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Abstract—In addition to the choice of the usual linear adaptive
filter parameters, designing kernel adaptive filters requires the
choice of the kernel and its parameters. One of our recent
works has brought a new contribution to the discussion about
kernel-based adaptive filtering by providing the first convergence
analysis of the kernel-LMS algorithm with Gaussian kernel.
A necessary and sufficient condition for convergence has been
clearly established. Checking the stability of the algorithm can,
unfortunately, be computationally expensive because one needs
to calculate the extreme eigenvalues of a large matrix, for each
set of candidate tuning parameters. The aim of this paper is
to circumvent this drawback by examining two easy-to-handle
conditions that allow to examine how the stability limit varies
as a function of the step-size, the kernel bandwidth, and the
filter length. One of them is a conjectured necessary and
sufficient condition for convergence that allows to greatly simplify
calculations.

I. INTRODUCTION

Many practical applications require nonlinear signal pro-
cessing. Nonlinear system identification methods based on
reproducing kernel Hilbert spaces (RKHS) have gained popu-
larity over the last decades [2], [6]. Recently, kernel adaptive
filtering has been recognized as an appealing solution to the
nonlinear adaptive filtering problem, as working in RKHS
allows the use of linear structures to solve nonlinear estima-
tion problems. For an overview, see [8]. The block diagram
of a kernel-based adaptive system identification problem is
presented in Figure 1. Here, U is a compact subspace of IRq ,
κ : U × U → R is a reproducing kernel, (H, 〈·,·〉H) is the
induced RKHS with its inner product and z(n) is a zero-
mean additive noise uncorrelated with any other signal. The
representer theorem [6] states that the function ψ(·) which
minimizes the cost function

∑N
n=1(ψ(u(n)) − d(n))2, given

N input vectors u(n) and desired outputs d(n), can be written
as ψ(·) =

∑N
n=1 αn κ(·,u(n)). Since the order of the model

is equal to the number N of available data u(n), this approach
cannot be considered for online applications. To overcome this
barrier, authors in the field have focused on finite-order models

ψ(·) =

M∑
j=1

αj κ(·,u(ωj)). (1)

In [8], the authors present an overview of the existing tech-
niques to select the M kernel functions in (1) that form the
so-called dictionary, an example of which is the coherence
criterion [12]. The algorithms developed using these ideas
include the kernel least-mean-square (KLMS) algorithm [7],

the kernel recursive-least-square (KRLS) algorithm [3], the
kernel normalized least-mean-square (KNLMS) algorithm and
the kernel affine projection (KAPA) algorithm [5], [12], [13].
In addition to the choice of the usual linear adaptive filter pa-
rameters, designing kernel adaptive filters requires the choice
of the kernel and its parameters. Choosing the algorithm and
nonlinear model parameters to achieve a prescribed perfor-
mance is a difficult task, and requires an extensive analysis of
the algorithm stochastic behavior. Our work [11] has recently
brought a new contribution to the discussion about kernel-
based adaptive filtering by providing the first convergence
analysis of the KLMS algorithm with Gaussian kernel. The
filtering process is defined by

α(n+ 1) = α(n) + η e(n)κω(n). (2)

where κω(n) = [κ(u(n),u(ω1)), . . . , κ(u(n),u(ωM ))]>,
and κ(u,u′) the Gaussian kernel

κ(u,u′) = exp

(−‖u− u′‖2
2ξ2

)
(3)

with kernel bandwidth ξ. In [11], we derived expressions
for the mean-weight-error vector and the mean-square-error.
These models give engineers the opportunity to choose the
algorithm parameters a priori in order to achieve prescribed
convergence speed and quality of the estimate, and allow the
determination of stability limits. Checking the stability of the
algorithm (2) can be computationally expensive as it needs to
calculate the extreme eigenvalues of an (M2 ×M2) matrix,
say G, for each candidate tuning parameters η, M and ξ.

The aim of this paper is to circumvent this drawback
by examining two easy-to-handle conditions that allow to
examine how the stability limit varies as a function of the
step-size, the kernel bandwidth, and the filter length. The first
one is a sufficient condition based on the Gerschgorin disk
theorem, which has already been derived in [11]. The second
one is a conjectured necessary and sufficient condition for
convergence. It allows to greatly simplify calculations, and
to examine how the stability limits vary as a function of the
step-size η, the kernel bandwidth ξ, and the filter length M .

II. CONVERGENCE ANALYSIS

Let v(n) = α(n) − αopt be the weight-error vector.
Let vector cv(n) be the lexicographic representation of the
autocorrelation matrix Cv(n) = E{v(n)v>(n)}, i.e., the
matrix Cv(n) is stacked column-wise into a vector cv(n).
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Fig. 1. Kernel-based adaptive system identification.

