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Time–Frequency-Based Detection Using
Discrete-Time Discrete-Frequency

Wigner Distributions
Cédric Richard, Member, IEEE

Abstract—During the last decade, a comprehensive theory
for optimum time–frequency (TF)-based detection has been
developed. This was originally proposed in the continuous-time
continuous-frequency case. This paper deals with detectors op-
erating on discrete-time discrete-frequency Wigner distributions
(WDs). The purpose is to discuss some existing definitions of
this distribution within the context of TF-based detection and
selecting those that do not affect the performance of the decision
device with which they are associated. This question is of interest
since there exist several approches for discretizing the WD,
sometimes resulting in a loss of fundamental properties. First,
the discrete-time discrete-frequency formulations of optimum
detection are investigated. Next, the problem of the design of
TF-based detectors from training data, keeping in mind severe
effects of the curse of dimensionality, is considered.

I. INTRODUCTION

T IME-FREQUENCY (TF) representations have been ex-
tensively used for nonstationary signal processing since

they extend the usual spectral analysis by making it time depen-
dent. Among the myriad of solutions that have been proposed,
the Wigner distribution (WD) is considered fundamental in a
number of ways. Its usefulness derives from the fact that it sat-
isfies many desired mathematical properties such as the correct
marginal conditions and the weak correct-support conditions.
This distribution is also a suitable candidate for TF-based de-
tection since it is covariant to time shifts and frequency shifts,
and it satisfies Moyal’s condition [1], [2].

A. Discrete WDs

For a practical implementation, the WD must be formulated
in a discrete-time discrete-frequency setting. The discrete WD
is commonly presented in the form

(1)

Note that it is a halfband TF representation, meaning that
frequency components are computed in the normalized range

. Recently, significant efforts have been made to
define fullband representations. An overview of these results
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may be found in [3]. In [4], Richmanet al. have used a group
theoretic approach to derive the definition

(2)

The above-mentioned function , whose expression is
given in [4], depends on the parity of, and .
This distribution, which, here, is called R-WD, satisfies mathe-
matical properties analogous to those satisfied by the continuous
WD. Note that (2) has also been proposed by O’Neillet al. for
odd-length signals [5]. The authors have used an axiomatic ap-
proach, which was extended in [6] to derive a discrete Cohen
class. In [7] and [8], Stankovic´ has derived a discrete distribu-
tion from the analysis of the WD defined in the frequency do-
main. This fullband distribution, which is called S-WD, uses the
short-time Fourier transform (STFT) as a basic step

STFT STFT (3)

where the summation for each lasts until any of the con-
ditions ( ) or ( ) is violated [8], i.e.,

, and

STFT (4)

Note that Definition (4) differs from that in [8]. The first one is
more often used in the literature, whereas the second one fully
corresponds to the STFT numerical calculation by using the FFT
routines. However, both lead to equivalent results. Since they do
not require either analytic signal calculation or oversampling,
the R-WD and the S-WD provide substantial advantages over
the traditional way (1) of WD computing.

B. TF-Based Detection

By virtue of their rich structure, TF representations have been
extensively used for detection in applications ranging from
radar to machine fault diagnostics due to the need to deal with
nonstationary signals. During the last decade, a comprehensive
theory for optimum TF-based detection has been developed. In
[2], Flandrin has characterized detection scenarios for which
TF-based detectors are optimum. Marinovich has followed this
approach in [9] for the case of Gaussian transient detection in
the mix of colored and white Gaussian noise. In [1], Sayeed and
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Jones have proposed TF-based receivers that are optimum for
detecting second-order nonstationary stochastic signals in the
presence of Gaussian noise, with time and frequency shifts as
unknown or random nuisance parameters. Except in [9], where
implementation considerations are addressed through the use
of (1), the TF detection problems mentioned previously were
originally solved in the continuous-time continuous-frequency
case. The resulting receivers then need to be discretized before
they can be implemented as a computer program.

