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1 Short abstract

In the last ten years, there has been an explosion of activity in the field of learning algorithms utilizing
reproducing kernels, most notably for classification and regression. A common characteristic in kernel-
based methods is that they deal with models whose order equals the number of input data, making them
unsuitable for online applications. In this paper, we investigate a new kernel-based RLS algorithm that
makes unnecessary the use of any computationally demanding sparsification procedure. The increase
in the model order is controlled by the coherence parameter, a fundamental quantity that is used to
characterize the behavior of dictionaries in sparse approximation problems.

2 Extended abstract

Adaptive filtering has become a topic of keen interest over the past three decades to help cope with
time variations of system parameters and lack of a priori statistical information [11, 15]. Linear models
are still routinely used because of their inherent simplicity from conceptual and implementational point
of view. In many practical situations, however, nonlinear signal processing is needed. It includes items
such as nonlinear system identification, prediction and control, e.g., in communications and biomedical
engineering, see [9]. Following the pioneering works [1, 2, 13], there has been recent progress in function
approximation methods based on reproducing kernel Hilbert spaces (RKHS) [12, 16], including, for
example, support vector regression [18]. A common characteristic in kernel-based methods is that
they deal with models whose order is the size of the training set, making them unsuitable for online
applications. Several algorithms have been proposed to circumvent this computational burden in time
series prediction problems [3, 4, 8]. Nevertheless they require excessively elaborate and costly operations
such as matrix inversion.

The aim of this paper is to develop a new kernel-based RLS algorithm that makes unnecessary
the use of any computationally demanding sparsification procedure. The increase in the model order
is controlled by the coherence parameter, a fundamental quantity that characterizes the behavior of
dictionaries in sparse approximation problems [19]. This abstract is organized as follows. In the first
part, we introduce some basic principles of kernel-based optimum filtering in RKHS. Next we present our
nonlinear adaptive filtering methods based on the coherence parameter. Finally simulations illustrate
how efficient the proposed algorithm is.
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Let H denote a RKHS of real-valued functions ψ on a compact U ⊂ IRp, and let 〈· , ·〉H be the inner
product in H. Let κ : U×U → IR be the reproducing kernel of H, meaning that ψ(ui) = 〈ψ(·), κ(·,ui)〉H
for all ψ(·) ∈ H and every fixed ui ∈ U . The problem is to determine a function ψ(·) of H that minimizes
the sum of squared errors between n samples di of the desired response and the corresponding model
output samples ψ(ui), namely,

min
ψ∈H

n
∑

i=1

|di − ψ(ui)|
2. (1)

By virtue of the representer theorem [17], the solution to this problem can be expressed as a kernel
expansion in terms of available data, that is,

ψ(·) =
n

∑

j=1

αj κ(·,uj). (2)

Substituting (2) into equation (1) and using the reproducing property κ(ui,uj) = 〈κ(·,ui), κ(·,uj)〉H,
elementary algebra shows that problem (1) reduces to

min
α

‖d − Kα‖2 (3)

where K is the n-by-n Gram matrix whose (i, j)-th entry is κ(ui,uj). With the matrix P = (Kt
K)−1

assumed to exist, the solution to this problem is α = PK
t
d. Adaptive filtering raises the question of

how to process an increasing amount of observations and update ψ(·) as new data is collected. Clearly
the optimal approach outlined above cannot be used because it involves a n-th order model, see (2),
and the n-by-n matrix P to be inverted, at each time instant n. Several attempts have been made
recently to circumvent this computational burden [3, 4, 8]. Consider the m-th order model at any given
time instant n

ψn(·) =

m
∑

j=1

αj κ(·,uωj ), (4)

where the ωj ’s form an m-element subset Jn of {1, . . . , n}. We call {κ(·,uωj )}
m
j=1 the dictionary.

These approaches rely on a two-stage process at each iteration: a model order selection step, and a
parameter update step. In the model order selection step, at time instant n, the kernel function κ(·,un)
is inserted into the dictionary if it cannot be reasonably well represented by a combination of the other
kernel functions of the dictionary. This condition usually takes the form

min
γ

‖κ(·,un) −
∑

ωj∈Jn−1

γj κ(·,uωj )‖
2
H > ǫ0, (5)

where κ is a unit-norm kernel, that is, κ(uk,uk) = 1; otherwise replace κ(·,uk) by κ(·,uk)/
√

κ(uk,uk)
in the above expression. The threshold ǫ0 determines the level of sparsity of the model. These ap-
proaches, while accurate, are computationally prohibitive.