It was shown in [11] that, under some simplifying statistical
assumptions, we have

cv(n+ 1) = Gcv(n) + η2Jmin rκκ (4)

with rκκ the lexicographic representation of the correlation
matrix Rκκ = E{κω(n)κ>ω(n)} of the kernelized input, and
Jmin the minimum MSE corresponding to the optimum weight
vector αopt = R−1κκ pκd, where pκd = E{d(n)κω(n)} is the
cross-correlation vector between κω(n) and d(n). Matrix G,
of size (M2 ×M2), is defined as

G =
[
h11 h12 . . . h1M . . . hMM

]
(5)

with h`p the (M2 × 1) lexicographic representation of the
matrix H`p, given by

if (i = j)

[Hii]ii = 1− 2ηrmd + η2µ1

[Hii]pp = η2µ3 p 6= i

[Hii]ip = η2µ2 − ηrod = [Hii]pi p 6= i

[Hii]p` = η2µ4 otherwise

if (i 6= j)

[Hij ]ij = [Hij ]ji = 1
2 (1− 2ηrmd + 2η2µ3)

[Hij ]pp = η2µ4 p 6= i, j

[Hij ]ii = [Hij ]jj = η2µ2 − ηrod

[Hij ]ip = [Hij ]pi = 1
2 (2η2µ4 − ηrod) p 6= i, j

[Hij ]pj = [Hij ]jp = 1
2 (2η2µ4 − ηrod) p 6= i, j

[Hii]p` = η2µ5 otherwise

where the µk’s are the fourth-order moments of the kernelized
input defined as

µ1 := E{κ4ωi
(n)}

µ2 := E{κ3ωi
(n)κωj

(n)}
µ3 := E{κ2ωi

(n)κ2ωj
(n)}

µ4 := E{κωi
(n)κωj

(n)κ2ω`
(n)}

µ5 := E{κωi
(n)κωj

(n)κω`
(n)κωp

(n)}.

(6)

Parameters rmd and rod are the main-diagonal and off-diagonal
entries of the correlation matrix Rκκ given by

rmd := E{κ2ωi
(n)}

rod := E{κωi
(n)κωj

(n)}. (7)

As extensively explained in [11], parameters µk’s, rmd and rod
can be calculated theoretically in the case of i.i.d. Gaussian
inputs u(n). Their value depends on the moments of u(n),
the filter length M , and the kernel bandwidth ξ.

Before concluding this section, let us introduce the follow-
ing inequalities relating the fourth-order moments µk and the
entries of the correlation matrix Rκκ, which will be used in
the sequel. Using Hölder’s inequality, it can be shown that

µ5 ≤ µ4 ≤ µ3 ≤ µ2 ≤ µ1, (8)

and, by virtue of the Chebyshev’s sum inequality

r2md ≤ µ3. (9)

We refer the reader to the proofs in [11].
We shall now examine the conditions for convergence

of the Gaussian KLMS algorithm using model (4). It can
be checked that the matrix G is symmetric. This implies
that it can be diagonalized, and all its eigenvalues are real-
valued. A necessary and sufficient condition for convergence
is that all these eigenvalues lie inside (−1, 1) [9, Section 5.9].
First, we shall consider a sufficient condition based on the
Gerschgorin disk theorem. After arguing that these conditions
are too restrictive, we provide an easy-to-handle necessary and
sufficient condition for convergence, based on a conjecture.

A. Gerschgorin disk conditions

The eigenvalues of matrix G lie inside the union of Ger-
schgorin disks [4], each disk being centered at a diagonal
element of G, with radius given by the sum of the absolute
values of the remaining elements of the same row. A sufficient
condition for stability of (4) is thus given by

|[G]ii|+
M2∑
`=1
` 6=i

|[G]i`| < 1 (10)

for i = 1, . . . ,M2. The definition of G shows that the rows
of this matrix have only two distinct forms, in the sense that
each row of G has the same entries as one of these two
distinct rows, up to a permutation. This implies that only two
Gerschgorin disks can be distinguished. Using (8), it can be
shown that all the entries of G are positive except possibly
for [G]i` = η2 µ2 − η rod and [G]i` = 1

2 (2 η2 µ4 − η rod).
Expression (10) thus leads to only two sufficient conditions,
defined as follows for M ≥ 3,

λ(1)ger := (1− 2ηrmd + η2µ1) + (M − 1)η2µ3

+ 2(M − 1)|η2µ2 − ηrod|
+ (M − 1)(M − 2)η2µ4 < 1,

(11a)



TABLE I
STABILITY RESULTS FOR EXAMPLE 1

ξ M ηmax, ηconj ηger

0.0075 17 1.70 0.29
0.01 13 1.70 0.30
0.025 6 1.66 0.22
0.05 3 1.80 1.47

TABLE II
STABILITY RESULTS FOR EXAMPLE 2

ξ M ηmax, ηconj ηger

0.05 7 2.33 −
0.065 4 2.49 0.68
0.075 3 2.60 1.92
0.125 2 2.39 2.32

TABLE III
STABILITY RESULTS FOR EXAMPLE 3

ξ M ηmax, ηconj ηger

0.15 11 1.17 −
0.20 7 1.19 −
0.25 5 1.24 −
0.30 3 1.59 −

λ(2)ger := (1− 2ηrmd + 2η2µ3) + 2|η2µ2 − ηrod|
+ (M − 2)η2µ4

+ 2(M − 2)|2η2µ4 − ηrod|
+ (M − 2)(M − 3)η2µ5 < 1.

