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Abstract— In many applications, the observed system is as-
sumed to evolve according to a probabilistic state space model.
The data likelihood function is, in general, non linear or/and non
Gaussian leading to analytically intractable inference. Particle
filter is a popular approximate Monte Carlo solution based on
a particle representation of the filtering distribution. However,
power constraints in sensor networks requires an additional
approximation (compression) when communicating the particle
based representation. In this contribution, we propose an alter-
native ensemble learning (variational) approximation suitable to
the communication constraints of sensor networks. The efficiency
of the variational approximation relies on the fact that the online
update of the filtering distribution and its compression are simul-
taneously performed. In addition, the variational approach has
the nice property to be parameterization-independent ensuring
the robustness of the data processing. The selection of the leader
node is based on a trade-off between communication constraints
and information content relevance of measured data.

I. INTRODUCTION

Collaborative information processing in sensor networks is
becoming a very attractive field of research [1]. In such a
sensor network, the sensors role is not limited to detect and
transmit the data to a central unit where they are processed.
The sensors have the ability to collaborate, exchange infor-
mation to ensure optimal decision. Such sensors are called
“smart” sensors. Contrary to the centralized approach, the
system does not depend on a unique processing unit whose
damaging leads to the entire system failure. Every smart sensor
is able to play a central role and provide a suboptimal decision.
The system is thus very robust against a probable foreign
attack or a technical failure of the central unit. In addition, as
collected data are locally processed, only pertinent information
is exchanged between smart nodes, limiting hence the required
channel communication bandwidth. In fact, the nodes batteries
have a limited lifetime and a wise management of the energy
consumption has to considered in such a network.

In this paper, we consider target tracking application where
the observed system evolution is described by a non linear state
space model, the non linear function depending on the sensor.
The proposed approach could be however extended to deal
with other applications as region monitoring, multi-cameras
visual tracking,...

The filtering consists of estimating the posterior marginal
probability of the continuous hidden state. To solve the in-
ference problem, the particle filter is frequently used as an

approximate Monte Carlo inference method able to deal with
the non linear aspect of the system dynamics. Recently, dis-
tributed particle filters were proposed in literature [2], [3]. To
meet the energy constraints, only one leader node is selected
at each time step to implement the particle filter. However,
distributed particle filters need the exchange of large sample
based representations of the filtering distribution between
selected leaders. Message approximations should therefore
be considered in order to reduce the communication energy
consumption. In [3], a message approximating scheme based
on a greedy KD-tree approximation is proposed. In [2], a
full collaborative strategy is proposed with a GMM (Gaussian
Mixture Model) message approximation implemented by an
EM (Expectation-Maximization) algorithm. However, with the
GMM approximation, the error propagation is not controlled
and the model refinement is not straightforward as with
the KD-tree approximation. Unlike the GMM modeling, the
KD-tree Gaussian mixture modeling allows a more flexible
control of the trade-off between the approximation precision
and the communication constraints. However, in both cases,
an inference error is propagated by the successive message
approximations.

In this contribution, we propose a collaborative distributed
ensemble learning (variational) filter, based on online updat-
ing a free form approximation of the filtering distribution.
The ensemble learning approach allows a natural adaptive
compression of the non Gaussian filtering distribution. The
approximating message can then be communicated between
leader nodes without loss. Furthermore, the ensemble learning
filtering outperforms the particle filter even if the sample based
representations are entirely communicated [4]. In fact, when
the hidden state dimension is high or the likelihood is sharply
peaked, the particle filter is likely to degenerate keeping only
a few particles in regions with high likelihood. The ensemble
learning filter circumvents this problems allowing a robust
target tracking in a distributed environment. A node selection
protocol is proposed as well. It is mainly based on updating
the predictive target density within an ensemble learning
procedure.

The paper is organized as follows: in Section II, the
probabilistic sequential Bayesian filtering is introduced. The
distributed particle filter method is briefly described. The
section III is the main contribution of this paper. We propose



a collaborative ensemble learning filter in a distributed sensor
network where the smart sensors exchange only Gaussian
statistics (sufficient statistics) and select the leader nodes in
an autonomous way. Finally, some simulation results corrobo-
rating the efficiency of the proposed algorithms are presented.

