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Online Prediction of Time Series Data With Kernels
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Abstract—Kernel-based algorithms have been a topic of consid-
erable interest in the machine learning community over the last
ten years. Their attractiveness resides in their elegant treatment of
nonlinear problems. They have been successfully applied to pattern
recognition, regression and density estimation. A common char-
acteristic of kernel-based methods is that they deal with kernel
expansions whose number of terms equals the number of input
data, making them unsuitable for online applications. Recently,
several solutions have been proposed to circumvent this compu-
tational burden in time series prediction problems. Nevertheless,
most of them require excessively elaborate and costly operations.
In this paper, we investigate a new model reduction criterion that
makes computationally demanding sparsification procedures un-
necessary. The increase in the number of variables is controlled by
the coherence parameter, a fundamental quantity that character-
izes the behavior of dictionaries in sparse approximation problems.
We incorporate the coherence criterion into a new kernel-based
affine projection algorithm for time series prediction. We also de-
rive the kernel-based normalized LMS algorithm as a particular
case. Finally, experiments are conducted to compare our approach
to existing methods.

Index Terms—Adaptive filters, machine learning, nonlinear sys-
tems, pattern recognition.

I. INTRODUCTION

D YNAMIC system modeling has played a crucial role in
the development of techniques for stationary and non-

stationary signal processing. Most existing approaches focus
on linear models due to their inherent simplicity from concep-
tual and implementational points of view. However, there are
many practical situations, e.g., in communications and biomed-
ical engineering, where the nonlinear processing of signals is
needed. See extensive bibliography [1] devoted to the theory
of nonlinear systems. Unlike the case of linear systems which
can be uniquely identified by their impulse response, there is
a wide variety of representations to characterize nonlinear sys-
tems, ranging from higher-order statistics, e.g., [2], [3], to series
expansion methods, e.g., [4], [5]. Two main types of nonlinear
models have been extensively studied over the years: polyno-
mial filters, usually called Volterra series based filters [6], and
neural networks [7]. The Volterra filters can model a large class
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of nonlinear systems. They are attractive because their output
is expressed as a linear combination of nonlinear functions of
the input signal, which simplifies the design of gradient-based
and recursive least squares adaptive algorithms. One of their
primary disadvantages is the considerable number of parame-
ters to estimate, which goes up exponentially as the order of the
nonlinearity increases. With their parallel structure, neural net-
works represent the ultimate development of black box mod-
eling [8]. They are proven to be universal approximators under
suitable conditions, thus, providing the means to capture infor-
mation in data that is difficult to identify using other techniques
[9]. It is, however, well known that algorithms used for neural
network training suffer from problems such as being trapped
into local minima, slow convergence and great computational
requirements.

Since the pioneering works of Aronszajin [10], Aizerman
et al. [11], Kimeldorf and Wahba [12], [13], and Duttweiler
and Kailath [14], function approximation methods based on
reproducing kernel Hilbert spaces (RKHS) have gained wide
popularity [15]. Recent developments in kernel-based methods
related to regression include, most prominently, support vector
regression [16], [17]. A key property behind such algorithms is
that the only operations they require is the evaluation of inner
products between pairs of the input vectors. Replacing inner
products with a Mercer kernel provides an efficient way to
implicitly map the data into a high, even infinite, dimensional
RKHS and apply the original algorithm in this space. Calcula-
tions are then carried out without making direct reference to the
nonlinear mapping of input vectors. A common characteristic
in kernel-based methods is that they deal with matrices whose
size equals the number of data, making them unsuitable for
online applications. Several attempts have been made recently
to circumvent this computational burden. A gradient descent
method is applied in [18] and [19], while a RLS-like procedure
is used in [20] to update the model parameters. Each one is
associated with a sparsification procedure based on the matrix
inversion lemma, which limits the increase in the number of
terms by including only kernels that significantly reduce the
approximation error. These processes have reduced the com-
putational burden of the traditional approaches. Nevertheless,
they still require elaborate and costly operations, that limits
their applicability in real-time systems.

In this paper, we investigate a new model reduction criterion
that renders computationally demanding sparsification proce-
dures unnecessary. The increase in the number of variables is
controlled by the coherence parameter, a fundamental quantity
that characterizes the behavior of dictionaries in sparse approx-
imation problems. We associate the coherence criterion with a
new kernel-based algorithm for time series prediction, called
kernel affine projection (KAP) algorithm. We also derive the
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kernel normalized LMS (KNLMS) algorithm as a particular
case. The paper is organized as follows. In the first part, we
briefly review some basic principles of nonlinear regression in
RKHS. Next we show how to use the coherence parameter as
an alternative criterion for model sparsification, and we derive
its main properties. We then incorporate it into our KAP algo-
rithm, which includes as particular case the KNLMS algorithm.
Finally, a set of experiments illustrate the effectiveness of the
proposed method compared to other existing approaches.

II. PRINCIPLES OF NONLINEAR REGRESSION IN RKHS

A possible way to extend the scope of linear models to non-
linear processing is to map the input data into a high-dimen-
sional space using a nonlinear function , and apply linear
modeling techniques to the transformed data . The model
coefficients are then determined as the solution of the normal
equations written for the nonlinearly transformed input data.
Clearly, this basic strategy may fail when the image of is
a very high, or even infinite, dimensional space. Kernel-based
methods that lead manageable dimensions have been recently
proposed for applications in classification and regression prob-
lems. Well-known examples can be found in [15] and [21]. This
paper exploits the central idea of this research area, known as the
kernel trick, to investigate new nonlinear algorithms for online
prediction of time series. Next section briefly reviews the main
definitions and properties related to reproducing kernel Hilbert
spaces [10] and Mercer kernels [22].