This paper deals with detectors operating on the discrete WD.
The purpose is to evaluate the relevance of some definitions of
this distribution within the context of TF-based detection, se-
lecting those that do not affect the performance of the decision
device with which they are associated. This question is of in-
terest since there exist several approches for discretizing the
WD, sometimes resulting in a loss of fundamental properties.
This paper is organized as follows. First, the discrete-time dis-
crete-frequency formulations of optimum detection are inves-
tigated. Next, the problem of blind TF-based detectors design
from training data is considered [10] and predictions made of
the effects of the curse of dimensionality as a function of the dis-
crete WD definition that has been selected. Finally, some con-
cluding remarks are presented.

II. DISCRETETF FORMULATIONS OFOPTIMUM DETECTION

In this section, it is shown that the definition of the discrete
WD has an influence on the performance of the decision device
with which it is associated. The detection problem considered
has been solved in the continuous-time continuous-frequency
domain in [2]. Here, it is considered in the discrete case as

(5)

where is the Gaussian signal to be detected, characterized by
the mean and the covariance . The additive noise is
zero-mean, Gaussian, and white with variance.

A. Bayes-Optimum Detector

Let be an orthonormal basis of eigenvectors of. Let
be the th vector of , and let be the corresponding eigen-
value. The solution of the classic problem (5) is

(6)

where is a given threshold, and

(7)

Re (8)

with

(9)

This result involves inner products in the discrete-time domain.
It is very similar to the continuous-time case, except that (9) is

replaced by the expansion ofand in a Karhunen–Loève
basis of . Let implicitly refer to , and/or

. As in [2], the expressions involving discrete WDs

(10)

Re (11)

are equivalent to (7) and (8) if satisfies the inner product
conservation law

(12)

This relationship holds only for the R-WD defined by (2). Then,
the classic definition (1) and the S-WD given by (3) must be
discarded for exact formulations (10) and (11), and the R-WD
can be retained as a basic TF tool for optimum detection of
second-order signals in the presence of Gaussian noise. Because
the R-WD satisfies the property of covariance, it can also be
used for composite hypothesis testing when the signal to be de-
tected has time and frequency shifts as a couple of nuisance
parameters [1].

Remark: As shown later, one can implement the optimum
detector (6) using the classic definition (1) since it satisfies the
correct time marginal density

Re

Even if this solution is optimum, it must be discarded since it
does not provide any meaningful interpretation.

B. Example

For detecting Gaussian signals in white Gaussian noise, the
TF structure of (10) and (11) is optimum in the Bayes sense if

satisfies the inner product conservation law (12). Not sur-
prisingly, using this receiver with (1) or (3) can result in serious
performance degradation, as shown in Fig. 1.

III. D ATA-DRIVEN DESIGN OFDISCRETETF DETECTORS

Optimal detection of signals embedded in noise requires the
knowledge of certain underlying statistics. In most practical
applications of current interest, these statistics are not avail-
able since phenomena are complex and poorly understood.
However, one can often collect labeled signals resulting from
experimental observation as for electrophysiological data
[11] or mechanical systems data [12]–[14]. If the database
is somehow representative of the unknown distribution, the
following strategy based on deriving the detector directly from
training data offers hope for optimal detection: 1) selecting a
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Fig. 1. Comparison of operating characteristics. For detecting Gaussian
signals embedded in white Gaussian noise, the optimum receiver in the Bayes
sense (�) can be rewritten in time and frequency terms using the R-WD.
However, making use of the classic definition or the S-WD can result in
performance degradation.

class of detectors 2) and tempting to pick the detector of
that minimizes, for example, an estimate of the error proba-
bility. This viewpoint will now be adapted within the context
of TF-based detection. For practical reasons, the discussion
will be restricted to linear detectors operating on discrete WD,
which are of the form

(13)

where the s and are parameters to be determined from
available training data. Note that (13) has been widely used
in the literature since it provides a flexible and meaningful
quadratic decision function. Let be the class of linear
detectors operating on . To further compare the s,
one first has to study the redundancy of information carried
by every representation . This result can then be used to
evaluate the relevance of (1)–(3) and to predict their behavior
when confronted with the curse of dimensionality.