II. CENTRALIZED AND DISTRIBUTED PARTICLE FILTERING

In this section, we briefly recall the particle filter method
for filtering in nonlinear dynamical systems. It is an approx-
imate Monte Carlo method estimating, recursively in time,
the marginal posterior distribution of the continuous hidden
state of the system, given the observations. The particle filter
provides a point mass approximation of these distributions.
For more details and a comprehensive review of the particle
filter see [5].

The observed system evolves in time according to the
following nonlinear dynamics:


xt ∼ px(xt | xt−1, ut)

y
(m)
t ∼ pm(y(m)

t | xt, ut), m = 1..M,

(1)

where y
(m)
t ∈ �ny denotes the observations transmitted from

the sensor m at time t, xt ∈ �
nx denotes the unknown

continuous state, and ut ∈ U denotes a known control signal.
The probability distribution px(xt | xt−1, ut) models the
stochastic transition dynamics of the hidden state. Given the
continuous state, the observations y

(m)
t from each sensor m

follow a stochastic model pm(yt | xt, ut), where the stochastic
aspect reflects the observation noise.

A. Centralized particle filtering

In this paper, we assume that, given the states xt, the sensor
noises are stochastically independent:

p(y(1)
t , ..., y

(M)
t | xt, ut) =

M∏
m=1

pm(y(m)
t | xt, ut).

Consequently, concatenating the observations gathered in the
central unit, yt = [y(1)

t , ..., y
(M)
t ], and replacing the distri-

bution product
∏

pm by an observation distribution py , the
stochastic model (1) is rewritten as:


xt ∼ px(xt | xt−1, ut)

yt ∼ py(yt | xt, ut).
(2)

1) Bayesian Importance Sampling: The Bayesian filtering
is based on the estimation of the posterior marginal probability
p(xt | y1:t). The nonlinear and the non Gaussian aspect of
the transition distributions leads to intractable integrals when
evaluating the marginals. Therefore, one has to resort to Monte
Carlo approximation where the joint posterior distribution
p(x0:t | y1:t) is approximated by the point-mass distribution
of a set of weighted samples (called particles) {x(i)

0:t, w
(i)
t }N

i=1:

p̂N(x0:t | y1:t) =
N∑

i=1

w
(i)
t δ

x
(i)
0:t

(d x0:t),

where δ
x

(i)
0:t

(d x0:t) denotes the Dirac function.
Based on the same set of particles, the marginal posterior

probability (of interest) p(xt | y1:t) can also be approximated
as follows:

p̂N (xt | y1:t) =
N∑

i=1

w
(i)
t δ

x
(i)
t

(d xt),

In the Bayesian importance sampling (IS) method, the parti-
cles {x(i)

0:t}N
i=1 are sampled according to a proposal distribution

π(x0:t | y1:t) and {w(i)
t } are the corresponding normalized

importance weights:

w
(i)
t ∝ p(y1:t | x

(i)
0:t)p(x(i)

0:t)

π(x(i)
0:t | y1:t)

.

2) Sequential Monte Carlo: Sequential Monte Carlo (SMC)
consists of propagating the trajectories {x(i)

0:t}N
i=1 in time

without modifying the past simulated particles. This is possible
for the class of proposal distributions having the following
form:

π(x0:t | y1:t) = π(x0:t−1 | y1:t−1)π(xt | x0:t−1, y1:t).

The normalized importance weights are then recursively com-
puted in time as:

w
(i)
t ∝ w

(i)
t−1

p(yt | x
(i)
t )p(x(i)

t | x
(i)
0:t−1)

π(x(i)
t | x

(i)
0:t−1, y1:t)

. (3)

B. Distributed particle filtering

In an energy constrained sensor network, the observed
data {y(m)

t }M
m=1 are not propagated from the nodes to a

central unit. Instead, at each time t, a leader node m∗ is
selected according to an appropriate protocol (see section
III). The Bayesian sequential Monte Carlo is then based
on the local data y

(m∗)
t and the past filtering distribution

p̂N (xt−1 | y1:t−1) communicated by the leader node at time
t − 1. Figure 1 illustrates the distributed particle filter.

Leader node

Sensor node

p̂(xt−1)

m∗(t − 1)

Fig. 1. The target tracking is based on the local data collected at the selected
leader node and the past filtering distribution p̂(xt−1 | y1:t−1) compressed
and sent by the previous leader node.

