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Abstract— In this contribution, we propose an efficient col-
laborative strategy for online change detection, in a distributed
sensor network. The collaborative strategy ensures the efficiency
and the robustness of the data processing, while limiting the
required communication bandwith. The observed systems are
assumed to have each a finite set of states, including the abrupt
change behavior. For each discrete state, an observed system
is assumed to evolve according to a linear state-space model.
An efficient Rao-Blackwellized collaborative particle filter (RB-
CPF) is proposed to estimate the a posteriori probability of the
discrete states of the observed systems. The Rao-Blackwellization
procedure combines a sequential Monte Carlo filter with a
bank of distributed Kalman filters. Only sufficient statistics
are communicated between smart nodes. The spatio-temporal
selection of the leader node and its collaborators is based on a
trade-off between error propagation, communication constraints
and information content complementarity of distributed data.

I. INTRODUCTION

In this paper, the signal processing objective is to online
detect the state change of a system observed by a sensor
network. The efficient online state detection, in an automatic
way, is very important for the system functioning security. In
fact, according to each state, the system should adopt a specific
behavior. For example, an autonomous robot must be able
to detect its state and carry out repairs if necessary, without
human intervention, by processing the data received from the
on-board sensors [1], [2]. One can also mention the use of the
sensor networks for the monitoring of production systems in
order to face the industrial risks, the monitoring of the houses
for safety or the house automation, the air and transport control
in general, intelligent alarms for the prevention of natural
disasters. With such systems, the automatic control of an event
or an incident rests on the reliability of the network for a an
efficient and robust decision-making.

For the above purpose, collaborative information processing
in sensor networks is becoming a very attractive field of
research. In such a sensor network, the sensors role is not
limited to detect and transmit the data to a central unit where
they are processed. Individual sensors have the capability to
process the data and transmit only pertinent information to
a fusion unit. The sensors have the ability to collaborate,
exchange information to ensure an optimal decision. Such
sensors are called smart sensors or smart nodes. Contrary to
the centralized approach, the system does not depend on a
unique processing unit whose damaging leads to the entire

system failure. Every smart sensor is able to play a central
role and provide a suboptimal decision. The system is thus
very robust against a probable foreign attack or a technical
failure of the central unit. In addition, as collected data are
locally processed, only pertinent information is exchanged
between smart nodes, limiting hence the required channel
communication bandwidth. In fact, in a centralized network,
all sensors transmit raw data to a unique processing unit,
increasing the required communication bandwidth.

Concerning the data processing at each smart node and the
fusion rule, we adopt a probabilistic approach to model the
system dynamics. The system is described by a jump Markov
linear Gaussian model where the conditional Gaussians depend
on the discrete state of the system and also on the sensor. The
state change detection is resumed in the posterior marginal
probability of the discrete state. To solve the inference prob-
lem, we use the particle filter as an approximate Monte Carlo
inference method able to deal with the intractable analytical
aspect of the dynamical system update. Our contribution
consists in proposing and implementing a collaborative dis-
tributed particle filter for estimating the marginal a posteriori
probabilities of the system discrete states. Recently, distributed
particle filters were proposed in literature [3], [4]. In the
previously proposed distributed particle filters, the conditional
distributions of the distributed collected data (likelihoods)
are assumed to be independent. Therefore, applying these
particle filters to the jump Markov models, one needs to
consider jointly the continuous and the discrete states of the
system. As shown in [1], in a centralized processing, the
particle filtering of the joint state leads to poor results. Our
contribution consists thus in extending the Rao-Blackwellized
approach, proposed in [1], in a distributed environment. The
leader node collaborates with the remaining nodes at each
time step. The temporal selection of the leader node is based
on a trade-off between information relevance, communication
cost and propagation error. The spatial selection of the leader
collaborators relies on the same trade-off except that the
information relevance takes an information complementarity
form. The main difficulty of the spatial collaboration, within
the Rao-Blackwellized distributed particle filter, is the fact that
the sensors marginal likelihoods are no more independent. We
show in the proposed collaborative strategy how to circumvent
this difficulty while propagating only sufficient second order



statistics through the sensor network.
The paper is organized as follows: in Section II, the proba-

bilistic change detection model within the optimal centralized
particle filter are briefly described. The section III contains
the two main contributions of this paper: (i) an optimal
online change detection procedure resulting from the spatial
collaboration between the leader node and its collaborators,
(ii) an information theoretic based criteria for the spatio-
temporal selection of the leader node and its collaborators,
under communications constraints. In section IV, numerical
results, corroborating the proposed algorithm effectiveness, are
shown.