A. RKHS and Mercer Kernels

Let denote a Hilbert space of real-valued functions on
a compact , and let be the inner product in .

Suppose that the evaluation functional defined by
is linear with respect to and bounded, for all in

. By virtue of the Riesz representation theorem, there exists a
unique positive definite function in , denoted
by and called representer of evaluation at , which
satisfies [10]

(1)

for every fixed . A proof of this may be found in [10].
Replacing by in (1) yields

(2)

for all , . Equation (2) is the origin of the now generic
term reproducing kernel to refer to . Note that can
be restricted to the span of because, ac-
cording to (1), nothing outside this set affects evaluated
at any point of . Denoting by the map that assigns to each
input the kernel function , (2) implies that

. The kernel then evaluates the inner product
of any pair of elements of mapped to without any explicit
knowledge of either or . This key idea is known as the
kernel trick.

Classic examples of kernels are the radially Gaussian kernel
, and the Laplacian

kernel , with the
kernel bandwidth. Another example which deserves atten-

tion in signal processing is the th degree polynomial kernel
defined as , with and

. The nonlinear function related to the latter
transforms every observation into a vector , in which
each component is proportional to a monomial of the form

for every set of exponents sat-
isfying . For details, see [23], [24], and
references therein. The models of interest then correspond to
th degree Volterra series representations.

B. Nonlinear Regression With Mercer Kernels

The kernel trick has been widely used to transform linear
algorithms expressed only in terms of inner products into non-
linear ones. Examples are the nonlinear extensions to the prin-
cipal components analysis [25] and the Fisher discriminant anal-
ysis [26], [27]. Recent work has been focussed on kernel-based
online prediction of time series [18]–[20], the topic of this ar-
ticle. Let be a kernel, and let be the RKHS
associated with it. Considering the least-squares approach, the
problem is to determine a function of that minimizes the
sum of squared errors between samples of the desired re-
sponse and the corresponding model output samples

, namely

(3)

By virtue of the representer theorem [12], [28], the function
of minimizing (3) can be written as a kernel expansion in
terms of available data

(4)

It can be shown that (3) becomes , where is
the Gram matrix whose th entry is . The solution
vector is found by solving the -by- linear system of equa-
tions .

III. A NEW MODEL REDUCTION METHOD

Online prediction of time series data raises the question of
how to process an increasing amount of observations and update
the model (4) as new data is collected. We focus on fixed-size
models of the form

(5)

at any time step , where the ’s form an -element subset
of . We call the dictionary, and the
order of the kernel expansion by analogy with linear transversal
filters. Online identification of kernel-based models generally
relies on a two-stage process at each iteration: a model order
control step that inserts and removes kernel functions from the
dictionary, and a parameter update step.

A. A Brief Review of Sparsification Rules

Discarding a kernel function from the model expansion (5)
may degrade its performance. Sparsification rules aim at identi-
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fying kernel functions whose removal is expected to have neg-
ligible effect on the quality of the model. An extensive litera-
ture addressing this issue in batch and online modes exists, see,
e.g. [29] and references therein. In particular, much attention has
been recently focused on least-squares support vector machines
since they suffer from the loss of sparsity due to the use of a
quadratic loss function [17]. In batch modes, this problem was
addressed by using pruning [30], [31] and fixed-size approaches
[17], [32], [33]. Truncation and approximation processes were
considered in online scenarios [29].

The most informative sparsification criteria use approximate
linear dependence conditions to evaluate whether the contribu-
tion of a candidate kernel function can be distributed over the
elements of the dictionary by adjusting their multipliers. In [34],
determination of the kernel function which is best approximated
by the others is carried out by an eigendecomposition of the
Gram matrix. This process is not appropriate for online appli-
cations since its complexity, at each time step, is cubic in the
size of the dictionary. In [20], the kernel function is
inserted at time step into the dictionary if the following con-
dition is satisfied

(6)

where is a unit-norm kernel,1 that is, for all .
The threshold determines the level of sparsity of the model.
Note that (6) ensures the linear independence of the elements
of the dictionary. A similar criterion is used in [18] and [19],
but in a different form. After updating the model parameters,
a complementary pruning process is executed to limit the in-
crease in the model order in [19]. It estimates the error induced
in by the removal of each kernel and discards those ker-
nels found to have the smallest contribution. A major criticism
that can be made of rule (6) is that it leads to elaborate and costly
operations with quadratic complexity in the cardinality of the
dictionary. In [18] and [19], the model reduction step is compu-
tationally more expensive than the parameter update step, the
latter being a stochastic gradient descent with linear complexity
in . In [20], the authors focus their study on a parameter up-
date step of the RLS type with quadratic complexity in . To re-
duce the overall computational effort, the parameter update and
the model reduction steps share intermediate results of calcula-
tions. This excludes very useful and popular online regression
techniques.