Propagating all the particles {x(i)
t , w

(i)
t } is not allowed in

a wireless sensor network because of the communications
constraints. Approximating the sample representation by a
mixture is thus considered in [3] and [2]:

p̂(xt | y1:t) =
N∑

i=1

w(i)δx(i)(xt) ≈
∑
s∈S

αsN (xt; µs,Σs) (4)



where N (.) denotes the Gaussian density.
Successive approximations by mixture of Gaussian densities

necessarily lead to a propagation of errors through time. In
[3], the consequences of such error propagation are explored
with respect to the errors occurring in future inference. In the
following section, we propose an ensemble learning approach
avoiding a lossy message compression and even outperforming
the particle filter based on a complete sample based represen-
tation.

III. ENSEMBLE LEARNING SEQUENTIAL FILTERING

A. State-space model

In this paper, the likelihood function in (1) is assumed to
have a general form depending on the sensing model of the
nodes. Concerning the transition dynamics px(xt | xt−1, ut),
we adopt a mean-scale mixture model. According to this
model, introduced in [4] for visual tracking, the hidden state
xt ∈ �nx has a Gaussian distribution with a random mean
µt and a random precision matrix λt. The mean follows a
Gaussian random walk reflecting the time correlation of the
system trajectory and the precision matrix follows a Wishart
distribution:




µt ∼ N (µt | µt−1, λ̄)

λt ∼ Wn̄(λt | S̄)

xt ∼ N (xt | µt, λt)

(5)

where the fixed hyperparameters λ̄, n̄ and S̄ are respectively
the random walk precision matrix , the degrees of freedom and
the precision of the Wishart distribution. Note that assuming
random mean and covariance for the state x t leads to a prior
probability distribution covering a wide range of tail behaviors
allowing discrete jumps in the target trajectory. In fact, the
marginal state distribution is obtained by integrating over the
mean and precision matrix:

p(xt | xt−1) =
∫

N (xt | µt, λt)p(µt, λt | xt−1)dµtdλt

(6)
where the integration with respect to the precision matrix leads
to the known class of scale mixture distributions introduced by
Barndorff-Nielsen [6]. Low values of the degrees of freedom
n̄ reflects the heavy tails of the marginal distribution (6).

B. Updating Free form approximate distributions

According to the model (5), the augmented hidden state is
now αt = (xt, µt, λt). Instead of approximating the filtering
distribution p(αt | y1:t) by a point-mass distribution, the
ensemble learning approach consists in approximating the
filtering distribution by a more tractable posterior distribution
q(αt). We can minimize the Kullback-Leibler divergence
between the true filtering distribution and the approximate
distribution,

DKL(q||p) =
∫

q(αt) log
q(αt)

p(αt | y1:t)
dαt, (7)

to obtain the optimal approximate distribution. In order to en-
sure that the best model is automatically chosen, we assume a
free form (non parametric) approximate distribution. Choosing
a separable distribution q(αt) = q(xt)q(µt)q(λt) and min-
imizing the kullback-Leibler divergence (7) with variational
calculus yield the following approximate distribution:


q(xt) ∝ exp 〈log p(y1:t, αt)〉q(µt)q(λt)

q(µt) ∝ exp 〈log p(y1:t, αt)〉q(xt)q(λt)

q(λt) ∝ exp 〈log p(y1:t, αt)〉q(xt)q(µt)

(8)

The above procedure leads to an iterative algorithm to update
each approximate q(αi). It is worth noting that while the
distributions in the separable approximation are independent,
the parameters of the distributions are in fact dependent as they
are jointly updated. Furthermore, the update of the approxi-
mate distribution q(αt) can be sequentially implemented given
only the approximate distribution q(µt−1). In fact, taking into
account the separable approximate distribution at time t − 1,
the filtering distribution is written,

p(αt|y1:t)∝p(yt|xt)p(xt, λt|µt)
∫

p(µt|µt−1)q(αt−1)dαt−1

∝p(yt|xt)p(xt, λt|µt)
∫

p(µt|µt−1)q(µt−1)dµt−1
(9)

where only integration with respect to µt−1 remains due to
the separable form of the approximate distribution q(α t−1).
The temporal dependence on the past is hence limited to
only one component approximate distribution. Communication
between two successive leader nodes m∗

t−1 and m∗
t is then

based on sending q(µt−1) which is the sufficient statistic for
the leader node to update the filtering distribution. As it will be
shown in the following, it turns out that q(µt−1) is a Gaussian
distribution and thus it can be communicated by sending only
the mean and the covariance. The ensemble learning is then
implemented in a collaborative sensor network without lossy
compression.

