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ABSTRACT 2. BASIC PRINCIPLES OF NONLINEAR OPTIMAL
FILTERING IN RKHS

In this paper, we present a framework for nonlinear adaptive ﬁlterLetH be a RKHS of real-valued functionson a compadt/ C IR”

ing. It employs the formalism of reproducing kernel Hilbert spaces, | let(-, -)» be the inner product in this space. et/ x U — lR

to incorporate nonlinearity into the classical affine projection algo-denote tine reproducing kernel , which means that(u,;) —

rithm. A nonlinear normalized LMS (NLMS) algorithm with kernels )y k(i) for all () € H z;md every fixedu; € U. The

is also derived as a particular case. We propose a sparsification str. ﬁoblém 7is to determine a function(-) of 7 that minimizes the

egy that employs a coherence parameter to control the model ord fim of squared errors betweersamplesi; of the desired response

increase typical of kernel-based methods. The resulting algorith nd the corresponding model output sar;mﬂe&i) namely

are suitable for real-time applications. Experimental results validate ' '

our approach. i,nei%} Z ds — w(ui)IQ. (1)
Index terms — Adaptive filters, nonlinear systems i=1

By virtue of the representer theorem [4], the solution to this problem

can be expressed as a kernel expansion in terms of available gata

1. INTRODUCTION g=1,...,n thatis,

n
Adaptive filtering has become a topic of keen interest over the past () ; o Rl ). @
three decades to help cope with time variations of system parameters = .
and lack ofa priori statistical information [1, 2]. Linear models are Substituting (2) into (1), elementary algebra shows that problem (1)
still routinely used because of their inherent simplicity from concep-réduces to ) )
tual and implementational point of view. In many practical situa- min |[d - K| ©)
tions, however, nonlinear signal processing is needed. Examples afgere K denotes ther-by-n Gram matrix whoséi, j)-th entry is
nonlinear system identification, prediction and control. Following,;(,,; 4,.). AssumingK ~ exists, the solution to (3) is = K~ 'd.
the pioneering works [3, 4], there has been recent progress iR funggaptive filtering raises the question of how to process an increasing
tion approximation methods based on reproducing kernel Hilbergmount of observations as new data is collected. Clearly the optimal
spaces (RKHS), which include support vector regression. A cOmapproach outlined above cannot be used, since the model order and
mon characteristic of classical kernel-based methods is that they e dimension of increase withe. Attempts have recently been

ploy models whose order equals the size of the training set. Sughade to circumvent this drawback [5, 6]. Consider theh order
methods are then unsuitable for most real time applications. Seynodel at any given time instant

eral algorithms have been proposed to circumvent this computational .

burden in time series prediction problems [5, 6]. Nevertheless, they bn() = ZO‘ () 4)
usually require excessively elaborate and costly operations such as " J i

matrix inversion. =

This paper develops a new kernel-based nonlinear adaptive afnere thew;’s frgrm anm-element subsey,, of {1,...,n}. We
gorithm that leads to reduced model orders. The algorithm follow$@!! {#(-; w.;)}721 the dictionary. These approaches rely on a two-

the affine projection (AP) approach and is derived using the RKHS!2ge process at each iteration: a model order selection step, and a
formalism. The NLMS algorithm follows as a particular case. TheParameter update step. In the first step, the kernel funetiaru,,)
increase in the model order is controlled by the coherence pard® inserted into the dictionary at time instanif it cannot be reason-

meter, a fundamental quantity usually employed to characterize tHPy Well represented by a combination of the other kernel functions

behavior of dictionaries of functions in sparse approximation prob©f the dictionary. This condition usually takes the form

Iem§ [7]: The paper is organized as follovys. We f.irstintroduce some min [|k(-, un) — Z i k(- u%)H% > 1o, (5)

basic principles of kernel-based optimal filtering in RKHS. Next we v

present our nonlinear adaptive filtering method. Finally, we present

simulation examples that illustrate the performances of both the AWhere« is a unit-norm kernél The threshold;, determines the

and NLMS nonlinear algorithms. level of sparsity of the model. These approaches, while accurate, are
computationally prohibitive.