The coherence is a fundamental parameter to characterize a dictionary in sparse approximation
problems [6, 19]. In our kernel-based context, we define the coherence parameter as

µ = max
i6=j

|〈κ(·,uωi), κ(·,uωj )〉H| = max
i6=j

|κ(uωi ,uωj )| (6)

where κ is a unit-norm kernel. It reflects the most extreme correlations in the dictionary and, conse-
quently, it is equal to zero for every orthonormal basis. Rather than solving a problem of the form (5),
we suggest to insert κ(·,un) into the dictionary provided that its coherence remains below a given
threshold µ0, namely,

max
ωj∈Jn−1

|κ(un,uωj )| ≤ µ0, (7)
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where µ0 is a parameter in [0, 1[ determining both the level of sparsity and the coherence of the dictio-
nary. The motivation for using this test is two-fold. First, it is easy to calculate and its computational
complexity is only linear in the dictionary size. Second, it offers several attractive properties that can
be exploited to assess novelty of input kernel functions, in particular:

• If U is compact, the dictionary of kernel functions determined under the rule (7) is finite. This
implies that the order of the asymptotic model ψ∞(·) is finite and depends on µ0.

• If (m− 1) < 1/µ0, the elements of the dictionary {κ(·,uωj )}
m
j=1 are linearly independent.

• If (m − 1) < 1/2µ0, the left side of equation (5) is lower bounded by 1 −
(m−1)µ2

0

(1−(m−1)µ0)
, which

establishes a connection between ǫ0 and µ0.

For lack of space, proofs are omitted here but will be presented in the full-length paper. We describe
now the parameter update step, whose purpose is to solve problem (3) recursively. Given the least-
squares estimate αn = P nK

t
ndn, one of the following two alternatives holds with the arrival of un+1.

Either κ(·,un+1) does not satisfy the rule (7). It is not inserted into the dictionary and an iteration
of the RLS algorithm is performed to get αn+1 and P n+1. The computational cost is O(m2). Or
κ(·,un+1) is added to the dictionary. The order of the model is increased by one, and αn+1 and P n+1

are updated accordingly using order-update relations that will be presented in the full-length paper.
Each time it is run, the order-update iteration also requires O(m2) operations.

The purpose of this part is to illustrate the performance of the proposed approach. Consider the
discrete-time nonlinear dynamical system

d(n) = 0.5 d(n− 1)3 + 0.3 d(n− 1)u(n− 1) + 0.2u(n− 1) + 0.05 d(n− 1)2 + 0.6u(n− 1)3, (8)

where dn is the desired output, and un is the input sampled from a zero-mean Gaussian distribution
with variance 0.1. The data were generated from d0 = 0.1. The system output dn was corrupted
by an additive zero-mean white Gaussian noise with variance 0.05, resulting in a signal-to-noise ratio
of 1.15 dB. Our approach was used to identify a nonlinear model of the form dn = ψ(dn−1, un−1).
Preliminary experiments were conducted to select the kernel and determine the best settings for the
algorithm. The Gaussian kernel defined as κ(ui,uj) = exp

(

−‖ui − uj‖
2/2β2

0

)

with β0 = 0.25 was
shown to be very accurate, and the coherence threshold µ0 was set to 5 · 10−2. The characteristics
of the model were examined over one hundred 10000-sample test sequences. The final order m of the
kernel expansion was 9.5 on average. Condition (m − 1) < 1/µ0 mentioned above is then satisfied, in
average, which indicates that the kernel functions of the dictionary were most frequently, if not always,
chosen linearly independent. The normalized prediction mean-square prediction error was 3.32 · 10−3.
Some illustrative examples are shown in Figure 1. The convergence behavior of the method is presented
in Figure 2. In the full-length paper, experiments with different values of the kernel bandwidth β0 and
colored noises will be also proposed.
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Figure 1: Desired output dn, predicted output ψ(un) and system output with measurement noise during
first instants (left) and later (right).
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Figure 2: Convergence behavior of our approach.
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