B. Redundant Dictionaries, Coherence and Babel Function

Coherence is a fundamental parameter to characterize a dic-
tionary in linear sparse approximation problems [35]. It was in-
troduced as a quantity of heuristic interest by Mallat and Zhang
for Matching Pursuit [36]. The first formal developments were
described in [37], and enriched for Basis Pursuit in [38] and

1Replace ���� ��� � with ���� ��� �� ����� ���� � in (6) if ���� ��� � is not unit-
norm.

[39]. In our kernel-based context, we propose to define the co-
herence parameter as

(7)
where is a unit-norm kernel (see footnote 1). The parameter

is then the largest absolute value of the off-diagonal entries
in the Gram matrix. It reflects the largest cross correlations in
the dictionary. Consequently, it is equal to zero for every or-
thonormal basis. A dictionary is said to be incoherent when is
small.

Now, consider the Babel function given by

(8)

where is a set of indices. Function is defined as
the maximum total coherence between a fixed kernel function

and a subset of other functions of the dic-
tionary. It provides a more in-depth description of a dictionary.
We note that for a dictionary with coherence , as

for any distinct and in this case. The
following proposition establishes a useful sufficient condition
for a dictionary of kernel functions to be linearly independent.

Proposition 1: Let be an arbitrary set
of kernel functions from a dictionary, and let be the
Babel function evaluated for this set. If , then
this set is linearly independent.

Proof: Consider any linear combination .
We have

where is the smallest eigenvalue of the Gram matrix .
According to the Geršgorin disk theorem [40], every eigenvalue
of lies in the union of the disks ,
each centered on the diagonal element of and with
radii for all . The normaliza-
tion of the kernel and the definition of the Babel function yield

. The result follows directly since
if .

If computation of becomes too expensive, the sim-
pler but somewhat more restrictive sufficient condition

can be used, since . The results
above show that the coherence coefficient (7) provides valuable
information on the linear independence of the kernel functions
of a dictionary at low computational cost. In the following we
show how to use it for sparsification of kernel expansions as an
efficient alternative to the approximate linear condition (6).

C. The Coherence-Based Sparsification Rule

Typical sparsification methods use approximate linear depen-
dence conditions to evaluate whether, at each time step , the
new candidate kernel function can be reasonably well
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represented by a combination of the kernel functions of the dic-
tionary. If not, it is added to the dictionary. To avoid the com-
putational complexity inherent to these methods, we suggest in-
serting into the dictionary provided that its coherence
remains below a given threshold , namely

(9)

where is a parameter in [0,1[ determining both the level of
sparsity and the coherence of the dictionary. We shall now show
that, under a reasonable condition on , the dimension of the
dictionary determined under rule (9) remains finite as goes to
infinity.

Proposition 2: Let be a compact subspace of a Banach
space, and be a Mercer kernel. Then, the
dimension of the dictionary determined under the sparsification
rule (9) with is finite for any sequence .

Proof: From the compactness of and continuity
of , we know that is com-
pact. This implies that a finite open cover of -balls of
this set exists. We observe that, under (9), any two kernel
functions and in the dictionary verify

. Then,
the number of such balls is finite.

The above proposition implies that the computational cost
per time-step of algorithms implementing the strategy (9) be-
comes independent of time after a transient period. After such
period, the computational cost depends only on the cardinality

of the final dictionary, which is a function of the threshold
. For instance, we set in the numerical experiments pre-

sented in Section V so that never exceeds a few tens. Since
the proposed sparsification rule is an alternative to the approx-
imate condition (6), it is of interest to establish a connection
between that condition and rule (9). We do this in the following
proposition.

Proposition 3: Let be kernel
functions selected by the coherence-based rule (9). If

, then the norm of the projection of
onto the span of the other kernel functions is less than
or equal to .

Proof: Let denote the span of
and let be the projection of the kernel
function onto . The norm of
is the maximum, over all the unit functions of

, of the inner product . Writing
, the

problem can be formally stated as follows:

(10)

(11)

On the one hand, the numerator of this expression can be upper
bounded as follows:

(12)

where the last inequality follows from the Cauchy-Schwartz in-
equality. On the other hand, the denominator in (11) can be
lower bounded as follows:

(13)

where denotes here the Gram matrix of the
kernel functions . The last inequality follows from the
Geršgorin disk theorem [40]. Finally, combining inequalities
(12) and (13) with (11) yields

(14)

This bound is valid and non-trivial if it lies in the interval [0,1[,
that is, if and only if . This is also the sufficient
condition stated in Proposition 1 for the ’s to be linearly
independent.

The projection of onto the space spanned by the
previously selected kernel functions results in a squared

error . From Proposition 3, we deduce
that

(15)

(16)

under , which ensures that the lower bound lies
in the interval ]0,1]. As expected, the smaller and , the
larger the squared error in the approximation of any dictionary
element by a linear combination of the others. We conclude that
the coherence-based rule (9) implicitly specifies a lower bound
on the squared error via , a mechanism
which is explicitly governed by in the approximate linear con-
dition (6). Both approaches can then generate linearly indepen-
dent sets of kernel functions, a constraint that will be ignored in
what follows. A major advantage of the coherence-based rule is
that it is simpler and far less time consuming than (6). At each
time-step, its computational complexity is only linear in the dic-
tionary size , whereas (6) has at least quadratic complexity
even when computed recursively.