II. CENTRALIZED ONLINE CHANGE DETECTION

In this section, we briefly recall the particle filter method
for online change detection. It is an approximate Monte
Carlo method estimating, recursively in time, the posterior
probabilities of the discrete state of the system, given the ob-
servations. Moreover, the particle filter provides a point mass
approximation of the distributions of the hidden continuous
states. For more details and a comprehensive review of the
particle filter see [5].

A. Distributed State Space Model

The Bayesian change detection algorithm is based on a
discrete time jump Markov linear state-space model. This
model involves two different hidden states: a discrete state
and a continuous state. The discrete state changes in time
according to a first order Markov model. For each discrete
state, the system, observed by a sensor network composed
of M nodes, evolves in time according to a different linear
Gaussian model:



zt ∼ P (zt | zt−1)

xt = A(zt)xt−1 + B(zt)wt

y
(m)
t = Cm(zt)xt + Dm(zt)vm

t , m = 1..M,

(1)

where y
(m)
t ∈ �ny denotes the observations transmitted from

the sensor Cm at time t to the central processing unit, xt ∈
�

nx denotes the unknown continuous state and z t ∈ Z =
{1..K} denotes the unknown discrete state. The transition
probability P (zt | zt−1) represents the prior information about
the dynamic variation of the system. The noises w t and vm

t

are distributed according to i.i.d Gaussians N (0, Inx) and
N (0, Iny ) respectively. Note that the hidden states and their
stochastic a priori models do not depend on the sensor node
as they are characteristic of the observed system dynamics.
The model parameters {A, B, {Cm}M

m=1, {Dm}M
m=1} are as-

sumed to be known.
In this paper, we assume that, given the states xt and zt,

the sensor noises are stochastically independent:

p(y(1)
t , ..., y

(M)
t | xt, zt) =

M∏
m=1

pm(y(m)
t | xt, zt).

Consequently, concatenating the observations gathered in the
central unit, yt = [y(1)

t , ..., y
(M)
t ], and replacing the distri-

bution product
∏

pm by an observation distribution py, the
stochastic model (1) is rewritten as:



zt ∼ P (zt | zt−1)

xt = A(zt)xt−1 + B(zt)wt

yt ∼ N (C(zt)xt, Ry(zt)),

(2)

where C = [CT
1 , ..., CT

M ]T and Ry is the block diagonal
covariance matrix with block matrices equal to DmDT

m.
Hence, the centralized processing relies on the usual jump
Markov state space model.

The Bayesian online change detection is based on the
estimation of the posterior marginal probability P (z t | y1:t).
However, the probabilistic system model (2) involves hidden
continuous variables x0:t. Therefore, the computation of the
marginal distribution involves two intractable integrals: inte-
gration with respect to the past of the discrete time Markov
chain z0:t−1 and integration with respect to the hidden con-
tinuous states x0:t:

P (zt | y1:t) =
∑

z0:t−1

∫
p(z0:t, x0:t | y1:t)d x0:t

Therefore, one has to resort to Monte Carlo approximation
where the joint posterior distribution p(z0:t, x0:t | y1:t) is ap-
proximated by the point-mass distribution of a set of weighted
samples (called particles) {z(i)

0:t, x
(i)
0:t, w

(i)
t }N

i=1:

P̂N (z0:t, x0:t | y1:t) =
N∑

i=1

w
(i)
t δ

z
(i)
0:t,x

(i)
0:t

(d x0:t, z0:t),

where δ
z
(i)
0:t,x

(i)
0:t

(d x0:t, z0:t) denotes the Dirac function.
Based on the same set of particles, the marginal posterior

probability (of interest) P (zt | y1:t) can also be approximated
as follows:

P (zt = k | y1:t) �
N∑

i=1

w
(i)
t I(z(i)

t = k),

where I(.) denotes the indicator function.
In the Bayesian importance sampling (IS) method, the

particles {z(i)
0:t, x

(i)
0:t}N

i=1 are sampled according to a proposal
distribution π(z0:t, x0:t | y1:t) and {w(i)

t } are the correspond-
ing normalized importance weights:

w
(i)
t ∝ p(y1:t | z

(i)
0:t, x

(i)
0:t)p(z(i)

0:t, x
(i)
0:t)

π(z(i)
0:t, x

(i)
0:t | y1:t)

.