A. Linear Signal Spaces and Induced Spaces

As a basis for subsequent development, this section provides a
brief review of linear spaces, and the concept of induced spaces
is introduced. A linear signal spaceover the field is a col-
lection of signals that satisfies the following linearity property:
If and , then for arbitrary
complex coefficients , . Let be a nonempty set of el-
ements of . One can say that it is a basis for if it is lin-
early independent and if it generates. The basis is or-
thonormal if , where
is the Kronecker delta symbol. Then, every can be rep-
resented as , where is the inner
product of and . In this paper, it is considered thatis the
linear space of -sample complex-valued signals over.

Let be the map such that for all ,
in . Let be the image of that is given by

with (14)

Note that the space is not a linear space: Linear combina-
tions of WD are not valid WD. The space can now be as-
sociated with the linear space over the field of all linear
combinations of with , . In [15], is called
“induced -domain space.” Here, the inner product is ex-
pressed as

and can be defined as the cardinality of ,
where is a basis for .

B. Versus

Following this brief presentation of induced spaces, the paper
will now compare the classes of linear detectors operating on

and , which are denoted by and . To fur-
ther establish that , one first has to determine

and .
Let be the pulse defined by if and 0

otherwise. By construction, any R-WD can be represented as

(15)

This implies that generates the space

. Furthermore, a simple calculus shows that our family is
an orthonormal basis for since

(16)

where is the Kronecker delta symbol. It directly follows that

card (17)

from which one can conclude that the samples of are
linearly independent. Note that this result is applicable to the
auto distribution since taking does not modify the
above proof. This implies that , where is the class
of quadratic detectors, which is defined as

(18)

Here, denotes a Hermitian matrix to ensure realness
of the detection statistic.

Attention is now focused on . A recently proposed al-
gebraic study has shown that this distribution encodes informa-
tion in a redundant fashion since linear relations connect the

s [16]. One key point of this work was that the cross
WD of any complex-valued signalsand can be expanded in
the form

(19)
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where is the collection of pairs such that both and
are elements of . Simple calculus shows

that

(20)

which means that is an or-

thonormal basis for . It follows that is equal
to the cardinality of . Combining and

gives if ,
, otherwise, where

denotes integer part of . Then, one has

(21)

from which it is finally obtained that equals
. Because , linear relations

then connect the samples of any representation
. As a conclusion, the R-WD potentially leads to

a larger class of detection structures than the classic definition
(1) since the s are linearly independent, whereas the

s are not. In particular, one has ,
which suggests that can provide detectors that (at least)
perform better than those of the class .

C. Influence of the Curse of Dimensionality

As introduced previously, there are several strategies for
solving a detection problem, depending ona priori knowledge
on competing hypotheses. In this section, it is supposed that our
knowledge is restricted to a training set, which is used to adjust
the free parameters of a given detection structure. To achieve
good performance, it is well known in pattern recognition
that one needs to match the complexity of the detector to the
amount of training data [17]–[19]. As illustrated in Fig. 2, if
the detector is too complex, it is likely to learn the training
data, but it will probably not generalize properly. In contrast,
if it is not complex enough, it might not be able to extract
all the discriminant information available in the training set.
This experimental evidence, which is known as the curse of
dimensionality, has been studied theoretically by Vapnik and
Chervonenkis [17]. In particular, these authors have formally
defined the complexity of a detector, which is called dimension
of Vapnik–Chervonenkis (or VC-dimension). This parameter,
hereafter denoted , can be used to compute a confidence
interval for the error probability of any detector designed
from training data. The following inequality holds with a
probability of :

(22)

where

(23)

Fig. 2. Illustration of the behavior of generalization errorP and empirical
error P during a typical training stage as a function of the detector
complexity. Note thatP , which is an estimate ofP based on training data,
is also called training error.

where
-sample training set,

probability of error of ;
estimate of this probability based on .