It is also of interest to establish a connection between the co-
herence-based rule and quadratic Renyi entropy. This measure,
which quantifies the amount of disorder in a system, is defined
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as follows: with a probability density
function. Consider first the Parzen density estimate

(17)

based on the Gaussian window. By the convolution theorem ap-
plied to Gaussian distributions, we have

(18)

where denotes the
Gaussian kernel. The above example simply shows that the sum
of the entries of the Gram matrix characterizes the diversity
of the dictionary of kernel functions [41]. In [17], this was
used as a criterion in a selection mechanism with fixed-size
least-squares support vector machines. We observe in (18) that
the coherence-based rule (9) ensures that

(19)

As expected, the lower bound on increases as decreases
and increases. In a more general way, since the integral

also defines the squared norm of the func-
tional form , it was observed in
[41] that

(20)

In the case where is not a unit-norm kernel, remember that
must be replaced by in the co-

herence-based rule (9). Assuming that for all ,
(20) leads to

(21)

Note that this bound, which depends on the norm of kernel func-
tions, increases as decreases or increases. This result em-
phasizes the usefulness of coherence to accurately characterize
the diversity of kernel functions in a dictionary. In the next sec-
tion, we use this criterion to derive a new kernel-based algorithm
for time series prediction, called kernel-based affine projection
(KAP) algorithm.

IV. A KERNEL-BASED AFFINE PROJECTION ALGORITHM

WITH ORDER-UPDATE MECHANISM

Let denote the th-order model at time step , with
. Then

(22)

where the s form a -coherent dictionary determined
under rule (9). In accordance with the least-squares problem
described in Section II-B, the optimal solves

where denotes the -by- matrix whose th
entry is . Assuming that exists,

(23)

A possible way trade convergence speed for part of the com-
putational complexity involved in determining the least-squares
solution (23) has been proposed in [42]. The algorithm, termed
Affine Projection algorithm, determines a projection of the
solution vector that solves an under-determined least-squares
problem. At each time step , only the most recent inputs

and observations are
used. An adaptive algorithm based on this method is derived
next.

A. The Kernel Affine Projection Algorithm

In the following, denotes the matrix whose th entry
is , and is the column vector whose th ele-
ment is . Our approach starts with the affine projection
problem at time step

(24)

In other words, is obtained by projecting onto the in-
tersection of the manifolds defined as

with . At itera-
tion , upon the arrival of new data, one of the following alter-
natives holds. If does not satisfy the coherence-based
sparsification rule (9), the dictionary remains unaltered. On the
other hand, if (9) is met, is inserted into the dictionary
where it is denoted by . The number of columns
of matrix then is increased by one, relative to , by
appending . One more
entry is also added to the vector .

B. First Case Study:

In this case can be reasonably well represented by
the kernel functions already in the dictionary. Thus, it does not
need to be inserted into the dictionary. The solution to (24) can
be determined by minimizing the Lagrangian function

(25)

where is the vector of Lagrange multipliers. Differentiating
this expression with respect to and , and setting the deriva-
tives to zero, we get the following equations that must satisfy

(26)

(27)
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TABLE I
THE KAP ALGORITHM WITH COHERENCE CRITERION

Assuming nonsingular, these equations lead to
. Substituting into (26), we obtain

a recursive update equation for

(28)

where we have introduced the step-size control parameter , and
the regularization factor . At each time step , (28) requires
inverting the usually small -by- matrix .

C. Second Case Study:

In this case, cannot be represented by the kernel
functions already in the dictionary. Then, it is inserted into the
dictionary and will henceforth be denoted by . The
order of (22) is increased by one, and is updated to a

-by- matrix. To accommodate the new element in ,
we modify (24) as

(29)

where denotes the first elements of the vector and
has been increased by one column as explained before. Note

that the th element is incorporated to the objective
function as a regularizing term. Considerations similar to those
made to obtain (28) lead to the following recursion:

(30)

We call the set of recursions (28) and (30) the Kernel Affine
Projection (KAP) algorithm. It is described in pseudocode in
Table I. The value of is termed the memory length or the order
of the algorithm. Next, we explore the idea of using instanta-
neous approximations for the gradient vectors.

D. Instantaneous Approximations—The Kernel NLMS
Algorithm

Now consider the case . At each time step , the algo-
rithm described earlier then enforces where is

the column vector whose th entry is . Relations (28)
and (30) reduce to

1) If

(31)

with .
2) If

(32)

with .
The form of these recursions is that of the normalized LMS

algorithm with kernels, referred to as KNLMS and described in
pseudocode in Table II. As opposed to the scalar-valued a priori
error, , used by KNLMS, we note that KAP
algorithm uses a vector-valued error ,
to update the weight vector estimate. The next subsection dis-
cusses computational requirements of both approaches.

E. Computational Complexity

Table III reports the estimated computational costs of KAP
and KNLMS algorithms for real-valued data, in terms of the
number of real multiplications and real additions per iteration.
The computation cost to evaluate scales linearly with the
dictionary dimension . This cost has not been included in
Table III because it depends on the selected kernel. Recursions
with [see (30) and (32)] and without [see (28) and (31)] order
increase are considered separately in Table III. The coherence
criterion (9) used to select which update to perform is signifi-
cantly simpler than the approximate linear condition (6) since it
consists of comparing the largest element in magnitude of to
a threshold . Note that the final size of a dictionary of kernel
functions determined under the rule (9) is finite. This implies
that, after a transient period during which the order of the model
increases, computational complexity is reduced to that of (28)
and (31). The main conclusion is that the costs of KNLMS and
KAP algorithms are and , respectively. As illus-
trated in the next section, the size of kernel expansions never
exceeded a few tens.
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TABLE II
THE KNLMS ALGORITHM WITH COHERENCE CRITERION

V. SIMULATION EXAMPLES

The purpose of this section is to illustrate the performance
of the proposed approach. We shall report the results of two
simulated data experiments.