B. Sequential Monte Carlo

Sequential Monte Carlo (SMC) consists of propagating the
trajectories {z(i)

0:t, x
(i)
0:t}N

i=1 in time without modifying the past
simulated particles. The normalized importance weights are
then recursively computed in time as:

w
(i)
t ∝ w

(i)
t−1

p(yt | z
(i)
t , x

(i)
t )p(z(i)

t , x
(i)
t | z

(i)
0:t−1, x

(i)
0:t−1)

π(z(i)
t , x

(i)
t | z

(i)
0:t−1, x

(i)
0:t−1, y1:t)

.

(3)



For the considered jump Markov linear state-space model
(2), one can adopt the transition prior as the proposal distri-
bution:

π(z(i)
t , x

(i)
t |z(i)

0:t−1, x
(i)
0:t−1, y1:t) = px(xt|xt−1, zt)P (zt|zt−1).

in which case the weights are updated according to the
likelihood function:

w
(i)
t ∝ w

(i)
t−1 p(yt | z

(i)
t , x

(i)
t ). (4)

C. Rao-Blackwellized SMC

Considering the joint state {xt, zt}, the SMC algorithm
yields poor online detection results. An efficient Rao-
Blackwellized SMC, proposed in [1], considerably improves
the state estimation. The principle of this procedure consists
in noting that given the discrete state, the continuous state
is a posteriori Gaussian. Thus, based on a bank of Kalman
filters, one can sequentially update the marginal a posteriori
probability p(zt | y1:t). In fact, the probability of the trajectory
z0:t satisfies the following recursion:

p(z0:t|y1:t) = p(z0:t−1|y1:t−1)
p(yt|y1:t−1, z0:t)P (zt|zt−1)

p(yt | y1:t−1)

In the SMC algorithm, predicting the discrete states {z (i)
t }

according to the transition prior P (zt|zt−1) leads to the
following particle weight updating:

w
(i)
t ∝ w

(i)
t−1 p(yt | y1:t−1, z

(i)
0:t) (5)

The computation of the Gaussian data prediction distribution
p(yt|y1:t−1, z

(i)
0:t) is based on the mean yt|t−1 = E

[
yt|y1:t−1

]
and covariance St = cov(yt|y1:t−1) online updates. These
second order statistics are jointly updated with the mean
and covariance of the continuous state by a Kalman filter as
follows:

µ
(i)
t|t−1 = A(z(i)

t )µ(i)
t−1|t−1

Σ(i)
t|t−1= A(z(i)

t )Σ(i)
t−1|t−1A(z(i)

t )T + B(z(i)
t )B(z(i)

t )T

S
(i)
t = C(z(i)

t )Σ(i)
t|t−1C(z(i)

t )T + Ry(z(i)
t )

y
(i)
t|t−1 = C(z(i)

t )µ(i)
t|t−1

µ
(i)
t|t = µ

(i)
t|t−1 + Σ(i)

t|t−1C(z(i)
t )T S

−1(i)
t (yt − y

(i)
t|t−1)

Σ(i)
t|t = Σ(i)

t|t−1 − Σ(i)
t|t−1C(z(i)

t )T S
−1(i)
t C(z(i)

t )Σ(i)
t|t−1

where µt|t−1 = E
[
xt | y1:t−1

]
, Σt|t−1 = cov(xt | y1:t−1),

µt|t = E
[
xt | y1:t

]
and Σt|t = cov(xt | y1:t). The predictive

density is then simply evaluated by:

p(yt | y1:t−1, z
(i)
0:t) = N (yt ; yt|t−1, St)

The centralized Rao-Blackwellized SMC algorithm is sum-
marized in Figure 1.

Sequential sampling step:
- For i = 1, ..., N , sample from the transition prior:

ẑ
(i)
t ∼ P (zt | z

(i)
t−1)

Weight updating step:
-For i = 1, ..., N , update the sufficient statistics (jointly
with the Kalman filter) and evaluate the importance
weights:

w
(i)
t ∝ p(yt | y1:t−1, z

(i)
0:t)

Resampling step:

- Select with replacement from {ẑ (i)
0:t}N

i=1 with probabil-
ities {w(i)

t } to obtain N particles {z(i)
0:t}N

i=1

Fig. 1. Centralized Rao-Blackwellised particular filter algorithm

III. COLLABORATIVE ONLINE CHANGE DETECTION

In a sensor network, each node must be able to treat the
received data, to make a local decision and to communicate
it in an autonomous way with the close nodes to which it
is connected. This co-operation is intended to ensure best
decision-making possible in spite of the limits in terms of
power consumption and processing capability. The purpose of
this work is to propose an efficient collaborative distributed
version of the Rao-Blackwellized particle filter. In the follow-
ing, we describe the proposed collaborative strategy.