Substituting the filtering distribution (9) in (8) and taking
into account the prior mean-scale mixture transition model
(5), the updated separable distribution q(α t) has the following
form:

q(xt) ∝ p(yt | xt)N (xt | 〈µt〉, 〈λt〉)
q(µt) ∝ N (µt | µ∗

t , λ
∗
t )

q(λt) ∝ Wn∗(λt | S∗
t )

where the parameters are iteratively updated according to the
following scheme:

µ∗
t =λ∗−1

t (〈λt〉〈xt〉 + λp
t µ

p
t )

λ∗
t =〈λt〉 + λp

t

n∗ =n̄ + 1
S∗

t =(〈xtx
T
t 〉 − 〈xt〉〈µt〉T − 〈µt〉〈xt〉T + 〈µtµ

T
t 〉 + S̄−1)−1

µp
t =µ∗

t−1

λp
t =(λ∗−1

t−1 + λ̄
−1)−1

(10)
Note that the mean state and the precision matrix have closed
forms such that their means are easily derived:

〈µt〉 = µ∗
t , 〈λt〉 = n∗S∗

t , 〈µtµ
T
t 〉 = λ∗−1

t + µ∗
t µ

∗T
t .



However, the state xt does not have a closed form approximate
distribution. In order to compute its mean and covariance, one
can resort to an Importance sampling scheme where samples
are drawn from the Gaussian N (xt | 〈µt〉, 〈λt〉) and weighted
according to their likelihoods:

x
(i)
t ∼ N (xt | 〈µt〉, 〈λt〉), w

(i)
t ∝ p(yt | x

(i)
t ). (11)

The mean and covariance are then obtained by their empirical
approximations:

〈xt〉 =
N∑

i=1

w
(i)
t x

(i)
t , 〈xtx

T
t 〉 =

N∑
i=1

w
(i)
t x

(i)
t x

(i)T
t

Note that, contrary to the distributed particle filter, the above
Monte Carlo approximation remains local at the leader node
and it is not communicated through the sensor network.

C. Node scheduling protocol

In order to prolong the sensor network lifetime, only one ac-
tive node (leader) is processing data. The remaining nodes are
wether turned off if a minimum region coverage is guaranteed
or just sensing and locally broadcasting measurements (see the
illustrative figure 2). The selection of the leader node should
be based on the relevance of its measured data. Information
theoretic criteria such that proposed in [7] could be consid-
ered for this purpose. In this paper, however, we propose a
simpler scheme adapted to the target tracking application and
efficiently implemented by the ensemble learning approach.

In some sensor network target tracking applications, the
node measurement is inversely proportional to the distance
between the node position and the target position, in a limited
sensing range. Before collecting data yt, the best node at time
t is thus the closest node to the predicted position of the target.
In order to take into account all the statistical behavior of the
predicted target position, the relevance of the node’s data I(m)
can be measured by the predictive distribution p(x t | y1:t−1)
applied to the sensor position:

I(m) = p(xt | y1:t−1)|xt=sm

where sm is the position of the sensor m.
The predictive distribution p(xt | y1:t−1) can also be

updated by the ensemble learning approach. In fact, taking
into account the separable approximate distribution at time
t − 1, the predictive distribution is written,

p(αt|y1:t−1)∝p(xt, λt|µt)
∫

p(µt | µt−1)q(µt−1)dµt−1

(12)
The exponential form solution, which minimizes the
Kullback-Leibler divergence between the predictive distribu-
tion p(αt | y1:t−1) and the separable approximate distribution
qt|t−1(αt), yields Gaussian distributions for the state and its
mean and Wishart distribution for the precision matrix:

qt|t−1(xt) ∝ N (xt | 〈µt〉, 〈λt〉)
qt|t−1(µt) ∝ N (µt | µ∗

t , λ
∗
t )

qt|t−1(λt) ∝ Wn∗(λt | S∗
t )

where the parameters are updated according to the same
iterative scheme (10), except that the mean and covariance
states are now exactly evaluated without resorting to the
importance sampling method:

〈xt〉 = 〈µt〉, 〈xtx
T
t 〉 = 〈µt〉 + 〈µt〉〈µt〉T .

The data node relevance has consequently a quadratic
logarithm:

log I(m) = −1
2
(sm − 〈µt〉)T 〈λt〉(sm − 〈µt〉) + const.