A. Experiment With KNLMS

As a first benchmark problem, we consider the nonlinear
system described by the difference equation

(33)

where is the desired output. This highly nonlinear time se-
ries has been investigated in [18]. The data were generated by
iterating the above equation from the initial condition (0.1,0.1).
Outputs were corrupted by a measurement noise sampled
from a zero-mean Gaussian distribution with standard devia-
tion equal to 0.1. This led to a signal-to-noise ratio (SNR), de-
fined as the ratio of the powers of and the additive noise, of
17.2 dB. These data were used to estimate a nonlinear model
of the form . In identifying the system,
we restricted ourselves to KNLMS and the experimental setup
described in [18]. In particular, as in [18], the Gaussian kernel

was considered. Prelimi-
nary experiments were conducted as explained below to deter-
mine all the adjustable parameters, that is, the threshold , the
step-size and the regularization factor . The algorithm was
then evaluated on several independent test signals, which led to
the learning curve depicted in Fig. 1 and the normalized mean-
square prediction error reported in Table IV. The same proce-
dure was followed to parameterize and test the state-of-the-art
methods discussed later.

The preliminary experiments were conducted on sequences
of 3000 samples to determine , , and . Performance was
measured in steady state using the mean-square prediction error

over the last 500 samples of each
sequence, and averaged over 10 independent trials. The dictio-
nary was initialized with , where . The
step-size and the regularization coefficient were determined
by grid search over
with increment within each range . The
threshold was varied from 0.05 to 0.95 in increments of 0.05.
It was observed that increasing was associated with perfor-

Fig. 1. Learning curves for KNLMS, NORMA, SSP, and KRLS obtained by
averaging over 200 experiments.

TABLE III
ESTIMATED COMPUTATIONAL COST PER ITERATION OF

KNLMS AND KAP ALGORITHMS

mance improvements until a threshold was attained, when per-
formance stayed basically unchanged. A practical compromise
between the model order and its performance was reached by
setting the threshold to 0.5. The step-size parameter and the
regularization coefficient were fixed to and ,
respectively.

The KNLMS algorithm was tested with the parameter set-
tings specified above over two hundred 10 000-sample inde-
pendent sequences. This led to the ensemble-average learning
curve shown in Fig. 1. The order of kernel expansions was,
on average, equal to 21.3. The normalized mean-square predic-
tion error over the last 5000 samples was determined from

(34)
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TABLE IV
EXPERIMENT A: ESTIMATED COMPUTATIONAL COST PER ITERATION, EXPERIMENTAL SETUP, AND PERFORMANCE ON INDEPENDENT TEST SEQUENCES

TABLE V
EXPERIMENT B: ESTIMATED COMPUTATIONAL COST PER ITERATION, EXPERIMENTAL SETUP, AND PERFORMANCE ON INDEPENDENT TEST SEQUENCES

where the expectation was approximated by averaging over the
ensemble. As reported in Table IV, the NMSE was found to be
0.0197. For comparison purposes, state-of-the-art kernel-based
methods for online prediction of time series were also consid-
ered: NORMA [43], sparse sequential projection (SSP) [18],
and KRLS [20].

As the KNLMS algorithm, NORMA performs stochastic gra-
dient descent on RKHS. The order of the kernel expansion is
fixed a priori since it uses the most recent kernel functions as
a dictionary. NORMA requires operations per iteration.
The SSP algorithm also starts with stochastic gradient descent to
calculate the a posteriori estimate. The resulting -order
kernel expansion is then projected onto the subspace spanned
by the kernel functions of the dictionary, and the projection
error is compared to a threshold in order to evaluate whether
the contribution of the th candidate kernel function is
significant enough. If not, the projection is used as the a pos-
teriori estimate. In the spirit of the sparsification rule (6), this
test requires operations per iteration when implemented
recursively. KRLS is a RLS-type algorithm with an order-up-
date process controlled by (6). Its computational complexity is
also operations per iteration. Table IV reports a com-
parison of the estimated computational costs per iteration for
each algorithm, in the most usual case where no order increase
is performed. These results are expressed for real-valued data in
terms of the number of real multiplications and real additions.
The same procedure used for KNLMS was followed to initialize
and test NORMA, SSP, and KRLS. This means that preliminary
experiments were conducted on 10 independent 3000-sample
sequences to perform explicit grid search over parameter spaces
and, following the notations used in [18], [20], and [43], to se-
lect the best settings reported in Table IV. Each approach was
tested over two hundred 10 000-sample independent sequences,
which led to the average orders and normalized mean-square
prediction errors also displayed in this table. As shown in Fig. 1,
the algorithms with quadratic complexity performed better than
the other two, with only a small advantage of SSP over KNLMS
that must be balanced with the large increase in computational
cost. This experiment also highlights that KNLMS significantly
outperformed NORMA, which demonstrates a clear advantage
of the coherence-based sparsification rule.