A. temporal leader node selection

The temporal collaboration consists in selecting, after the
sequential probability update, the leader node at the next time
step. The selection procedure is based on ranking the nodes
according to an information-theoretic cost function J(m). The
first ranked node m∗ (argmaxm J(m)) is the next leader
candidate. At time step t − 1, the chosen cost function is a
trade-off between information gain and compression loss:

Jt(m) = I(m) + αE(m) (6)

where the first term of the above criteria represents the
information content relevance of the measured data on the
node m, at the time step t:

I(m) = E
[
DKL(p(ym

t | xt, zt) || p(ym
t | y1:t−1, z0:t))

]
(7)

where DKL is the Kullback-Leibler divergence between
the likelihood and the data predicted density, the expecta-
tion is evaluated according to the joint filtering distribu-
tion p(xt, z0:t | y1:t−1). This can be considered as a data
augmentation version of criteria proposed in [6] for sensor
management. The second term E(m) is the message error
when transferring sufficient statistics from the leader node
m∗(t) to node m under the communication constraint cm <
cmax, where cm is the communication cost of transferring
information to node m. The negative coefficient α represents
the trade off between the information gain and compression
loss.



1) Computation of the information gain: In [6], a Monte
Carlo procedure is proposed to compute the first term of
the cost function (6). However, in our problem setting, using
the jump Markov linear state model, the term I can be
evaluated with a Rao-Blackwellized scheme. In fact, given the
discrete state trajectory z

(i)
0:t, the likelihood p(ym

t | xt) and the
predictive distribution p(ym

t | y1:t−1, z
(i)
0:t) are both Gaussians

and the expectation of the Kullback-Leibler divergence 1 in
expression (7) can be exactly evaluated as follows:

I
| z(i)

0:t

(m) = 1
2 log |Im + (Dm(zt)Dm(zt)T )−1

Cm(zt)Σ
(i)
t|t−1Cm(zt)T |

where the subscript “
z
(i)
0:t

” means that the expectation is
evaluated conditioned on the discrete state, Im denotes
the identity matrix and Σ(i)

t|t−1 is the predicted covariance

A(z(i)
t )Σ(i)

t−1|t−1A(z(i)
t )T +B(z(i)

t )B(z(i)
t )T . It can be easily

noted that maximizing the term I| z(i)
0:t

(m) relies on the maxi-
mization of the information/noise ratio, where the information
content is evaluated by the matrix Cm(zt)Σ

(i)
t|t−1Cm(zt)T

(norm of the observation matrix in the state covariance basis).
The trajectory z

(i)
0:t is composed of the particle past trajectory

z
(i)
0:t−1 having w

(i)
t−1 as the importance weight and the pre-

dicted z
(i)
t according to the transition prior P (zt|zt−1). The

information criteria I(m) is thus approximated by a Monte
Carlo scheme as follows:

I(m) = E
[I| z0:t

]
=

∑
z0:t

I| z0:tp(z0:t | y1:t−1)

≈
∑
z0:t

I| z0:tw
(i)
t−1

2) Computation of the compression loss: Propagating all
the particles {µ(i)

t|t ,Σ
(i)
t|t , w

(i)
t } is not allowed in a wireless

sensor network because of the communications constraints.
The KD-tree Gaussian mixture is a suitable approximation
when communicating distribution messages [7]. The KD-tree
is a multi-scale mixture of Gaussian approximation of a given
data set. It consists in describing a large data set (particles)
with a set a few sub-trees, each sub-tree is a Gaussian whose
statistics can be recursively computed. The top node of the
tree is the largest scale and the leaf nodes represent the finest
scales. The internal nodes represent intermediate resolutions.
See figure 2 for an illustration.