The cardinality of the training set is generally fixed so that
one needs to carefully control in order to reach a low .

For linear detectors, it can be shown thatis equal to ,
where is the dimension of the space spanned by learning sam-
ples [19], or by their TF representations within the context of
TF-based detection. With (17) and (21), this directly implies
that for linear detectors operating on , and

if one considers the case of linear detec-
tors associated with . In the following, these VC-dimen-
sions are denoted by and , respectively. Since

, detectors of are less sensitive to the curse of dimen-
sionality than those of . Thus, they can sometimes lead to
improved performance for a given data set, even though infor-
mation is being discarded. Let us now concentrate on computer
simulations to illustrate this phenomenon. The problem chosen
to be addressed deals with detecting the presence or absence of
the 16-length signal embedded in additive noise

(SNR dB). Here, is a deterministic signal, and
denotes a random phase uniformly distributed over .

The noise is white non-Gaussian with probability density
function given by with

and , where is the normal probability
density function with mean 0 and variance. First, detectors
of the form (13) operating on and were designed
as in [11] using 6000 realizations of the signal plus noise and
noise only. The comparison of their performance, which is de-
picted in Fig. 3, conforms with the theoretical result presented
in Section III-B: provides detectors that (at least) perform
better than those of if the effect of the curse of dimen-
sionality is negligible, i.e., enough training samples are avail-
able. Second, the same experiment was conducted with only
100 realizations each of signal present and signal absent. Fig. 4
shows that the detector associated with yields higher per-
formance than the detector operating on , even though

. As explained previously, the influence of the curse
of dimensionality due to the small number of available training
samples justifies this surprising result.
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Fig. 3. Comparison of operating characteristics, which shows that the
detector ofC performs better than the detector provided byC . Here, the
influence of the curse of dimensionality is negligible since the training process
was conducted with 6000 16-length signals.

Fig. 4. Illustration of the curse of the dimensionality and its effects. The
detector ofC has lower performance than the detector provided byC ,
even thoughC � C . Both detection structures were designed from 200
16-length signals.

D. Versatile Alternative:

For a fixed size of training set, it has been shown that it is im-
portant to control the level of complexity of a detection struc-
ture in order to optimize its generalization performance. There
are, in fact, many different ways in which to achieve an appro-
priate complexity. For example, regularization techniques in-
volve adding to the error function an extra penalty term, which
is designed to influence the form of the solution [20]. Another
way of dealing with the curse of dimensionality is to prepro-
cess the data to change the dimension of the input space. In the
context of TF-based detection, this involves how smoothing TF
representations can lead to significant improvement in gener-
alization performance of receivers, as has been shown in [21]
with spectrograms of variable windows lengths. Recently, the
signal-dependent kernel proposed in [22] and the adaptive dif-
fusion process presented in [23] have also been used for the
purpose of detector complexity control [24], [25]. The goal of

this subsection is to show that the S-WD provides a substantial
advantage over the R-WD and the traditional definition (1) for
designing detectors with improved generalization performance.
For practical reasons, the discussion, as before, will be limited
to linear detectors of the form (13).

Thus far, the case of detectors operating on and
has been considered, and it has been shown that

and , where is the length of signals
on stage. In practice, it is then necessary to apply postprocessing
transformations to the input TF representations in order to match
the complexity of such detection structures to the amount of
training data. In the case of detectors operating on the S-WD,
it is clear that one can take advantage of the windowin (4)
to control the dimension of the induced -domain space,
which is denoted . The dimension of will not be
evaluated further as it is a tedious calculus exercise involving
the transcription of in the discrete ambiguity domain by
means of the two-dimensional Fourier transform. However, it is
noted that satisfies the following inequalities:

1) if ;
2) ;

where is the length of the smoothing window . Making use
of when leads to 1). To show 2),
it suffices to note that the linear space contains -sample
elements. This finally implies that , where
is the class of linear detectors operating on the S-WD.

