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ABSTRACT

In this paper, we present a framework for nonlinear adaptive filter-
ing. It employs the formalism of reproducing kernel Hilbert spaces
to incorporate nonlinearity into the classical affine projection algo-
rithm. A nonlinear normalized LMS (NLMS) algorithm with kernels
is also derived as a particular case. We propose a sparsification strat-
egy that employs a coherence parameter to control the model order
increase typical of kernel-based methods. The resulting algorithms
are suitable for real-time applications. Experimental results validate
our approach.

Index terms – Adaptive filters, nonlinear systems

1. INTRODUCTION

Adaptive filtering has become a topic of keen interest over the past
three decades to help cope with time variations of system parameters
and lack ofa priori statistical information [1, 2]. Linear models are
still routinely used because of their inherent simplicity from concep-
tual and implementational point of view. In many practical situa-
tions, however, nonlinear signal processing is needed. Examples are
nonlinear system identification, prediction and control. Following
the pioneering works [3, 4], there has been recent progress in func-
tion approximation methods based on reproducing kernel Hilbert
spaces (RKHS), which include support vector regression. A com-
mon characteristic of classical kernel-based methods is that they em-
ploy models whose order equals the size of the training set. Such
methods are then unsuitable for most real time applications. Sev-
eral algorithms have been proposed to circumvent this computational
burden in time series prediction problems [5, 6]. Nevertheless, they
usually require excessively elaborate and costly operations such as
matrix inversion.

This paper develops a new kernel-based nonlinear adaptive al-
gorithm that leads to reduced model orders. The algorithm follows
the affine projection (AP) approach and is derived using the RKHS
formalism. The NLMS algorithm follows as a particular case. The
increase in the model order is controlled by the coherence para-
meter, a fundamental quantity usually employed to characterize the
behavior of dictionaries of functions in sparse approximation prob-
lems [7]. The paper is organized as follows. We first introduce some
basic principles of kernel-based optimal filtering in RKHS. Next we
present our nonlinear adaptive filtering method. Finally, we present
simulation examples that illustrate the performances of both the AP
and NLMS nonlinear algorithms.
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2. BASIC PRINCIPLES OF NONLINEAR OPTIMAL
FILTERING IN RKHS

LetH be a RKHS of real-valued functionsψ on a compactU ⊂ IRp,
and let〈· , ·〉H be the inner product in this space. Letκ : U×U → IR
denote the reproducing kernel ofH, which means thatψ(ui) =
〈ψ(·), κ(·,ui)〉H for all ψ(·) ∈ H and every fixedui ∈ U . The
problem is to determine a functionψ(·) of H that minimizes the
sum of squared errors betweenn samplesdi of the desired response
and the corresponding model output samplesψ(ui), namely,

min
ψ∈H

nX
i=1

|di − ψ(ui)|
2. (1)

By virtue of the representer theorem [4], the solution to this problem
can be expressed as a kernel expansion in terms of available datauj ,
j = 1, . . . , n, that is,

ψ(·) =
nX
j=1

αj κ(·,uj). (2)

Substituting (2) into (1), elementary algebra shows that problem (1)
reduces to

min
α

‖d − Kα‖2 (3)

whereK denotes then-by-n Gram matrix whose(i, j)-th entry is
κ(ui,uj). AssumingK−1 exists, the solution to (3) isα = K

−1
d.

Adaptive filtering raises the question of how to process an increasing
amount of observations as new data is collected. Clearly the optimal
approach outlined above cannot be used, since the model order and
the dimension ofK increase withn. Attempts have recently been
made to circumvent this drawback [5, 6]. Consider them-th order
model at any given time instantn

ψn(·) =
mX
j=1

αj κ(·,uωj
), (4)

where theωj ’s form anm-element subsetJn of {1, . . . , n}. We
call {κ(·,uωj

)}mj=1 the dictionary. These approaches rely on a two-
stage process at each iteration: a model order selection step, and a
parameter update step. In the first step, the kernel functionκ(·,un)
is inserted into the dictionary at time instantn if it cannot be reason-
ably well represented by a combination of the other kernel functions
of the dictionary. This condition usually takes the form

min
γ

‖κ(·,un) −
X

ωj∈Jn−1

γj κ(·,uωj
)‖2

H > η0, (5)

whereκ is a unit-norm kernel1. The thresholdη0 determines the
level of sparsity of the model. These approaches, while accurate, are
computationally prohibitive.

1This means thatκ(uk, uk) = 1 for everyuk ∈ U . Otherwise, substi-
tuteκ(·, uk)/

p
κ(uk, uk) for κ(·, uk) in (5).