The set of Kalman means and covariances is approximated
by a set of nodes S containing one and only one ancestor
of each leaf node. Increasing the resolution of the KD-tree
representation is simply done by replacing the nodes s ∈ S
by their left and right children nodes. In order to control the
error propagation, one needs a divergence measure between
probability densities. Following the arguments in [7], the
maximum log-error:

ML(p, q) = max
x

| log p(x)/q(x)| (8)

1The Kullback-Leibler divergence between two Gaussians (µ1,Σ1) and
(µ2,Σ2) is 1

2
(tr

ˆ
Σ1Σ

−1
2

˜ − log Σ1Σ
−1
2 −m + (µ1 −µ2)

T Σ−1
2 (µ1 −

µ2)).

is very suitable for bounding the belief propagation error and
also it is adapted to the KD-tree representation. Controlling the
temporal propagation error while respecting the communica-
tion constraints consists in a trade-off between the resolution
of the KD-tree representation and its encoding cost. As the
resolution increases (going from top to bottom in the tree),
the approximation error decreases while the communication
cost increases. This can be easily implemented by recursively
dividing the node s ∈ S having the maximum error measure
while respecting the allowed communication cost.

Deciding the hand-over consists in comparing the informa-
tion gain / compression loss ratio, computed for the selected
leader candidate m∗

t , with a threshold β. In words, the hand-
over to the node m∗

t is allowed if:

I(m∗
t )

I(m∗
t ) + αE(m∗

t )
> β

The threshold β is an increasing function of the energy reserve
communicated by the active node’s battery. If the energy
reserve is very low (β ≈ 0), the hand-over is almost surely
done. However, if the energy reserve is at a correct level, the
active node will take into consideration the information gain
before performing the hand-over.

14

1 2 3 4 5 6 7 8

9 10 11 12

13

Fig. 2. KD-tree approximation of the Kalman mixture updates: Components
1 to 4 are the leaf nodes for the state zt = 1 and components 5 to 8 are the
leaf nodes for the state zt = 2.

B. Spatial collaborative detection

An other important new feature of the proposed distributed
Rao-Blackwellized particle filter is the spatial collaboration
between the leader node and its selected collaborator nodes
at each time step. The spatial collaboration is based on 2
alternating steps: (i) the selection of the collaborator nodes
path with a recursive procedure ensuring the distributed data
information complementarity and (ii) the spatial update of the
particle weights, the particles being predicted in the leader
node.

In the following, we outline the above two steps.
For the clarity of presentation and notation convenience,
(µ(i,0)

t|t ,Σ(i,0)
t|t ) will denote the predicted Kalman mean and co-

variance (µ(i)
t|t−1,Σ

(i)
t|t−1), {w(i,0)

t } denotes their correspond-
ing importance weight computed in the leader node C 0. The
prediction is performed in the leader node C0.

1) Particle weight updating: In this paragraph, we show
how the weight of a predicted state is updated taking into
account the data of the leader node and also the data col-
lected by the collaborator nodes, under the communication



constraints. The communication constraints do not allow the
propagation of raw data. Therefore, only sufficient statistics are
exchanged between the leader node and its collaborators. The
data measured at the leader node C0 and its L collaborators
C1, .., CL are denoted {y0

t , y1
t , ..., yL

t } respectively. Contrary
to the previously proposed distributed particle filters in litera-
ture, in the jump Markov model, the likelihood of the discrete
state p(y0

t , y1
t , ..., yL

t | y1:t−1, z0:t) can not be factorized into
L∏

l=0

p(yl
t | y1:t−1, z0:t). In fact, the predicted densities are

dependent through the hidden continuous state. Consequently,
the weight w

(i)
t ∝ p(y0

t , y1
t , ..., yL

t | y1:t−1, z0:t) of the
predicted state z

(i)
t can not be updated by a simple cumulative

product. However, the computation of the complete likelihood
can be performed with a Kalman filter procedure. In fact, the
complete likelihood can be decomposed with the sequential
Bayes’ rule as follows:

p(y0
t , y1

t , ..., yL
t | y1:t−1, z0:t) = p(y0

t | y1:t−1, z0:t)×
L∏

l=1

p(yl
t | yl−1

t , ..., y0
t , y1:t−1, z0:t)

(9)

The predicted density p(y0
t | y1:t−1, z0:t) in the product (9) is

updated according to the usual Kalman filter based on the
data y0

t . Similarly, the subsequent predictive data densities
p(yl

t | yl−1
t , ..., y0

t , y1:t−1, z0:t) are evaluated by a Kalman
filter, where the predicted mean and covariance are the updated
mean and covariance computed and sent by the node C l−1.
Thus, the main difference with an usual Kalman filter is the
fact there is not a temporal prediction, the predicted statistics
are the updated statistics by the previous collaborator node.

Figure 3 illustrates the collaborative updating of the Kalman
means, covariances and particle weights, at each time step.