Each node has a limited energy reserve and also a limited
communication range. In addition, when communicating with
other nodes, the leader node has to increase the transmission
power to reach far message destinations. Given that the
communication energy consumption is higher than the data
processing energy consumption, the relevance criteria should
involve a term penalizing long distances when selecting the
next leader node. Therefore, the following selection criteria is
suitable under sensor network energy constraints:

m∗
t−1 = argminm J (m)

J (m) = β(sm − 〈µt〉)T 〈λt〉(sm − 〈µt〉)+
(1 − β)(sm − sm∗

t−1
)T (sm − sm∗

t−1
)

(13)
where m∗

t−1 is the leader node at time t−1 and the coefficient
β ∈ [0 , 1] reflects the trade off between the data relevance and
the communication cost.

Additional considerations have to be taken into account
before the hand-off decision between two successive leaders
such as conflicting situations when tracking multiple objects,
forcing the hand-off when battery reserve is entirely con-
sumed.... All these considerations are not reported here due
to space limitation.

Leader node

Sensor node

q(µt−1)

m∗(t − 1)

Fig. 2. The filtering distribution is updated by the leader node after receiving
the mean and covariance of q(µt−1) by the previous leader node

IV. NUMERICAL RESULTS

In order to illustrate the effectiveness of the proposed
ensemble learning target tracking in a wireless sensor network,
we have considered the tracking of simulated sinusoidal tra-
jectory in a 2-dimensional field (figure 3). A set of 200 nodes
are randomly deployed in 100m × 100m square area. Each
node has a sensing range set to 20m. At each time t, within
this range, the leader node obtains an observation of the target
position through a range-bearing model:

yr
t = p

‖sm−xt‖+0.5 + vr
t

yθ
t = arctan s2−x2

s1−x1
+ vθ

t



where sm = (s1, s2) and xt = (x1, x2) are the node and
the target positions at time t, p (set to 10) is the energy
emitted by the target (measured at a reference distance of 1
meter), vr

t and vθ
t are the corrupting noises due to modeling

error, instrumental noise and background additive interfering
signals. The noises vr

t and vθ
t are assumed white Gaussian

with variances σ2
ε and σ2

θ respectively (σ2
ε = σ2

θ = 0.05).
The hyperparameters of the transition dynamical state model

are set to the following values:

λ̄ = 10−2I, n̄ = 100, S̄ = 102I,

where the hyperparameters values allow a general non in-
formative prior. It is worth noting that in target tracking
applications, an informative prior, involving the target velocity
and acceleration, is usually assumed. Here, the transition prior
has a more general form which can be used in other sensor
network applications.

The ensemble learning tracking is applied on simulated data.
Figure 3 depicts the estimated trajectory superimposed with
the true sinusoidal trajectory. Note the accuracy of the target
tracking. The position is estimated by the empirical mean of
the point-mass approximate distribution q(x t):

x̂t =
N∑

i=1

w
(i)
t x

(i)
t

On the same figure 3, the selected leaders are plotted in
circles. Note the ability of the algorithm to select the relevant
node while respecting the communication constraints. In fact,
during the hand-off, the leader node sends the mean and the
covariance of q(µt) which requires 80 bits if all the parameters
are transmitted up to 16 bits of resolution.

In figure 4, the leader selection criteria (13) used in the
scheduling protocol is plotted within the set of randomly
deployed nodes. The criteria is quadratic and therefore easy
to implement. The same criteria was heuristically used in [8]
exploiting only the second order statistics of the predictive
distribution. The ensemble learning yields however a Gaussian
predictive distribution approximating the predictive distribu-
tion in an optimal in the Kullback-Leibler metric.

V. CONCLUSION

An ensemble learning approach is proposed for online fil-
tering in wireless sensor networks. At each time step, a leader
node is selected according to a criteria representing a trade-
off between data relevance and communication constraints.
Approximation the filtering distribution by a separable free
form distribution is implemented by a simple variational iter-
ative algorithm. The approximate distribution yields a natural
and adaptive compression of the filtering distribution which is
propagated in the sensor network without lossy compression.
In addition, the ensemble learning tracking outperforms the
particle filter as it is implicitly based on a robust importance
proposal.
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Fig. 3. Ensemble learning tracking in collaborative sensor network
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Fig. 4. Contour plot of the leader selection criteria. The selected node is
plotted inside a circle.
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