Fig. 2. Learning curves for KAP, KNLMS, SSP, NORMA, and KRLS obtained
by averaging over 200 experiments.

B. Experiment With the KAP Algorithm

As a second application, we consider the discrete-time non-
linear dynamical system

(35)

where and are the input and the desired output, respec-
tively. The data were generated from the initial condition

. The input was sampled from a zero-mean Gaussian dis-
tribution with standard deviation 0.25. The system output
was corrupted by an additive zero-mean white Gaussian noise
with standard deviation equal to 1, corresponding to a SNR of

4.0 dB. The KAP algorithm was used to identify a model of
the form . Preliminary experiments were conducted
to determine the kernel and, as before, all the adjustable param-
eters. The algorithm was next evaluated on several independent
test signals, which led to the learning curves depicted in Fig. 2
and the normalized mean-square prediction errors reported in
Table V.

The preliminary experiments were conducted on sequences
of 3000 samples to select the kernel, and determine the best set-
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tings for the algorithm. Performance was measured using the
mean-square prediction error over the last 500 samples of each
sequence, and averaged over 10 independent trials. The dic-
tionary was initialized with . Three of the most com-
monly used kernels were considered: the polynomial kernel, the
Gaussian kernel and the Laplacian kernel. The latter, defined as

, was shown to be the most
accurate in this experiment. The bandwidth was varied from
0.1 to 1 in increments of 0.005 to find the optimal setting. The
coherence threshold was also varied from 0.05 to 0.5 in in-
crements of 0.05. Memory lengths ranging from 1 to 3 were
considered and, in each case, the best performing step-size pa-
rameter and regularization constant were determined by grid
search over with
increment within each range . Param-
eter choices are reported in Table V, for ranging from 1 to 3.

Each configuration was run over 200 10 000-sample indepen-
dent test sequences. The order of the kernel expansion was
5.4 on average, and the mean value of the Babel function was
0.56. By Proposition 1, this indicates that the kernel functions
of the dictionary were most frequently, if not always, chosen
linearly independent. Steady-state performance was measured
by the normalized mean-square prediction error (34). Table V
reports mean values over the 200 test sequences for memory
lengths ranging from 1 to 3. It indicates that steady-state per-
formance remained almost unchanged as increased. Fig. 2 il-
lustrates the convergence behavior of KAP-type methods. These
ensemble-average learning curves were obtained by time aver-
aging over 20 consecutive samples. It appears as an evidence
that KAP algorithm provided a significant improvement in con-
vergence rate over KNLMS.

The same procedure as before was followed to initialize and
test NORMA, SSP and KRLS algorithms. The preliminary ex-
periments that were conducted led to the parameter settings dis-
played in Table V, where we use the same notations as those
in [18], [20], and [43]. This table also reports the average order

of kernel expansions and the normalized mean-square pre-
diction error of each algorithm, estimated over 200 indepen-
dent test sequences. Fig. 2 shows that KRLS converges faster
than KAP-type algorithms, as might be expected, since they are
derived from stochastic-gradient approximations. Nevertheless,
the KRLS algorithm is an order of magnitude in costlier than
KAP. It can also be seen that SSP has approximately the same
convergence rate as KNLMS, but converges slower than the
other two KAP algorithms. Moreover, SSP is more demanding
computationally and requires kernel expansions of larger order

. Fig. 2 finally highlights that NORMA, the other approach
with linear complexity in , is clearly outperformed by KAP-
type algorithms.

The tradeoffs involved in using RLS, affine projection and
LMS algorithms are well known in linear adaptive filtering. It
is expected that these tradeoffs would persist with their kernel-
based counterparts. This was confirmed by simulations, even
considering that no theoretical effort was made to determine an-
alytically the optimum tuning parameters for each algorithm. In
general, the KRLS algorithm will provide the fastest conver-
gence rate at the expense of the highest computational com-
plexity. The KNLMS algorithm will lead to the lowest com-
putational cost, but will affect the convergence rate of the fil-
tering process. The KAP algorithm lies halfway between these
two extremes, converging faster than KNLMS and slower than

KRLS, and having a computational complexity that is higher
than KNLMS and lower than KRLS.

VI. CONCLUSION

Over the last 10 years or so there has been an explosion of
activity in the field of learning algorithms utilizing reproducing
kernels, most notably in the field of classification and regres-
sion. The use of kernels is an attractive computational shortcut
to create nonlinear versions of conventional linear algorithms.
In this paper, we have demonstrated the versatility and utility of
this family of methods to develop nonlinear adaptive algorithms
for time series prediction, specifically of the KAP and KNLMS
types. A common characteristic in kernel-based methods is that
they deal with models whose order equals the size of the training
set, making them unsuitable for online applications. Therefore,
it was essential to first develop a methodology of controlling
the increase in the model order as new input data become avail-
able. This led us to consider the coherence parameter, a funda-
mental quantity that characterizes the behavior of dictionaries in
sparse approximation problems. The motivation for using it was
twofold. First, it offers several attractive properties that can be
exploited to assess the novelty of input data. This framework is
a core contribution to our paper. Second, the coherence param-
eter is easy to calculate and its computational complexity is only
linear in the dictionary size. We proposed to incorporate it into
a kernel-based affine projection algorithm with order-update
mechanism, which has also been a notable contribution to our
study. Perspectives include the use of the Babel function instead
of the coherence parameter since it provides a more in-depth de-
scription of a dictionary. Online minimization of the coherence
parameter or the Babel function of the dictionary by adding or
removing kernel functions also seems interesting. Finally, in a
broader perspective, improving our approach with tools derived
from compressed sensing appears as a very promising subject
of research.