Wi €Tn—1
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3. MODEL REDUCTION WITH COHERENCE 4.1. The Affine Projection Algorithm

ti‘ghe RLS approach of [8] uses two distinct recursion formulas, de-
ending on whether the coherence-based rule (6) is satisfied or not.
‘e now introduce a simpler stochastic-gradient method to solve (8),
where the required gradient vectors are replaced with suitable ap-
proximations. At each iteration, only the p most recent inputs
{tn,...,un—pt1} and observationgd,,...,d,—p+1} are used.
The new method trades convergence speed for a reduced computa-
wherex is a unit-norm kernel. It reflects the most extreme corre-tional complexity.
lations in the dictionary, and is equal to zero for every orthonormal ~ From now,H ,, denotes the-by-m matrix whose(z, j)-th entry
basis. Rather than solving a problem of the form (5), we suggest ins % (tn—i11, U, ), andd,, is thep-by-1 vector whose-th element
sertingx (-, u,, ) into the dictionary if the coherence of the increasedis d..—:+1. Our approach starts with the affine projection problem [2]
dictionary remains below a given threshoig namely,

The coherence is a fundamental parameter to characterize a dic
nary in sparse approximation problems [7]. In our kernel-based co
text, we define the coherence parametes

V= T%XKK(VUWL’f('»uwj-)>7‘l| = Ig?]X ‘H(uWi7qu)‘

min ||an, — oz,n,1|\2 subjectto d, = H,a, (10)

max |K(tn, w; )| < vo, (6)
wj€ Tn-1 with thea priori error defined aga,n = dn — Hnan—1. In other

) ) words, o, is obtained by projectinge,—1 onto the intersection of
wherer, € [0, 1] determines both the sparsity level and the coheryhe, affine subspaced; defined as

ence of the dictionary. The motivation for using this test is twofold.

First, it is easy to calculate and its computational complexity isonly A, = {a,, € R™: h!,_; 1y —dp_j41 =0}, i=1,...,p

linear in the dictionary size. Second, it offers several attractive prop-

erties that can be exploited to assess novelty of input kernel funo¥ith hy—iv1 = [K(Wn—it1, Uer) - .. K(Un—it1, U, )]". At time

tions. In particular, we have proved in [8] that: instantn, upon the arrival of new data, one of the following alterna-

) o . ~ tivesholds. Ifk(-, u,, ) satisfies the coherence-based rule (6), itis in-
e If I/ is compact, the dictionary of kernel functions determinedggrted into the dictionary. In this case, the number of columi of
under (6) is finite. Thus, the order of the asymptotic modelig jncreased by one, relative fd,,_1, and one more entry is added

oo (+) is finite and depends am. to the vector,,. The model ordem is then increased bly. The new
H t
o If (m — 1) < 1/vo, the elements of the dictionary column ofH, willbe [r(wn,vw,, ;) - K(Wn—p+1, U, )] I
{r(, uw,)}jL, are linearly independent #(-, ) does not satisfy (6), dictionary remains unchanged.
bl wj = .

e If (m—1) < 1/2wy, the left-hand side of (5) is lower bounded

2
by1— % which establishes a connection between

7o and vo.

4.2. First case study:max;—1,...m |5(Un, o, )| > 10

.....

In this case:(-, u, ) does not need to be inserted into the dictionary,
as the former can be reasonably well represented by the kernel func
We now describe the parameter update step, whose purpose istions already in the latter. Solution of (10) can be determined by
solve problem (3) recursively. minimizing the Lagrangian function

J(an, A) = [lon _anleQ + A (dn — Hypan) (1)

4. A KERNEL-BASED AFFINE PROJECTION ) o ) o ]
ALGORITHM WITH ORDER-UPDATE MECHANISM where is the vector of Lagrange multipliers. Differentiating this
expression with respect @,, and\, and setting the derivatives to
We now describe the procedure to use (6) in a sparsification stratedf'©: Yields
to control the order of the model. Lé¢t, (-) denote the model at time _ p
instantn, 2(atn —an-1) = HyA (12)
m H,a, = d, (13)

