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ABSTRACT number of surrogates required to analyze and test stationar
ity, resulting in an increased computation time and memory
pace. This drawback comes mainly from the relative lack of
nowledge about the statistical properties of surrogatdoé
their time-frequency distributions.

In the spirit of [5], where the authors studied the proba-
bility density function (pdf) of the spectrogram of corrield
Gaussian signals, we derive here the asymptotic pdf of the
spectrogram of surrogates. It allows us to propose a statlist

An operational framework is developed for testing stationa
ity relatively to an observation scale. The proposed methoE
makes use of a family of stationary surrogates for definieg th
null hypothesis of stationarity. As a further contributtorthe
field, we demonstrate the strict-sense stationarity ofgate
signals and we exploit this property to derive the asymptoti
distributions of their spectrogram and power spectral iigns

A statistical hypothesis testing framework is then propldse test for detecti ati itv without dt
check signal stationarity. Finally, some results are shown estior te eC_I_'E_g nonskad|onar| %W' | ou an_;(; nee otgmtme
a typical model of signals that can be thought of as stationa surrogates. 1his work does not only provide important new

or nonstationary, depending on the observation scale used. |nS|ghts in time-frequency analysis of the surrogate_ digna
but it also offers a means to understand the theoretical-back

Index Terms— Time-frequency analysis, stationarity ground. The remainder of the paper is organized as follows.

test, surrogate, spectrogram, probability density fumcti In Sect. 2, the general framework of the proposed approach is
outlined, detailing the time-frequency rationale of thetinoel
1. INTRODUCTION and motivating the use of surrogate data for characterthieag

null hypothesis of stationarity. The strict-sense statidy of
Time-frequency representations provide a powerful tool fosurrogate signals is also demonstrated here. This projserty
nonstationary signal analysis and classification, andrcave exploited in Sect. 3 to derive an asymptotic statistical etod
wide range of applications [1]. Considering stationarity i for their spectrogram. A statistical hypothesis testiragfe-
central in many signal processing applications, whichesis work is then proposed to check signal stationarity. Some sim
the operationally important issue of how testing statigpar ulation results are shown in Sect. 4 on a typical model of
Recently, the authors have made use of a family of stationargignals that can be thought of as stationary or nonstatpnar
surrogate signals for defining the null hypothesis of statio depending on the observation scale.
arity and, based upon this information, to derive tests atper
ing in the time-frequency domain. Two classes of approaches
have been considered in [2, 3]. The first one uses suitably
chosen distances between local and global spectra. The sec-
ond one is implemented as a one-class classifier, where tim

frequency features are extracted from the surrogates ergen ties with respect to time shifts. This theoretical defimitaan

ate a learning set for stationarity. In [4], time-frequetearn- . .

. . . . be loosely relaxed so as to encompass stationarity over some

ing machines have been used to test stationarity, basedsnon .~ "~ . i .
: limited interval of observation. In order to test this praygit

class support vector machine and the set of surrogates. This

approach takes full advantage of the use of the whole time.-- been proposed in [2, 3] that a reference of stationagity b
frzpuenc representations ng surrogates. compared with thdefined directly from the signal itself. The procedure csissi

9 yrep gates, par of generating a family of stationarized signals which hdnee t
arbitrary time-frequency features considered previaousiy

same psd as the initial signal. For an identical marginat-spe
fortunately, all these methods are often hampered by the lar P gnal. For 9 P
trum over the same observation interval, nonstationary pro

This work was supported by ANR-07-BLAN-0191-01 STARAC. cesses are expected to differ from stationary ones by some
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2. STATIONARIZATION VIA SURROGATES

g'tationarity refers to a strict invariance of statisticedbyger-
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spectrogram of the signal to be tested w2
172

-12 -12
0

512 1024 0 512 1024
time time

Fig. 1. Spectrogram of the FM signal (12) in the case wHEre- T; (left), and empirical mean of the spectrogram of its
surrogates (right).