(11b)

The intersection of these two conditions provides the following
sufficient condition for stability

λger(η,M, ξ) := max{λ(1)ger , λ
(2)
ger } < 1. (12)

which avoids multiple time consuming diagonalizations of the
matrix G. Solving λger = 1 to derive upper-bounds with
respect to η, M or ξ requires (basic) numerical methods.
We observe that λ

(1)
ger and λ

(2)
ger are piecewise polynomial

functions in η. Because they are both equal to 1 for η = 0,
their derivative at the origin must be strictly negative for
the conditions (11a)–(11b) to be meaningful. This leads to
the condition (M − 1)rod < rmd, which is very restrictive.
Application examples in Section III show situations where the
Gerschgorin disk test is ineffective.

B. Conjectured necessary and sufficient condition

It can be shown that there exist θ1, θ2 ∈ R not simultane-
ously equal to zero, so that the (M2 × 1) vector w with i-th
entry defined by{

wi = θ1, if (i− 1) ∈MZ
wi = θ2, otherwise,

(13)

is an eigenvector ofG. The conjecture is that the largest eigen-
value of G in absolute value is associated to an eigenvector of
the form (13). While we currently have no proof, we have not
numerically experienced any contradiction. The difficulty in
proving this result is that it does not only rely on the specific
structure of the matrix, but also on the expression and/or some
order relations of its entries such as (8).

Due to symmetries in matrixG, the eigensystemGw = λw
of M2 linear equations in unknowns θ1 and θ2 reduces to the
equation det(A − λI) = 0, where A is the (2 × 2) matrix
whose entries aij are given by

a11 = η2 (µ1 + (M − 1)µ3)− 2ηrmd + 1

a12 = (M − 1)
(
η2(2µ2 + (M − 2)µ4)− 2ηrod

)
a21 = η2 (2µ2 + (M − 2)µ4)− 2ηrod

a22 = η2 (2µ3 + 4(M − 2)µ4 + (M − 2)(M − 3)µ5)

− 2η(rmd + (M − 2)rod) + 1

(14)

Solving the above-mentioned equation yields the following
two real-valued eigenvalues

λ =
1

2
(a11 + a22 −

√
∆)

λ′ =
1

2
(a11 + a22 +

√
∆)

(15)

with ∆ = (a11−a22)2+4(M−1) a221. This finally implies the
conjectured necessary and sufficient condition for convergence

λconj(η,M, ξ) :=
1

2
(|a11 + a22|+

√
∆) < 1. (16)

Obviously, exploiting this condition is much less computation-
ally demanding than diagonalizing the (M2×M2) matrix G,
and checking if its eigenvalues lie inside (−1, 1). In addition,
it provides an upper-bound that can be easily studied even if
solving λconj = 1 with respect to η, M or ξ requires (basic)
numerical methods.

III. EXPERIMENTATIONS

We shall now consider the experiments described in [11],
and compare the upper bounds λger and λconj provided by the
Gerschgorin disk conditions (11a)–(11b), and the (conjectured)
necessary and sufficient condition (16), respectively. We shall
also check that λconj matches the estimated largest eigenvalue
λmax in absolute value of the matrixG. Let ηger, ηconj and ηmax

be the maximum step sizes provided by these three approaches,
for fixed parameters M and ξ.

All the Matlab codes used in this paper are available on the
personal website of the first author: www.cedric-richard.fr

A. Experiment 1

We consider the problem studied in [10], for which

y(n) =
y(n− 1)

1 + y2(n− 1)
+ u3(n− 1) (17)

where the output signal d(n) = y(n) + z(n) is corrupted by a
zero-mean i.i.d. Gaussian noise z(n) of variance σ2

z = 10−4.
The input sequence u(n) is a zero-mean i.i.d. Gaussian se-
quence with standard deviation σu = 0.15.