3. MODEL REDUCTION WITH COHERENCE

The coherence is a fundamental parameter to characterize a dictio-
nary in sparse approximation problems [7]. In our kernel-based con-
text, we define the coherence parameterν as

ν = max
i6=j

|〈κ(·,uωi
), κ(·,uωj

)〉H| = max
i6=j

|κ(uωi
,uωj

)|

whereκ is a unit-norm kernel. It reflects the most extreme corre-
lations in the dictionary, and is equal to zero for every orthonormal
basis. Rather than solving a problem of the form (5), we suggest in-
sertingκ(·,un) into the dictionary if the coherence of the increased
dictionary remains below a given thresholdν0, namely,

max
ωj∈Jn−1

|κ(un,uωj
)| ≤ ν0, (6)

whereν0 ∈ [0, 1[ determines both the sparsity level and the coher-
ence of the dictionary. The motivation for using this test is twofold.
First, it is easy to calculate and its computational complexity is only
linear in the dictionary size. Second, it offers several attractive prop-
erties that can be exploited to assess novelty of input kernel func-
tions. In particular, we have proved in [8] that:

• If U is compact, the dictionary of kernel functions determined
under (6) is finite. Thus, the order of the asymptotic model
ψ∞(·) is finite and depends onν0.

• If (m − 1) < 1/ν0, the elements of the dictionary
{κ(·,uωj

)}mj=1 are linearly independent.

• If (m−1) < 1/2ν0, the left-hand side of (5) is lower bounded

by 1−
(m−1)ν20

(1−(m−1)ν0)
, which establishes a connection between

η0 andν0.

We now describe the parameter update step, whose purpose is to
solve problem (3) recursively.

4. A KERNEL-BASED AFFINE PROJECTION
ALGORITHM WITH ORDER-UPDATE MECHANISM

We now describe the procedure to use (6) in a sparsification strategy
to control the order of the model. Letψn(·) denote the model at time
instantn,

ψn(·) =

mX
j=1

αn,j κ(·,uωj
), (7)

supposed to be of orderm ≤ n, where theκ(·,uωj
)’s form aν0-

coherent dictionary determined under (6). In accordance with prob-
lem (3), the optimal parameter vectorαn solves

min
α

‖dn − Hnα‖2, (8)

where Hn denotes then-by-m matrix whose(i, j)-th entry is
κ(ui,uωj

). Assuming that(H t
nHn)−1 exists,

αn = (H t
nHn)−1

H
t
ndn. (9)

In [8], we developed a recursive algorithm to compute the updated
estimateαn from the least-squares solutionαn−1 upon the arrival
of un.

4.1. The Affine Projection Algorithm

The RLS approach of [8] uses two distinct recursion formulas, de-
pending on whether the coherence-based rule (6) is satisfied or not.
We now introduce a simpler stochastic-gradient method to solve (8),
where the required gradient vectors are replaced with suitable ap-
proximations. At each iterationn, only thep most recent inputs
{un, . . . ,un−p+1} and observations{dn, . . . , dn−p+1} are used.
The new method trades convergence speed for a reduced computa-
tional complexity.

From now,Hn denotes thep-by-mmatrix whose(i, j)-th entry
is κ(un−i+1,uωj

), anddn is thep-by-1 vector whosei-th element
isdn−i+1. Our approach starts with the affine projection problem [2]

min
αn

‖αn − αn−1‖
2 subject to dn = Hnαn (10)

with thea priori error defined asea,n = dn − Hnαn−1. In other
words,αn is obtained by projectingαn−1 onto the intersection of
thep affine subspacesAi defined as

Ai = {αn ∈ IRm : h
t
n−i+1αn − dn−i+1 = 0}, i = 1, . . . , p

with hn−i+1 = [κ(un−i+1,uω1) . . . κ(un−i+1,uωm)]t. At time
instantn, upon the arrival of new data, one of the following alterna-
tives holds. Ifκ(·,un) satisfies the coherence-based rule (6), it is in-
serted into the dictionary. In this case, the number of columns ofHn

is increased by one, relative toHn−1, and one more entry is added
to the vectorαn. The model orderm is then increased by1. The new
column ofHn will be [κ(un,uωm+1) . . . κ(un−p+1,uωm+1)]

t. If
κ(·,un) does not satisfy (6), dictionary remains unchanged.