structured organization in time, hence in their time-freigey  the main contributions of this study. Let us derive the time-
distribution. Surrogate data technique [6] is an appraeria shift invariance of thd. + 1 order cumulant

solution to generate a family of stationarized signals;esiin

destroys the time-varying structures in the signal phastewh c(tity,.oitr) =

keeping its power spectral density (psd) unchanged. In-prac cum(s(t), s(t+t1), ..., s(t+1tL)F)

tice, this is achieved by keeping unchanged the magnitude of . y
its Fourier transform, and replacing its phase by a i.i.de.on wheree; = +1 andz® = 2™ whene; = —1. We suggest the

More formally, let us consider the continuous-time sig(a) re;alde(rjto rﬁferr], e.g., 71, fc|>r a deftalled c:escrlptclion oftils
with Fourier transform () such that related to high-order analysis of complex random processes

Using the multilinearity of the cumulants, we have

X(f) = /a:(t) eI It gt (1) cltta,...tr)

A(fo) -+ Alfr) k(f pd2mt Sk et ed2m >k eitifidf
The surrogate signals(t) of x(¢) are constructed from the / o) SR
magnitudeA(f) = | X (f)| as follows: with f = (fo, ..., f1) and

s(t) = /A(f) V() gi2n it dr 2 &(f) :Cum(ejsolp(f(ﬁ,....,ejeL\I’(fL)).

Note that if one variablg; in f is different from the others,
with U(f) an i.i.d. phase. See illustration in Fig. 1. Let the corresponding random variabi&o¥ (/) is independent
®y(u) = E[e’7"] be the characteristic function &f. We  from the others and(f) = 0. Consequently the joint cumu-
will assume in the sequel that lant of the surrogate simplifies to

Dy (k) =0, Vk € Z*. @) bty tn) =

_ _ _ o A( L+ jemft Sk e g2nf R ety
Simple examples are random variables uniformly distridute LA / (/) ¢ ne

over|[—m, 7|, @y (u) = sin.(7u), or the sum ofd indepen-

dent such random variables for whidhy (u) = sin? (zu).

Finally, it is noteworthy that the sum of two independentran
dom variables where at least one verifies (3) also verifies (3) KLl = Z(|7T| -~ 1),(_1)|ﬂ71 H Oy(, pe) (4
= : icB ¢

wherery 1 = cum(ef¥ ... e/cL¥). Application of the
Leonov-Shiryaev formula to this cumulant leads to

g Bem

2.1. Strict-sense stationarity wherer runs through the list of all partitions 4, ..., L}

Recently in [3], the authors have demonstrated that sutesga @nd B runs through the list of all blocks of the partition

are wide-sense stationary signals, that s, their firstendred ~ This expression can be simplified using assumption (3) and
order moments are time-shift invariant. We shall now estabfoting thaty _, ; ; € Z. Consequently (3, g €;) is non

lish the strict-sense stationarity of surrogates, whignis of ~ 2€r0, and necessary equal to 1, onlyif_; ¢; = 0.

1Since a stochastic process cannot be represented as ardt&odaier e In the case wheré is even, whatever, at least one

integral, note that the Cramer representation should beidered. However, block B € 7 has an odd cardinal. For this block, we
the use of Fourier transform will be preferred for notaticsimplicity. have) . 5 €; € Z* and, consequently,, 1 = 0.
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e If Lis odd, the productin (4) is non zero, and necessar3.1. Asymptotic distribution of the spectrogram
ily equals 1, only when all the blocki of the partition
verifiesy ", pe; = 0. Sincey ; Sicp e = doro €
this product is non zero if, and only if,:fzo € = 0.

We define the spectrografi{n, k) of the N-length surrogate
signals(n) as
2

{—n o 0k
As a conclusion, high-order cumulants of the surrogate S(n, k) = ZS(f)w( K ) eI @)
signal s(t) are non-zero only i]‘ZiL:O e; = 0. This implies ¢

thats(t) is a circular complex random signal. Moreover, SUb-wherew(u) vanishes foftu| > 1, andK < N the length of

stitution of the constraintin (4) leads to the discrete Fourier transform. The sigrét) being strictly
stationary, the statistical properties$(fn, k) are independent
cltyty, ... tL) = KLyt /A(f)LH eI2mf i et df (5) ofn. Forthis reason, we will focus in the sequel on