Table I reports the maximum step sizes ηger, ηconj and ηmax,
for several values of M and ξ. It can be observed that the
condition imposed by the Gerschgorin disks is very restrictive
compared to the two others. Figure 2 (left) represents λger,
λconj and λmax as a function of η, with parameters M and
ξ defined as in the first row of Table I. It can be noticed
that the two latter superimpose perfectly. Figure 3 represents
the conjectured largest eigenvalue λconj of G as a function of
parameters η (left), M (middle), and ξ (right), in the vicinity
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Fig. 2. Comparison of the upper bounds (λ
(1)
ger , λ

(2)
ger ) and λconj provided by the Gerschgorin disk conditions (11a)–(11b), and the (conjectured) necessary

and sufficient condition (16), respectively, with the largest eigenvalue λmax of G in absolute value. The three experimental setups are described in the first
row of Table I (left), Table II (middle) and Table III (right).

of the stability limit defined by the first row of Table I. Finally,
Figure 4 (left) illustrates the convergence of the mean-square
error estimated by averaging over 500 runs. The step size was
arbitrarily chosen to be 1/3 of the maximum step size ηconj.
We encourage the reader to refer to [11] for an analysis of the
stochastic behavior of the KLMS algorithm.

B. Experiment 2

We now consider the nonlinear dynamic system identifica-
tion problem studied in [14]. The input signal is a sequence
of statistically independent vectors u(n) = [u1(n)u2(n)] with
correlated samples satisfying u1(n) = 0.5u2(n) +ηu(n). The
second component of u(n) is an i.i.d. Gaussian noise sequence
with variance σ2

u2
= 0.0156, and ηu(n) is a white Gaussian

noise with variance σ2
u1

= 0.0156. The nonlinear system under
study consists of the linear system with memory defined by

y(n) = u1(n)+0.5u2(n)−0.2 y(n−1)+0.35 y(n−2), (18)

and the nonlinear Wiener function

ϕy(n) =


y(n)

3(0.1 + 0.9 y2(n))1/2
if y(n) ≥ 0

−y2(n)(1− exp(0.7y(n)))

3
otherwise.

(19)

The signal d(n) = ϕy(n) + z(n) is corrupted by a zero-mean
i.i.d. Gaussian noise z(n) with variance σ2

z = 10−6. The initial
condition y(1) = 0 was considered in this example.

Table II reports the maximum step sizes ηger, ηconj and ηmax,
for several values of M and ξ. Observe in Figure 2 (middle)
that, with the experimental setup described in the first row of
Table II, no bound on η was provided by the Gerschgorin disk
condition (12). The reason is that (M − 1)rod < rmd is not
satisfied in this case, because rmd = 0.0439 and rod = 0.0088.
Finally, Figure 4 (middle) illustrates the convergence of the
mean-square error estimated by averaging over 500 runs. The
step size was arbitrarily chosen to be 1/3 of ηconj.

C. Experiment 3

Finally, as a third example, we considered the fluid-flow
control problem studied in [1], [15]. The input signal was a
sequence u(n) = [u1(n)u2(n)] of statistically independent

vectors with samples satisfying u1(n) = 0.5u2(n) + ηu(n).
The second component u2(n) is a i.i.d. Gaussian sequence
with variance σ2

u2
= 0.0625, and ηu(n) is a i.i.d. Gaussian

noise so that u1(n) has variance σ2
u1

= 0.0625. The nonlinear
system under study consists of the linear system

y(n) =0.1044u1(n) + 0.0883u2(n)

+ 1.4138 y(n− 1)− 0.6065 y(n− 2)
(20)

and the nonlinear Wiener function

ϕy(n) =
0.3163 y(n)√

0.10 + 0.90 y2(n)
. (21)

The signal d(n) = ϕy(n) + z(n) is corrupted by a zero-mean
i.i.d. Gaussian noise z(n) with variance σ2

z = 10−6. The initial
condition y(1) = y(2) = 0 was considered in this example.

It can be noticed in Table III that no upper bound for the
step size η was provided by the Gerschgorin disk condition.
As previously, condition (M − 1)rod < rmd was not satisfied
in these cases. Figure 2 (right) represents λger, λconj and λmax

as a function of η, with parameters M and ξ defined as in the
first row of Table III. It can be noticed that λconj and λmax

superimpose perfectly. Finally, Figure 4 (middle) illustrates the
convergence of the mean-square error estimated by averaging
over 500 runs. The step size was arbitrarily chosen to be 1/3
of the maximum step size ηconj.

IV. CONCLUSION

The kernel least-mean-square filter has become a popular
algorithm in nonlinear adaptive filtering due to its simplicity
and robustness. One of our recent works has brought a new
contribution to the analysis of this approach by providing the
first analytical models of convergence of the Gaussian kernel
least-mean-square algorithm. Checking its stability can be
computationally expensive as it needs to calculate the extreme
eigenvalues of large matrix, for each candidate parameter set-
ting. To circumvent this drawback, in this paper, we presented
two easy-to-handle conditions. The first one is a sufficient
condition based on the Gerschgorin disk theorem. The second
one is a conjectured necessary and sufficient condition for
convergence that allows to greatly simplify calculations.
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