In [7] and [8], Stankovic´ has shown that crossterms in the
S-WD can be avoided while improving concentration of au-
toterms by setting the parameter in (3) to a value lower
than . Given any fixed smoothing window

, the influence of on detection performance will now
be investigated. One has STFT STFT
with . By construction, every
sample with can then be
expressed as

(24)

where denotes the spectrogram sample, which is
defined as STFT STFT , and

if , and 0 otherwise. Note that produces
the spectrogram. In the case of the traditional way (1) of WD
computing, it has been shown in [16] that sets of TF generators

, which are denoted , exist
so that every with can
be expressed as a linear combination of the elements of
for all , . Each set is completely determined by a
family of TF locations , depending only on the definition
of the TF distribution under consideration and the linear signal
space fixed beforehand, which is here. The cardinality of

equals the dimension of the induced -domain space.
Obviously, this framework can be used to study any other dis-
crete TF distribution such as the S-WD and the spectrogram.
With (24), it follows that any set of generators for the s
is also a set of generators for the s for all in

and for all , in . This implies
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(a)

(b)

Fig. 5. Complexity control of the linear detector operating on the S-WD.
These plots show the evolution of (a) an estimate of the generalization error
and (b) the dimension of the induced S-WD domain space as a function of the
lengthL of the smoothing windowh[t]. The training process was conducted
with the same learning set as in Fig. 4.

that given any , the two classes of linear detectors operating
on the S-WD and the spectrogram coincide, from which one
can conclude that is not an influencing factor in detection
performance. This parameter can thus be used to improve the
readability of TF representations during the detection process.

As an illustration of the use of to control the complexity
of the detector (13), the example presented in Section III-C is
used. Fig. 5(a) and (b) shows the behavior of an estimate of the
generalization error and the dimension of , as a function
of the length of the rectangular window . It is noted that
the optimization of the error rate with respect to the complexity
of the detector results in a minimum for . As indicated in
Fig. 6, this detection structure yields higher performance than
detectors operating on and . This confirms that
making use of allows the control of the VC-dimension of
the receiver (13) in order to reach a low error rate.

Fig. 6. Comparison of operating characteristics, which shows that the detector
of C with optimized complexity (L = 3) performs better than detectors
provided byC andC . The training process was conducted with the same
learning set as in Fig. 4.

IV. CONCLUSION

In this paper, the problems that can arise in attempts to design
detectors operating in the discrete-time discrete-frequency do-
main have been discussed, as well as the potential improvement
in detection performance, which can be achieved by using the
R-WD, the S-WD, or the traditional way of WD computing. The
discussion was restricted to the theory of optimum TF-based de-
tection developed in the continuous-time continuous-frequency
case during the last decade. Discrete formulations have been
investigated, and it has been shown that the R-WD can be re-
tained as a basic tool for optimum detection of second-order
signals in the presence of Gaussian noise. However, designing
such detection structures requires the knowledge of conditional
probability density functions. Because this statistical informa-
tion is not available in most applications of current interest,
a technique for deriving linear detectors directly from labeled
training data was considered. Calculating the dimension of the
linear space induced by the R-WD, it was shown that this dis-
crete WD leads to the largest class of linear detection structures
operating in the TF domain. Nevertheless, these detectors have a
severe disadvantage in that they tend to have significantly lower
performance than detectors operating on the traditional discrete
WD, particularly when the number of training samples is rel-
atively small. This phenomenon, which is termed the curse of
dimensionality, has been extensively addressed in the literature.
It arises in attempts to perform pattern recognition in high-di-
mensional space, and its worst effects can be alleviated by a
preprocessing stage, leading to a reduction in the dimension-
ality of input data. An advantage of the S-WD over the other
discrete WD is that it involves a smoothing procedure. As has
been shown, this can be used as a technique for dimensionality
control, leading to a decision device with better generalization
properties. Thus far, attention has been restricted to three par-
ticular forms of the discrete WD. Obviously, the framework de-
scribed throughout this paper can be used to study other discrete
distributions from a detection viewpoint.
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