4.2. First case study:maxj=1,...,m |κ(un,uωj
)| > ν0

In this caseκ(·,un) does not need to be inserted into the dictionary,
as the former can be reasonably well represented by the kernel func-
tions already in the latter. Solution of (10) can be determined by
minimizing the Lagrangian function

J(αn,λ) = ‖αn − αn−1‖
2 + λ

t(dn − Hnαn) (11)

whereλ is the vector of Lagrange multipliers. Differentiating this
expression with respect toαn andλ, and setting the derivatives to
zero, yields

2 (αn − αn−1) = H
t
n λ (12)

Hnαn = dn (13)

Assuming HnH
t
n nonsingular, these equations lead toλ =

2 (HnH
t
n)−1(dn−Hnαn−1). Substituting into (12), we obtain a

recursive update equation forαn:

αn = αn−1 + µH
t
n(ǫI + HnH

t
n)−1(dn − Hnαn−1), (14)

where we have introduced the step-size control parameterµ, and
the regularization factorǫI [2]. At each iterationn, (14) requires
inverting the usually smallp-by-p matrix (ǫI + HnH

t
n). Note that

the i-th element of thea priori errorea,n can also be expressed as
dn−i+1 − ψn−1(un−i+1).

4.3. Second case study:maxj=1,...,m |κ(un,uωj
)| ≤ ν0

In this caseκ(·,un) cannot be represented by the kernel functions in
the dictionary. Then, it is inserted into the dictionary and will hence-
forth be denoted byκ(·,uωm+1). The orderm of (7) is increased by



one, andHn is updated to ap-by-(m+1) matrix2. To accommodate
the new element inαn, we modify (10) as follows

min
αn

‖αn,m − αn−1‖
2 + α2

n,m+1

subject to dn = Hnαn,
(15)

whereαn,m denotes the firstm elements of the vectorαn. Note that
the (m + 1)-th element,αn,m+1, is incorporated as a regularizing
term of the objective function. Similar arguments as above lead us
to the following recursion

αn =

�
αn−1

0

�
+

µH
t
n(ǫI + HnH

t
n)−1

�
dn − Hn

�
αn−1

0

��
.

(16)

We call the set of recursions (14) and (16) the kernel-based AP or
KAPA(µ, ǫ) algorithm. The value ofp is termed the order of the
algorithm. Next, we explore the idea of using instantaneous approx-
imations for the gradient vectors.

4.4. Instantaneous approximations

Now consider the casep = 1. At each iterationn, the algorithm
described above then enforces the equalitydn = h

t
nαn with hn =

[κ(un,uω1) . . . κ(un,uωm)]t. Relations (14) and (16) reduce to
1. if maxj=1,...,m |κ(un,uωj

)| > ν0

αn = αn−1 +
µ

ǫ+ ‖hn‖2
(dn − h

t
nαn−1) hn, (17)

2. if maxj=1,...,m |κ(un,uωj
)| ≤ ν0

αn =

�
αn−1

0

�
+

µ

ǫ+ ‖hn‖2

�
dn − h

t
n

�
αn−1

0

��
hn. (18)

The form of these recursions is that of the normalized LMS algo-
rithm with kernels, referred to as KNLMS(µ, ǫ) to highlight the pres-
ence ofµ andǫ.

5. SIMULATION EXAMPLES

The purpose of this section is to demonstrate the validity of the pro-
posed approach. We compare the performances of the KAPA and
KNLMS algorithms with the results obtained in [8] for our kernel-
based KRLS algorithm.

5.1. Experiment with the Laplace kernel

As an application of the proposed approach, we consider the
discrete-time nonlinear dynamical system�

vn = 1.1 exp(−|vn−1|) + un
dn = v2

n

(19)

whereun anddn are the input and the desired output, respectively.
The data were generated from the initial conditionv0 = 0.5. The
inputun was sampled from a zero-mean Gaussian distribution with
standard deviation0.25. The system outputdn was corrupted by
an additive zero-mean white Gaussian noise with standard deviation
equal to1. This resulted in a signal-to-noise ratio, defined as the ratio

2Note that any dictionary determined under rule (6) is finite, see [8].

of the powers ofdn and the additive noise, of−4.0 dB. Our approach
was used to estimatedn using a model of the formdn = ψ̂(un). The
Laplace kernelκ(ui,uj) = exp(−‖ui − uj‖/β0) with β0 = 0.35
was used for being the most accurate among several options. The
coherence thresholdν0 was set to0.3 and the dictionary was ini-
tialized withκ(·,u1). Preliminary experiments were conducted for
the KAPA algorithm on sequences of5000 samples to determine the
orderp, the step size parameterµ and the regularization constantǫ.
Performance was measured using the mean-square estimation error
over the last500 samples of each sequence, and averaged over50
trials. KAPA orders ranging from1 to 5 were tested, andp = 5
was chosen. Parametersµ andǫ were set to9× 10−4 and7× 10−3.
These values were found by performing a simple grid search over the
parameter space(10−4 ≤ µ ≤ 10−1) × (10−3 ≤ ǫ ≤ 10−2) with
(logarithmic) increment2 × 10−k within ranges[10−k, 10−k+1].
KAPA was tested on fifty5000-sample test sequences. The average
orderm of the kernel expansion (7) was5.4, which confirms the
control of the proposed technique over the model order. Steady-state
performance of KAPA was measured by the mean-square prediction
error over the last500 samples of each time series, that is,

