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Wireless ad-hoc sensor networks have emerged as an interesting and important research area in the last few years. They

rely on sensor devices deployed in an environment to supportsensing and monitoring, including temperature, humidity,motion,

acoustic, etc. Low cost and miniaturization of sensors involve limited computational resources, power and communication

capacities. Consequently, wireless ad-hoc sensor networks require collaborative execution of a distributed task on alarge set of

sensors, with reduced communication and computation burden.

In this paper, we consider the problem of modeling physical phenomena such as temperature field distributions, and track

their evolution. Many approaches have been proposed in the signal processing literature to address this issue with collaborative

sensor networks. In the framework of distributed inferencewith parametric models, focus was clearly put on determining how

the channel capacity limits the quality of estimates. See, e.g., [1] and references inside. Model-based techniques were also

exploited to compress the data based on their temporal and spatial redundancy [2]. Since they do not depend on some arbitrary

modeling assumptions, applications of wireless sensor networks provide a strong motivation for the use of nonparametric

methods for decentralized inference. See [3] for a survey. Model-independent methods based on kernel machines have recently

been investigated. In particular, a distributed learning strategy has been successfully applied to regression in wireless sensor

networks [5]. In this paper, we take advantage of this framework to derive a new approach.

Kernel-based methods have gained wide popularity over the last decade. Initially derived for regression and classification

with support vector machines, they include classical techniques such as least-squares methods and extend them to nonlinear

functional approximation. We wish to determine a functionψo(x) defined on the area of interestX that best models a distribu-

tion such as a temperature field. The latter is learned from the information coupling sensor locations and measurements.The

information from theN sensors located atxn ∈ X which provide measurementsdn ∈ lR, with i = n, . . . , N , is combined in

the set of pairs{(x1,d1), . . . , (xN ,dN )}. Consider a reproducing kernelκ : X ×X → lR. Let us denote byH its reproducing

kernel Hilbert space (RKHS) with inner product〈· , ·〉H. This means that every functionψ of H can be evaluated at anyx ∈ X

by ψ(x) = 〈ψ, κx〉H, whereκx denotesκ(·,x). This allows us to writeκ(xi,xj) = 〈κxi
, κxj

〉H, which defines the repro-

ducing property. One of the most widely used kernel is the Gaussian kernelκ(xi,xj) = e−‖xi−xj‖
2/2σ2

with σ the kernel



bandwidth. We seek the optimalψo that minimizes the following global cost function

J(ψ) =

N∑

n=1

E|ψ(xn)− dn|
2,

that is,J(ψ) =
∑N
n=1

E|〈ψ, κxn
〉H−dn|2 using the reproducing property. The cost functionJ(ψ) can be rewritten as follows,

for any nodek ∈ {1, . . . , N},

J(ψ) = Jk(ψ) +
N∑

n=1

n6=k

Jn(ψ)

with Jk(ψ) =
∑

n∈Nk
cn,kE|〈ψ, κxn

〉H − dn|2 the local cost function, andNk the set of neighbors of sensork. Here,cn,k is

the(n, k)-th component ofC, which satisfies the following constraints:cn,k = 0 if n 6∈ Nk, C11 = 11 and11⊤C = 11⊤. Let us

writeψon = argminψ∈H Jn(ψ). Finally, it can be shown that it is equivalent to minimizeJ(ψ) or the following cost function

Jℓk(ψ) =
∑

n∈Nk

cn,kE|〈ψ, κxn
〉H − dn|

2 +

N∑

n=1

n6=k

‖ψ − ψon‖
2

Hn

Minimizing Jℓk(ψ) requires the nodes to have access to global informationψon. To facilitate distributed implementations,

consider the relaxed local cost function

Jrk (ψ) =
∑

n∈Nk

cn,kE|〈ψ, κxn
〉H − dn|

2 +
∑

n∈Nk/{k}

bn,k‖ψ − ψon‖
2

H

whereψon is now the best estimate available at noden. The iterative steepest-descent approach for minimizingJrk (ψ) can be

expressed in the following form

ψk,i = ψk,i−1 −
µ

2
∇Jrk (ψk,i−1)

with

∇Jrk (ψk,i−1) =
∑

n∈Nk

2 cn,kE (ψk,i−1(xn)− dn)κxn
+

∑

n∈Nk/{k}

2 bn,k(ψk,i−1 − ψon)

Incremental algorithms are useful for minimizing sums of convex functions. They consist of iterating sequentially over each

sub-gradient, in some predefined order. This leads to the following possible distributed learning strategies.

1. Adapt-then-Combine kernel LMS

For each time instanti and each nodek, repeat

φk,i = ψk,i−1 − µk
∑
n∈Nk

cn,k (ψk,i−1(xn)− dn,i)κxn

ψk,i =
∑

n∈Nk
bn,k φk,i

2. Combine-then-Adapt kernel LMS

For each time instanti and each nodek, repeat

φk,i−1 =
∑

n∈Nk
bn,k ψk,i−1

ψk,i = φk,i−1 − µk
∑
n∈Nk

cn,k (φk,i−1(xn)− dn,i)κxn
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Fig. 1. Snapshots of the evolution of the estimated temperature att = 100 (left), t = 150 (center) andt = 200 (right). Sensors are shown

with small blue dots. Big red dots represent the sensors of interest according to a criterion that will be described in thecamera-ready paper.

Both strategies consist of adapting local regressors basedon measurements, and combining them if they are in the neighborhood

of each other. Measurements and regressors are not exchanged between the nodes ifcn,k = δn,k. In what follows, eachcn,k

andbn,k were set to|Nk|. To illustrate the relevance of our technique, we considered a classical application of estimating a

temperature field governed by the partial differential equation

∂Θ(x, t)

∂t
− c∇2

x
Θ(x, t) = Q(x, t).

HereΘ(x, t) denotes the temperature as a function of space and time,c is a medium-specific parameter,∇2

x
is the Laplace

spatial operator, andQ(x, t) is the heat added. We studied the question of monitoring the evolution of the temperature field

distribution in a square region with open boundaries and conductivity c = 0.1, usingN = 100 sensors deployed randomly on

a grid. Given some measurementsdn,i = Θ(xn, ti) + zn,i, with zn,i a i.i.d. Gaussian noise, the problem was to estimate the

temperatureΘ(xn, ti) viaψi(xn) based on the Gaussian kernel.

Two heat sources of intensity200 W were placed within the region, the first one was activated from t = 1 to t = 100,

and the second one fromt = 100 to t = 200. The experimental setup will be described in the camera-ready paper. Fig. 1

illustrates the estimated temperature field distribution at different times by the Adapt-then-Combine strategy, for several values

of |Nk|. The convergence of the proposed algorithm is illustrated in Fig. 2 where we show the evolution over time of the

normalized mean-square prediction error. The abrupt change in heat sources att = 100 is clearly visible, and highlights the

convergence behavior of the proposed algorithm. Comparison with an iterative distributed gradient algorithm clearlyshows a

faster convergence speed.
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Fig. 2. Learning curve obtained fromt = 1 to t = 200. Time t = 100 corresponds to a system modification.
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