Yn() = Zan,j k(- U ), @) . , ] .
= Assuming H , H;, nonsingular, these equations lead X0 =

2(H,H)""(d, — H,c,_1). Substituting into (12), we obtain a
supposed to be of orden < n, where thex(-, u.,)’'s form avy- recursive update equation for, :

coherent dictionary determined under (6). In accordance with prob-
lem (3), the optimal parameter vectiar, solves O = 1+ p HE (eI + HanL)*l(dn —H,a, 1), (14)

min ||d, — Hna||2, (8) where we have introduced the step-size control parametend

“ the regularization facto¢I [2]. At each iterationn, (14) requires
inverting the usually smap-by-p matrix (eI + H,, H'). Note that
thei-th element of thea priori errore,,,, can also be expressed as
dn—it1 — Vn—1(Un—it1).

where H,, denotes then-by-m matrix whose(z, j)-th entry is
k(wi, uy;). Assuming that H}, H,,) " exists,

o t —1 gt
an=(H,H,) Hyd,. ©) 4.3. Second case studynax;—1,....m |[k(tn, uw,; )| < 1o
In [8], we developed a recursive algorithm to compute the updateth this casex(-, u,,) cannot be represented by the kernel functions in
estimatea,, from the least-squares solutien,_; upon the arrival  the dictionary. Then, itis inserted into the dictionary and will hence-
of wy,. forth be denoted by(-, ., ., ). The ordem of (7) is increased by



one, andH ,, is updated to @-by-(m+1) matrix’. To accommodate
the new element ia,,, we modify (10) as follows

min [|en,m — an—1]|> + @3 s
an (15)
subjectto d,, = H,an,

wherea,, ,, denotes the first: elements of the vectas,,. Note that

the (m + 1)-th elementay,,m+1, IS incorporated as a regularizing
term of the objective function. Similar arguments as above lead u

to the following recursion

a, = [0”671} +

(16)

pH (el + H, H.)™! (dn - H, [C‘B*D .

We call the set of recursions (14) and (16) the kernel-based AP

KAPA (u, €) algorithm. The value op is termed the order of the

algorithm. Next, we explore the idea of using instantaneous appro

imations for the gradient vectors.

4.4. Instantaneous approximations

Now consider the caseg = 1. At each iteratiom, the algorithm
described above then enforces the equality= h!,cv,, with h,, =
[6(n, U, ) . .. 5(Un, uw,, )]'. Relations (14) and (16) reduce to
Loif maxj=1,. . m [K(tn, wo;)| > 1o

p = O0p—1+

(dn - hfnan—l) hn7 (17)

o
e+ [|hall?

2.if maxj=1,...,m |n(un,uw7)\ <

_ An—1 12 _pt On—1
o =[5 ] + fi (- %57 ) e 09

The form of these recursions is that of the normalized LMS algo

rithm with kernels, referred to as KNLM, ) to highlight the pres-
ence ofy ande.

5. SIMULATION EXAMPLES

of the powers ofl,, and the additive noise, ef4.0 dB. Our approach

was used to estimatk, using a model of the fornd,, = +(u.,). The
Laplace kernek(u;, u;) = exp(—||lu; — w,l|/Bo) with Gy = 0.35

was used for being the most accurate among several options. The
coherence threshold, was set t00.3 and the dictionary was ini-
tialized with (-, w1). Preliminary experiments were conducted for
the KAPA algorithm on sequences @00 samples to determine the
orderp, the step size parametgrand the regularization constant
gerformance was measured using the mean-square estimation error
over the lasb00 samples of each sequence, and averaged Fver
trials. KAPA orders ranging from to 5 were tested, ang = 5

was chosen. Parameterande were set t® x 10~* and7 x 1072,

These values were found by performing a simple grid search over the
parameter spacg0™* < 4 < 107') x (1073 < ¢ < 1072) with
(logarithmic) incremen® x 10" within ranges[10~*, 107%*1].