2
14 otk
- —J2T
;s(/)w<K) e
The above expression coincides with the modified peri-

odogram ofs(n), whose asymptotic distribution has been ex-

The previous expression of the cumulant makes it possible gnsively studied in the literature. In [8], Theorem 5.2h&
compute thel, order polyspectra of surrogate signals. The@Symptotic distribution of(0, k) asK tends to infinity is de-
polyspectra is defined as tHedimension Fourier transform fived under the assumption thet) is strictly stationary with

(8)

which proves that surrogates are strict-sense stationary. 5(0,k) =

2.2. Polyspectra

of the cumulants, namely, absolutely summable cumulants of all orders.
The strict-sense stationarity of(n) has been proved
S(fi,..., fr) above. The absolute summability of the cumulants is essen-
B tially required as a sufficient condition for the existentéhe
= // cltyty, ... tp)e 2Tz fiti gy dty, polyspectra which, as seen in the previous section, are per-
. fectly defined for surrogates. Consequently, we will assume
41 o (fi—ei )t for sufficiently largeK that the distribution of(n, k) can be
= RL+1 /AU) i <H/€ parfimed) dti) df approximated by the asymptotic distributiorgﬁto? k). In
il particular, givem, the S(n, k) are (asymptotically) indepen-
— /A(f)L+1 <H5(fi B 5if)> df dentfork +1 # 0 [K] andk # 0 [K]. Moreover, we have
i=1 S(n, k) ~ s A(k)? X3 9)

Hence, the only non-zero values of the polyspectra areddcat whereA(k)? is the psd ofs(n) andn;, = 3=, w(¢/K)?.
overtheline{(e1 f,...,erf), f € R} with
3.2. Test statistics

_ L+1
Slef,- o enf) = rraAlf) ©) Let us now define a “normalized” instantaneous poRefs)
For L. = 1, note that the above equation leads to the surrogaf%S follows S(n, k)
psdS(f) = A(f)?, which is obviously equal to the psd of P,(s) = Z T’(k)g (10)
the original signal. This result also shows that, among sta- ) o

tionary signals, surrogates are only specific via their sdeo Independence with respect to and (9) implies that the
order characteristics. This justifies the use of secone+ord marginal distribution ofP, is x3,. Choosing parametei

statistics, in the next section, to test stationarity. sufficiently large, we can use the standard approximati@n of
The above properties have been derived in the continuoi-square distribution

time case. They could have been considered in the discrete P,(s) — 2K

time case, which justifies their use as described below. Tu(s) = —vik N(0,1). (11)

As a consequence, we propose to reject the hypothesis of
3. TESTING STATIONARITY WITH SURROGATES stationarity forz(n) if the normal distribution hypothesis

of T,,(x) is rejected. This can be implemented via the
The purpose of this section is to derive a test statisticgdab e Kolmogorov-Smirnov test, here applied to undersampled val
uate the stationarity of any discrete time sigméh). This  ues ofT,(z) with respect ton in order to ensure their ap-
composite test is based on the comparison of the second-ord@oximate independence. The correlation time delay(af)
characteristics of the spectrogramagfn) with the spectro- and the length of the window(n) should be considered to
gram of its surrogates. perform this downsampling efficiently.
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Fig. 2. Histograms ofS(n, k)/n2 A(k)? (left) andT,, (right) constructed fron3000 Sljrrogate signals. Both are superimposed

to the statistical models (9) and (11), respectively.

4. ILLUSTRATION

statistically by a class of surrogate signals which all elihe

_ _ same average spectrum as the analyzed signal. We demon-
To test our method, we used the same FM signal as in [2ktrated the strict-sense stationarity of surrogates anexwe

While not covering all the situations of nonstationarityist
signal gives meaningful examples. It is modeled by

x(n) = sin 27 (fon+msin(27n/Ny))+e(n), n € N (12)

withm < 1, fo the central frequency of the FM\ its period,
ande(n) a zero-mean white Gaussian noise. Based on th
relative values ofV, and the signal duratiofV, three cases
can be distinguished, see [2] for more detalils:

ploited this property to derive the asymptotic distribugaf
their spectrogram and power spectral density. A statidtica
pothesis test was finally presented to check signal stattgna
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