according to the non-linear functions f (.) and h(.),
respectively. However, to compute the predicted covariance
and the updated covariances, the non-linear functions are
linearised around the current state and the Jacobian (matrices
of partial derivatives) are then used in a similar way as the
matrices A(z

(i)
t ) and Cm(z

(i)
t ). This results in the updating

scheme by the leader node Cm:

µ
(i)
t |t−1 =f

(
µ

(i)
t−1|t−1, z

(i)
t

)

�
(i)
t |t−1 =Ft

(
z(i)
t

)
�

(i)
t−1|t−1Ft

(
z(i)
t

)T+B
(
z(i)
t

)
B

(
z(i)
t

)T

S(i)
t =Ht

(
z(i)
t , m

)
�

(i)
t |t−1Ht

(
z(i)
t , m

)T

+Dm

(
z(i)
t

)
Dm

(
z(i)
t

)T

y(i)
t |t−1 =h

(
µ

(i)
t |t−1, m, z(i)

t

)

µ
(i)
t |t =µ

(i)
t |t−1 + �

(i)
t |t−1Ht

(
z(i)
t , m

)T
S−1(i)

t

(
yt − y(i)

t |t−1

)

�
(i)
t |t =�

(i)
t |t−1 − �

(i)
t |t−1Ht

(
z(i)
t , m

)T

× S−1(i)
t Ht

(
z(i)
t , m

)
�

(i)
t |t−1 (14)

where the state transition and observation matrices are
defined by the partial derivatives:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ft

(
z
(i)
t

) = ∂f

∂x

∣∣∣∣
µ

(i)
t−1|t−1

Ht

(
z
(i)
t , m

) = ∂h
∂x

∣∣∣∣
µ

(i)
t |t−1

The predictive density is then simply approximated by:

p
(
yt | y1:t−1, z

(i)
0:t

)
= N

(
yt ; y(i)

t |t−1, S
(i)
t

)

Concerning the spatial updates (see Section 3.2 for details)
by the collaborative nodes, a similar approximating scheme
as (14) can be adopted (without a temporal prediction step)
where µ

(i)
t |t−1 and �

(i)
t |t−1 are replaced by µ

(i,l)
t |t and �

(i,l)
t |t sent by

the node Cl−1. Only the partial derivatives of the observation
function h(m, zt ) is needed. The approximating observation
matrix is then computed as the Jacobian applied to µ

(i,l)
t |t :

Ht

(
z(i)
t , l

) = ∂h

∂x

∣∣∣∣
µ

(i,l)
t |t
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5 Numerical results

The proposed algorithm is applied on synthetic data generated
according to the distributed jump Markov linear state space
model (1). The system has three hidden discrete states
(K = 3). The transition stochastic matrix is set as follows:

P(zt | zt−1) =
⎛
⎝ 0.1 0.5 0.4

0.1 0.6 0.3
0.1 0.3 0.6

⎞
⎠

where the occurrence of the first state is lower than the second
and third states. The matrices (A, B, Cm, Dm) are set at
random according to Gaussian distributions. The dimension
of the hidden continuous state is set to nx = 2 and the
dimension of the observation is set to ny = 6. The number
of particles sequentially sampled at the leader nodes is
N = 100. We have fixed severe communication constraints
such that the maximum allowed collaborating nodes is 3
(leader node + 2 spatially collaborating nodes). Under these
communication constraints, the resolution of the KD-tree
approximation is only one Gaussian for each discrete state.
In other words, the leader node communicates only 3 vector
means and 3 covariances representing the Kalman mixture to
its spatially collaborating nodes.

Figure 10 shows the estimated a posteriori marginal
discrete state probabilities p(zt | y1:t ). Note that, at each
time step, the discrete states are not a posteriori equally
distributed, avoiding ambiguity when estimating the states.
In Figure 11, the MAP estimate of the discrete states is
plotted with the true discrete states. Note the accuracy of
the proposed collaborative online detection, which is about
88%. The centralised Rao-blackwellised particle filter is
also applied on the same set of data. Figure 12 shows the
MAP discrete state estimates with the centralised processing
whose classification precision is the same as the collaborative
distributed algorithm (88%). This corroborates the efficiency
of the proposed strategy under severe communication
constraints. In order to further illustrate the effectiveness
of the spatial collaboration strategy, Figure 13 shows the
detection performance of a distributed Rao-Blackwellised
particle filter with only one leader node (no collaborator
nodes). Note that the performance has degraded to (68%).

Figure 10 A posteriori probabilities of the system
discrete state
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Figure 11 Maximum a posteriori estimate of the system
discrete state
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Figure 12 Maximum a posteriori estimate of the system
discrete state with a centralised processing
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Figure 13 Maximum a posteriori estimate of the system
discrete state with only one leader node
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6 Conclusion

We have proposed a distributed and collaborative version
of the Rao-Blackwellised particle filter for online change
detection. At each time step t , the selected leader node
updates the posterior probability of the system discrete state.
This update is based on a spatial collaboration with other
nodes called collaborator nodes. The nodes exchange only
sufficient statistics (second order moments). The temporal
selection of the leader node is based on a trade-off between
information data relevance and compression loss under
communication constraints. Similarly, the spatial selection
of collaborator nodes path is recursively designed and relies
on a trade-off between information complementarity and
compression loss under the communication constraints.

In this paper, we have assumed a jump Markov linear state
space model for the observed system. The matrices involved
in this model are assumed to be known (estimated in a training
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step). We are currently working on the extension to non-linear
models and the possibility to incorporate an unsupervised
estimation of the model parameters in distributed fashion
adapted to the wireless sensor network.
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Note

1 The Kullback-Leibler divergence between two Gaussians
(µ1, �1) and (µ2, �2) is 1/2(tr

[
�1�

−1
2

] − log �1�
−1
2 − m

+ (µ1 − µ2)
T �−1

2 (µ1 − µ2)).