KAPA was tested on fiftyp000-sample test sequences. The average
0orrderm of the kernel expansion (7) was4, which confirms the
control of the proposed technique over the model order. Steady-state
ﬂerformance of KAPA was measured by the mean-square prediction
error over the lasiO0 samples of each time series, that is,

5000

S — o1 (un))

n=4501

1

£= 500

(20)

The average value @kapa = 0.0839 was obtained for KAPA over

the 50 test sequences. KRLS algorithm led §rs = 0.0711,

but at the cost of a much higher computational complexity. For the
KNLMS algorithm, the best steady-state performance was obtained
with = 5 x 1072 ande = 9 x 10 3. As for KAPA, the average
value of the model orden was5.4. The average value of (20) over
the fifty test sequences wadgnivs = 0.0896. As expected, the
substantial computational savings gained by using KNLMS came at
the cost of a worse steady-state performance.

For transient behavior comparison, KAPA was designed to
match the KNLMS steady-state performance. This resultpdsn3,
pu=3x10"%ande = 5 x 10~2. Figure 1(a) shows the evolution
of the mean-square error for the three algorithms, where the conver-
gence speed of KAPA is seen to be between KNLMS and KRLS, as
expected.

The experiment reported in Figure 1(a) was repeated.foa
colored Gaussian process. Sigmal was obtained by passing the
same white Gaussian noise used before through a linear filter with

The purpose of this section is to demonstrate the validity of the prognpyise response given by = 0.9045 1 0.9045 0]*. The ordenn

posed approach. We compare the performances of the KAPA angt

the kernel expansion was, on averagé4 for the KAPA and the

KNLMS algorithms with the results obtained in [8] for our kemel- KNLMS. Figure 1(b) show the mean-square error evolution for the

based KRLS algorithm.

5.1. Experiment with the Laplace kernel

three algorithms, and corroborates the results verified in Figure 1(a)
for white inputs.

As an application of the proposed approach, we consider tha-2- Experimentwith the Gaussian kemel

discrete-time nonlinear dynamical system

{ vp = 1.1 exp(—|vn-1]) + un

dy =02 (19)

whereu,, andd,, are the input and the desired output, respectively.

The data were generated from the initial conditign= 0.5. The

As a second benchmark problem, we consider the nonlinear system
described by the difference equation
dpn = (0.8 = 0.5 exp(—dp_1)) dn-1

(21)
—(0.340.9 exp(—ds_1)) dn—2 + 0.1 sin(dn_17)

inputu, was sampled from a zero-mean Gaussian distribution withvhereds, is the desired output. This highly nonlinear time series

standard deviatiod.25. The system outpud,, was corrupted by

has been investigated in [5]. The data were generated by iterating

an additive zero-mean white Gaussian noise with standard deviatidi® above equation from the initial conditi¢n.1, 0.1). Outputsd,,
equal tol. This resulted in a signal-to-noise ratio, defined as the ratigVere corrupted by a measurement noise sampled from a zero-mean

2Note that any dictionary determined under rule (6) is finiez E8].

Gaussian distribution with standard deviation equalth corre-
sponding to a signal-to-noise ratio bf.2 dB. These data were used
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Fig. 1. Convergence behavior of KAPA, KNLMS and KRLS for (a) whiteda(b) colored inputs. The error curves were smoothed by tireeaging oveR0
consecutive samples.
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6. CONCLUSION

We presented a framework for nonlinear adaptive filtering. Our ap-
proach is based on the classical affine projection algorithm, and uses
reproducing kernels to incorporate nonlinearity. As a particular case,
E we also derived a nonlinear normalized LMS algorithm with kernels.
A common characteristic in kernel-based methods is that they deal
0.5 with models whose size increases with the number of input data. We
o NS used a sparsification procedure based on the coherence parameter to

circumvent this computational burden. Finally, we presented exper-

imental results to validate our approach.
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