ξ =
1

500

5000X
n=4501

(dn − ψ̂n−1(un))2. (20)

The average value ofξKAPA = 0.0839 was obtained for KAPA over
the 50 test sequences. KRLS algorithm led toξKRLS = 0.0711,
but at the cost of a much higher computational complexity. For the
KNLMS algorithm, the best steady-state performance was obtained
with µ = 5 × 10−3 andǫ = 9 × 10−3. As for KAPA, the average
value of the model orderm was5.4. The average value of (20) over
the fifty test sequences wasξKNLMS = 0.0896. As expected, the
substantial computational savings gained by using KNLMS came at
the cost of a worse steady-state performance.

For transient behavior comparison, KAPA was designed to
match the KNLMS steady-state performance. This resulted inp = 3,
µ = 3 × 10−3 andǫ = 5 × 10−2. Figure 1(a) shows the evolution
of the mean-square error for the three algorithms, where the conver-
gence speed of KAPA is seen to be between KNLMS and KRLS, as
expected.

The experiment reported in Figure 1(a) was repeated forun a
colored Gaussian process. Signalun was obtained by passing the
same white Gaussian noise used before through a linear filter with
impulse response given byh = [0.9045 1 0.9045 0]t. The orderm
of the kernel expansion was, on average,8.64 for the KAPA and the
KNLMS. Figure 1(b) show the mean-square error evolution for the
three algorithms, and corroborates the results verified in Figure 1(a)
for white inputs.

5.2. Experiment with the Gaussian kernel

As a second benchmark problem, we consider the nonlinear system
described by the difference equation

dn =
�
0.8 − 0.5 exp(−d2

n−1)
�
dn−1

−
�
0.3 + 0.9 exp(−d2

n−1)
�
dn−2 + 0.1 sin(dn−1π)

(21)

wheredn is the desired output. This highly nonlinear time series
has been investigated in [5]. The data were generated by iterating
the above equation from the initial condition(0.1, 0.1). Outputsdn
were corrupted by a measurement noise sampled from a zero-mean
Gaussian distribution with standard deviation equal to0.1, corre-
sponding to a signal-to-noise ratio of17.2 dB. These data were used
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Fig. 1. Convergence behavior of KAPA, KNLMS and KRLS for (a) white and (b) colored inputs. The error curves were smoothed by time averaging over20
consecutive samples.
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Fig. 2. Convergence behavior of KNLMS and KRLS algorithms for several
values ofν0. Value of ν0 is outside the parentheses. The mean order of
each model is given in parentheses. The error curves were smoothed by time
averaging over20 consecutive samples.

to estimate a nonlinear model of the formdn = ψ(dn−1, dn−2).
In identifying the system, we restricted ourselves to KNLMS and
the experimental setup described in [5]. In particular, the Gaussian
kernelκ(ui,uj) = exp

�
−3.73 ‖ui − uj‖

2
�

was considered. As
in the previous experiment, trial-and-error on fifty5000-sample se-
quences was used to determine the thresholdν0, and parametersµ0

andǫ. The dictionary was initialized withκ(·,u1). A practical com-
promise between the model order and itsa priori estimation error
was reached by settingν0 to 0.5. The step-size parameterµ0 and
the regularization coefficientǫ were fixed to9 × 10−2. Figure 2
shows that KNLMS has almost the same steady-state performance
as KRLS, but converges slower. However, the computational com-
plexity of KRLS is quadratic inm whereas that of KNLMS is linear.
Error curves obtained for KNLMS using other values ofν0 are also
plotted in this figure. No significant performance improvement is
observed forν0 > 0.5.

6. CONCLUSION

We presented a framework for nonlinear adaptive filtering. Our ap-
proach is based on the classical affine projection algorithm, and uses
reproducing kernels to incorporate nonlinearity. As a particular case,
we also derived a nonlinear normalized LMS algorithm with kernels.
A common characteristic in kernel-based methods is that they deal
with models whose size increases with the number of input data. We
used a sparsification procedure based on the coherence parameter to
circumvent this computational burden. Finally, we presented exper-
imental results to validate our approach.
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