Cl

µ
(i)
t|t−1

Σ
(i)
t|t−1

µ
(i,1)
t|t

Σ
(i,1)
t|t−1

µ
(i,l)
t|t

Σ
(i,l)
t|t

µ
(i,l+1)
t|t

Σ
(i,l+1)
t|t

w
(i,l)
tw

(i,0)
t

C0

Fig. 3. Spatial Kalman update of the mean, covariance and particle weight.

Until now, we have considered the spatial update of one
particle weight w

(i)
t . As we have mentioned in the previous

section, updating all the particles is not possible under the
communication constraints. Fortunately, the KD-tree approxi-
mation preserves the same structure of the Kalman mixture
scheme. The computed means, covariances and weights of
the KD-tree Gaussian mixture can be put in correspondence
with the updated Kalman means µ

(i)
t|t , the updated Kalman

covariances Σ(i)
t|t and the particle weights w

(i)
t .

2) Recursive path selection: The selection of collaborator
nodes can be performed in a recursive manner: each selected
collaborator, after updating the particle weights, selects one
and only one next collaborator. This recursion is necessary
to ensure the information complementarity and avoid thus
unnecessary redundant information. The selection is based on

the same cost function (6) as in the temporal case, leading
to similar expressions. Figure 4 illustrates the global spatio-
temporal path of selected leader and auxiliary collaborator
nodes.

Spatial collaboration

Leader node

Temporal collaboration 

Auxiliary collaborator node

t + 1t

Fig. 4. Temporal leader selection + Recursive spatial collaborator path
selection

IV. NUMERICAL RESULTS

The proposed algorithm is applied on synthetic data gen-
erated according to the distributed jump Markov linear state
space model (1). The system has 3 hidden discrete states
(K = 3). The transition stochastic matrix is set as follows:

P (zt | zt−1) =


 0.1 0.5 0.4

0.1 0.6 0.3
0.1 0.3 0.6




where the occurrence of the first state is lower the second
and third states. The matrices (A, B, Cm, Dm) are set at
random according to Gaussian distributions. The dimension
of the hidden continuous state is set to nx = 2 and the
dimension of the observation is set to ny = 6. The number of
particles sequentially sampled at the leader nodes is N = 100.
We have fixed severe communication constraints such that the
maximum allowed collaborating nodes is 3 (leader node +
2 spatially collaborating nodes). Under these communication
constraints, the resolution of the KD-tree approximation is
only one Gaussian for each discrete state. In other words,
the leader node communicates only 3 vector means and 3
covariances representing the Kalman mixture, to its spatially
collaborating nodes.

Figure 5 shows the estimated a posteriori marginal discrete
state probabilities p(zt | y1:t). Note that, at each time step,
the discrete states are not a posteriori equally distributed,
avoiding ambiguity when estimating the states. In figure 6,
the MAP estimate of the discrete states is plotted with the true
discrete states. Note the accuracy of the proposed collaborative
online detection, which is about 88%. The centralized Rao-
blackwellized particle filter is also applied on the same set
of data. Figure 7 shows the MAP discrete state estimates
with the centralized processing whose classification precision
is the same as the collaborative distributed algorithm (88%).
This corroborates the efficiency of the proposed strategy under
severe communication constraints. In order to further illustrate
the effectiveness of the spatial collaboration strategy, figure
8 shows the detection performance of a distributed Rao-
Blackwellized particle filter with only one leader node (no



collaborator nodes). Note that the performance has degraded
to (68%).

V. CONCLUSION

We have proposed a distributed and collaborative version
of the Rao-Blackwellized particle filter for online change
detection. At each time step t, the selected leader node updates
the posterior probability of the system discrete state. This
update is based on a spatial collaboration with other nodes,
called collaborator nodes. The nodes exchange only sufficient
statistics (second order moments). The temporal selection of
the leader node is based on a trade-off between information
data relevance and compression loss under the communication
constraints. Similarly, the spatial selection of collaborator
nodes path is recursively designed and relies on a trade off
between information complementarity and compression loss
under the communication constraints.

In this work, we have assumed a jump Markov linear state
space model for the observed system. The matrices involved
in this model are assumed to be known (estimated in a training
step). We are currently working on the extension to non linear
models and the possibility to incorporate an unsupervised
estimation of the model parameters.
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Fig. 5. A posteriori probabilities of the system discrete state
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Fig. 6. Maximum a posteriori estimate of the system discrete state
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Fig. 7. Maximum a posteriori estimate of the system discrete state with a
centralized processing
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Fig. 8. Maximum a posteriori estimate of the system discrete state with only
one leader node
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