REFERENCES

[1] G. B. Giannakis and E. Serpedin, “A bibliography on nonlinear system
identification,” Signal Process., vol. 81, pp. 553–580, 2001.

[2] S. W. Nam and E. J. Powers, “Application of higher order spectral anal-
ysis to cubically nonlinear system identification,” IEEE Signal Process.
Mag., vol. 42, no. 7, pp. 2124–2135, 1994.

[3] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis—A
Nonlinear Signal Processing Framework. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[4] M. Schetzen, The Volterra and Wiener Theory of the Nonlinear Sys-
tems. New York: Wiley, 1980.

[5] N. Wiener, Nonlinear Problems in Random Theory. New York:
Wiley, 1958.

[6] V. J. Mathews and G. L. Sicuranze, Polynomial Signal Processing.
New York: Wiley, 2000.

[7] S. Haykin, Neural Networks: A Comprehensive Foundation. Engle-
wood Cliffs, NJ: Prentice-Hall, 1999.

[8] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P.-Y. Glo-
rennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box mod-
eling in system identification: A unified overview,” Automatica, vol.
31, no. 12, pp. 1691–1724, 1995.

[9] A. N. Kolmogorov, “On the representation of continuous functions
of many variables by superpositions of continuous functions of one
variable and addition,” Doklady Akademii Nauk USSR, vol. 114, pp.
953–956, 1957.

[10] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math.
Soc., vol. 68, 1950.

[11] M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “The method
of potential functions for the problem of restoring the characteristic of
a function converter from randomly observed points,” Autom. Remote
Control, vol. 25, no. 12, pp. 1546–1556, 1964.

[12] G. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline
functions,” J. Math. Anal. Appl., vol. 33, pp. 82–95, 1971.



RICHARD et al.: TIME SERIES DATA WITH KERNELS 1067

[13] G. Wahba, Spline Models for Observational Data. Philadelphia, PA:
SIAM, 1990.

[14] D. L. Duttweiler and T. Kailath, “An RKHS approach to detection
and estimation theory: Some parameter estimation problems (Part V),”
IEEE Trans. Inf. Theory, vol. 19, no. 1, pp. 29–37, 1973.

[15] B. Schölkopf, J. C. Burges, and A. J. Smola, Advances in Kernel
Methods. Cambridge, MA: MIT Press, 1999.

[16] A. J. Smola and B. Schölkopf, A Tutorial on Support Vector Regression
NeuroCOLT, Royal Holloway College, Univ. London, UK, Tech. Rep.
NC-TR-98-030, 1998.

[17] J. A. K. Suykens, T. van Gestel, J. de Brabanter, B. de Moor, and J. Van-
dewalle, Least Squares Support Vector Machines. Singapore: World
Scientific, 2002.

[18] T. J. Dodd, V. Kadirkamanathan, and R. F. Harrison, “Function esti-
mation in Hilbert space using sequential projections,” in Proc. IFAC
Conf. Intell. Control Syst. Signal Process., 2003, pp. 113–118.

[19] T. J. Dodd, B. Mitchinson, and R. F. Harrison, “Sparse stochastic gra-
dient descent learning in kernel models,” in Proc. 2nd Int. Conf. Com-
putat. Intell., Robot. Autonomous Syst., 2003.

[20] Y. Engel, S. Mannor, and R. Meir, “Kernel recursive least squares,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285, 2004.

[21] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer, 1995.

[22] J. Mercer, “Functions of positive and negative type and their connection
with the theory of integral equations,” Philos. Trans. Roy. Soc. London
Ser. A, vol. 209, pp. 415–446, 1909.

[23] T. J. Dodd and R. F. Harrison, “Estimating Volterra filters in Hilbert
space,” in Proc. IFAC Conf. Intell. Control Syst. Signal Process., 2003,
pp. 538–543.

[24] Y. Wan, C. X. Wong, T. J. Dodd, and R. F. Harrison, “Application of
a kernel method in modeling friction dynamics,” in Proc. IFAC World
Congress, 2005.

[25] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller, Fisher
discriminant analysis with kernels (in Proc. Advances in Neural Net-
works for Signal Processing), Y. H. Hu, J. Larsen, E. Wilson, and S.
Douglas, Eds. San Mateo, CA: Morgan Kaufmann, 1999, pp. 41–48.

[26] F. Abdallah, C. Richard, and R. Lengellé, “An improved training algo-
rithm for nonlinear kernel discriminants,” IEEE Trans. Signal Process.,
vol. 52, no. 10, pp. 2798–2806, 2004.

[27] B. Schölkopf, A. J. Smola, and K. R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computat. , vol. 10,
no. 5, pp. 1299–1319, 1998.

[28] B. Schölkopf, R. Herbrich, and R. Williamson, A Generalized Repre-
senter Theorem NeuroCOLT, Royal Holloway College, Univ. London,
UK, Tech. Rep. NC2-TR-2000-81, 2000.

