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Wireless ad-hoc sensor networks have emerged as an iimgrastl important research area in the last few years. They
rely on sensor devices deployed in an environment to sugpoging and monitoring, including temperature, humiditytion,
acoustic, etc. Low cost and miniaturization of sensorslireséimited computational resources, power and commuitinat
capacities. Consequently, wireless ad-hoc sensor nestwedkiire collaborative execution of a distributed task targe set of

sensors, with reduced communication and computation burde

In this paper, we consider the problem of modeling physib@nmmena such as temperature field distributions, and track
their evolution. Many approaches have been proposed indghalgprocessing literature to address this issue wittaboltative
sensor networks. In the framework of distributed inferemith parametric models, focus was clearly put on deterngjmiow
the channel capacity limits the quality of estimates. Seg, El] and references inside. Model-based techniques aiso
exploited to compress the data based on their temporal atidspedundancy [2]. Since they do not depend on some arpitr
modeling assumptions, applications of wireless sensawar&ts provide a strong motivation for the use of nonparaimetr
methods for decentralized inference. See [3] for a surveyd@tindependent methods based on kernel machines harlec
been investigated. In particular, a distributed learnimgtegy has been successfully applied to regression inegsesensor

networks [5]. In this paper, we take advantage of this franr&wo derive a new approach.

Kernel-based methods have gained wide popularity overastediecade. Initially derived for regression and classitioa
with support vector machineshey include classical techniques such as least-squagti®ods and extend them to nonlinear
functional approximation. We wish to determine a functigt{z) defined on the area of interektthat best models a distribu-
tion such as a temperature field. The latter is learned franirttormation coupling sensor locations and measureméihis.
information from theV sensors located at, € X which provide measurements € R, withi = n,..., N, is combined in
the set of pairg (x1,d1), ..., (xn,dn)}. Consider areproducing kernet X x X — RR. Let us denote by its reproducing
kernel Hilbert space (RKHS) with inner produet -)4,. This means that every functianof 7 can be evaluated at anye X
by ¥ (x) = (¥, kz)#, Wherer, denotess(-, x). This allows us to writes(x;, ;) = (ka,, kz,), Which defines the repro-

ducing property. One of the most widely used kernel is thesSianm kernek(z;, z;) = o~ ll@i=2;l?/20® \ith o the kernel



bandwidth. We seek the optimaP that minimizes the following global cost function
N
J(@) =) Eli(@n) - duf?,
n=1

thatis,J(¢) = ij:l E|{¢, ke, )% — dn|? using the reproducing property. The cost functitinb) can be rewritten as follows,
forany nodet € {1,..., N},
N
J() = (@) + D Ju(¥)

n=1

n£k
with Ji(¢) = ZneNk en kB, Kz, )2 — dyn|? the local cost function, andl;, the set of neighbors of senslr Here,c,, 1, is
the (n, k)-th component of”, which satisfies the following constraints; , = 0if n € M, C1 =1 and1"C = 1. Letus

write ¢ = argminyey J, (). Finally, it can be shown that it is equivalent to minimiz@p) or the following cost function

N
TEW) = > cnnBl(, Kz, ) — dnl” + >l — 4013,

neNy z;]lc

Minimizing J{(¢)) requires the nodes to have access to global informatipn To facilitate distributed implementations,

consider the relaxed local cost function
TEW) = > cak Bl e )n —dal>+ D bl —v5l%
neNy neNy /{k}

where¢ is now the best estimate available at nedeThe iterative steepest-descent approach for minimiZj{@) can be

expressed in the following form
Yhyi = ki1 — gvjzi(wk,iq)
with
VI (k1) = D 200k E (Cric1(®a) —dn) B, + Y 2bun(hi1 —95)

neN; neNk/{k}
Incremental algorithms are useful for minimizing sums ofiwex functions. They consist of iterating sequentially rosach

sub-gradient, in some predefined order. This leads to thafislg possible distributed learning strategies.

1. Adapt-then-Combinekernel LMS

For each time instanitand each nodg, repeat
Ohi = Vkyim1 = [k D e, Cnok (Vkyi—1(Tn) — dni) Kz,

ki = D onen, On.k Phyi

2. Combine-then-Adapt kernel LM S

For each time instanitand each nodg, repeat
Dhi—1 = D pen, bk k-1

Vhkyi = Phim1 — [k D_penr, Cnk (Bk,i—1(Tn) — dn i) Ka,,



Fig. 1. Snapshots of the evolution of the estimated temperature=at 00 (left), ¢ = 150 (center) and = 200 (right). Sensors are shown

with small blue dots. Big red dots represent the sensorg@fdst according to a criterion that will be described indhmera-ready paper.

Both strategies consist of adapting local regressors asattasurements, and combining them if they are in the nertlobd
of each other. Measurements and regressors are not exchiaeilyeeen the nodesd, , = J, . In what follows, each:, j,
andb,, ,, were set tdN|. To illustrate the relevance of our technique, we consitlerelassical application of estimating a

temperature field governed by the partial differential eigua
% —cV2iO(x,t) = Q(z, t).

Here©(zx,t) denotes the temperature as a function of space and tiisea medium-specific parametér?, is the Laplace
spatial operator, an@(x, t) is the heat added. We studied the question of monitoring\bkigon of the temperature field
distribution in a square region with open boundaries andlgotivity ¢ = 0.1, usingN = 100 sensors deployed randomly on
a grid. Given some measuremetits; = ©(xy,t;) + 2,4, With z,, ; a i.i.d. Gaussian noise, the problem was to estimate the
temperatur®(x,,, t;) viay; (z,,) based on the Gaussian kernel.

Two heat sources of intensiB00 W were placed within the region, the first one was activatedhft = 1 to ¢t = 100,
and the second one from= 100 to ¢ = 200. The experimental setup will be described in the camerdyrpaper. Fig. 1
illustrates the estimated temperature field distributiodiferent times by the Adapt-then-Combine strategy, fewesal values
of |[Vx|. The convergence of the proposed algorithm is illustrate8ig. 2 where we show the evolution over time of the
normalized mean-square prediction error. The abrupt ahémbeat sources at= 100 is clearly visible, and highlights the

convergence behavior of the proposed algorithm. Compaxisth an iterative distributed gradient algorithm cleashows a
faster convergence speed.
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Fig. 2. Learning curve obtained from= 1 to ¢ = 200. Timet = 100 corresponds to a system modification.
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