[29] L. Hoegaerts, “Eigenspace methods and subset selection in kernel
based learning,” Ph.D. thesis, Katholieke Univ. Leuven, Leuven,
Belgium, 2005.

[30] B. J. de Kruif and T. J. A. de Vries, “Pruning error minimization in least
squares support vector machines,” IEEE Trans. Neural Netw., vol. 14,
no. 3, pp. 696–702, 2003.

[31] J. A. K. Suykens, J. de Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: Robustness and
sparse approximation,” Neurocomput., vol. 48, pp. 85–105, 2002.

[32] G. C. Cawley and N. L. C. Talbot, “Improved sparse least-squares sup-
port vector machines,” Neurocomput., vol. 48, pp. 1025–1031, 2002.

[33] L. Hoegaerts, J. A. K. Suykens, J. Vandewalle, and B. de Moor, “Subset
based least squares subspace regression in RKHS,” Neurocomput., vol.
63, pp. 293–323, 2005.

[34] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Müller,
G. Rätsch, and A. J. Smola, “Input space versus feature space in
kernel-based methods,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp.
1000–1017, 1999.

[35] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[36] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictio-
naries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,
1993.

[37] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic de-
composition,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862,
2001.

[38] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle
and sparse representations in pairs of bases,” IEEE Trans. Inf. Theory,
vol. 48, no. 9, pp. 2558–2567, 2002.

[39] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via � minimization,” in Proc. Nat. Acad.
Sci. USA, 2003, vol. 100, pp. 2197–2202.

[40] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[41] M. Girolami, “Orthogonal series density estimation and the kernel
eigenvalue problem,” Neural Computat., vol. 14, pp. 669–688, 2002.

[42] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an or-
thogonal projection to an affine subspace and its properties,” Electron.
Commun. Japan, vol. 67-A, pp. 19–27, 1984.

[43] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
2004.

Cédric Richard (S’98–M’01–SM’07) was born Jan-
uary 24, 1970, in Sarrebourg, France. He received the
Dipl.-Ing. and the M.S. degrees in 1994 and the Ph.D.
degree in 1998 from Compiègne University of Tech-
nology, France, all in electrical and computer engi-
neering.

From 1999 to 2003, he was an Associate Professor
with Troyes University of Technology, Troyes,
France. Since 2003, he has been a Professor with the
Systems Modeling and Dependability Laboratory,
Troyes University of Technology. He is also the

current director of this laboratory. His research interests include statistical
signal processing and machine learning. He is the author of more than 80
papers. In 2005, he was offered the position of chairman of the Ph.D. students
network of the federative CNRS research group ISIS on Information, Signal,
Images and Vision.

Dr. Richard was the General Chair of the 21th Francophone Conference
GRETSI on Signal and Image Processing, held in Troyes, in 2007. He is
a member of the GRETSI Association Board. He was recently nominated
EURASIP liaison local officer for France. He serves also as an Associate Editor
of the IEEE TRANSACTIONS ON SIGNAL PROCESSING and of the Research
Letters in Signal Processing. He is currently a member of the Signal Processing
Theory and Methods Technical Committee of the IEEE Signal Processing
Society.

José Carlos M. Bermudez (S’78–M’85–SM’02)
received the B.E.E. degree from Federal University
of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil,
the M.Sc. degree in electrical engineering from
COPPE/UFRJ, and the Ph.D. degree in electrical
engineering from Concordia University, Montreal,
Canada, in 1978, 1981, and 1985, respectively.

He joined the Department of Electrical En-
gineering, Federal University of Santa Catarina
(UFSC), Florianópolis, Brazil, in 1985, where he
is currently a Professor of electrical engineering. In

winter 1992, he was a Visiting Researcher with the Department of Electrical
Engineering, Concordia University. In 1994, he was a Visiting Researcher with
the Department of Electrical Engineering and Computer Science, University of
California, Irvine. His research interests have involved analog signal processing
using continuous-time and sampled-data systems. His recent research interests
are in digital signal processing, including linear and nonlinear adaptive filtering,
active noise and vibration control, echo cancellation, image processing, and
speech processing.

Prof. Bermudez served as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING in the area of adaptive filtering from 1994 to 1996 and
from 1999 to 2001, and as the Signal Processing Associate Editor for the Journal
of the Brazilian Telecommunications Society (2005–2006). He was a member of
the Signal Processing Theory and Methods Technical Committee of the IEEE
Signal Processing Society from 1998 to 2004. He is currently an Associate Ed-
itor for the EURASIP Journal on Advances in Signal Processing.

Paul Honeine (M’07) was born in Beirut, Lebanon,
on October 2, 1977. He received the Dipl.-Ing.
degree in mechanical engineering in 2002 and the
M.Sc. degree in industrial control in 2003, both from
the Faculty of Engineering, the Lebanese University,
Lebanon. In 2007, he received the Ph.D. degree in
system optimization and security from the University
of Technology of Troyes, France.

He was a Postdoctoral Research Associate with
the Systems Modeling and Dependability Labora-
tory, University of Technology of Troyes, from 2007

to 2008. Since September 2008, he has been an Assistant Professor with the
University of Technology of Troyes. His research interests include nonsta-
tionary signal analysis, nonlinear adaptive filtering, sparse representations,
machine learning, and wireless sensor networks.


