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Bayes-Optimal Detectors Design Using Relevant
Second-Order Criteria

Cédric Richard, Régis Lengellé, and Fahed Abdallah

Abstract—Statistical detection theories lead to the fundamental
result that the optimum test consists in comparing any strictly
monotone function of the likelihood ratio with a threshold value.
In many applications, implementing such a test may be impossible.
Therefore, we are often led to consider a simpler procedure for
designing detectors. In particular, we can use alternative design
criteria such as second-order measures of quality. In this paper,
a necessary and sufficient condition is given for such criteria
to guarantee the best solution in the sense of classical detection
theories. This result is illustrated by discussing the relevance of
well-known criteria.

Index Terms—Bayes-optimal detector, deflection, detector
design, Fisher criterion, generalized signal-to-noise ratio,
second-order criterion.

I. INTRODUCTION

T HE purpose of detection is to determine to which of two
classes or a given observation belongs. Let the

vector be an observation, and let be its
class. Detection is accomplished with a discriminant function

, which errs on if . In this letter,
the observations are assumed to be generated in accordance
with the two known probability densities and

, denoted by the standard notations and
, respectively. Classical statistical detection theories (see

e.g., [1]) such as Bayes, Neyman–Pearson and minimax lead
to the following result of major importance that the optimum
test consists in comparing thelikelihood ratio (LR) defined as

with a threshold value in order to
make a decision:

if

otherwise.

(1)

Note, any strictly monotone function of leads to an equiv-
alent decision rule in the sense that thereceiver operating char-
acteristic(ROC) is the same.

In many practical applications, implementing the LR test
may be an intractable problem due to excessive time and storage
requirements, or may be impossible because of incomplete
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specification of the conditional probability densities
and . Therefore, we are often led to consider a simpler
procedure for designing detectors defined as:

if

otherwise.
(2)

In particular, we can use alternative design criteria and per-
formance measures. Perhaps the most popular alternatives are
second-order measures of quality (see e.g., [2]–[4]). These cri-
teria are defined in terms of second-order moments of ,
namely

(3)

with . There have been many contributions to justify
individual second-order criteria, including convergence to op-
timal detectors of classical detection theories (see [3] and ref-
erences therein). In [5, pp. 141–143], the objective of the au-
thor is to unify these results stating that the use of any function

as a design criterion guarantees the best
solution in the Bayes sense1 for general nonlinear detector de-
sign. The main contribution of our letter is to show that in fact

must satisfy a nontrivial condition to pro-
vide Bayes-optimal detectors, and thus, to be considered as a
relevant second-order criterionfor detector design.

The rest of this letter is organized as follows. In the next sec-
tion, we give statistics which optimize second-order cri-
teria as a function of the LR. We then de-
rive a necessary and sufficient condition for the existence of rel-
evant second-order criteria. As shown in Section III, this con-
dition can easily be used to test the relevance of well-known
design criteria. Section IV contains some concluding remarks.

II. CHARACTERIZATION OF RELEVANT

SECOND-ORDER CRITERIA

Let be any function of and

, with . We first
have to characterize statistics which optimize . Oper-
ating on with a variational calculus, we obtain

(4)

1Throughout this letter, this refers to a detector in which the test statistic
S(X) is a strictly monotone function of the LR. Note that such detectors are
also optimal in the Neyman–Pearson and minimax sense when the threshold is
properly chosen.
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Since and
with , we obtain

(5)

To make regardless of , the term given above
must be equal to 0. Using , we finally get
the expression of the statistic optimizing as a function
of the LR

(6)
The above statistic is completely equivalent to the LR iff it is a
strictly monotone function of . Evaluating the first order
derivative of with respect to , we obtain

(7)

Since the denominator of (7) is strictly positive for all, we
thus note that defined by (6) is a strictly monotone func-
tion of iff the numerator of (7) is not equal to 0. This result
leads directly to the following proposition.

Proposition 1: is a relevant
second-order criterion, i.e., it guarantees the best solution
in the Bayes sense for detector design, iff

(8)
Since it is very difficult, if not impossible, to find the solutions

of (8), our discussion will be limited to the relevance of well-
known design criteria in the next section.

III. EXAMPLES OF SECOND-ORDER CRITERIA

We are concerned with a type of second-order criteria that
is frequently used in practice. These criteria are of the form

, where is a measure ofbetween-class

scatterand with is thewithin-
class scatter(see e.g., [2]–[4]). To discuss the relevance of such
criteria using (8), we need to compute the derivatives ofwith
respect to and . Thus

(9)

(10)

Substituting (9) and (10) into (8), we note that is a rel-
evant criterion iff

(11)

The existence of the optimal statistic (6) indicates that
and cannot be both equal to 0. With (10), we then ob-
tain so that (11) becomes

(12)

To solve (12) in the case presents no difficulty. We
directly obtain that must depend on . For any

, (12) can be solved simply by posing
and ; this leads to

, where is any real-valued function. There-
fore, criteria depending on a weighted sum of the between-
class scatter and the within-class scatter are nonrelevant, e.g.,

.
In the present case, we verify that given by (6) does not
depend on , which conforms to Condition (8). Intuitively,
note that such criteria are not satisfactory: they combine antag-
onistic quantities, the between-class scatter and the within-class
scatter, via a sum.

Thegeneralized signal-to-noise ratio(GSNR) postulates the
performance measure of to be the quantity (see e.g., [3])

(13)

The value of is a measure of clustering for the two competing
classes and : it tends to be large when

increases and decreases. This design crite-
rion includes as particular cases various second-order measures
used in practice such as Fisher criterion ( ) [5], deflec-
tion ( ) and complementary deflection ( ) [3]. Ob-
serving that (13) satisfies (12), we immediately conclude that
the GSNR is a relevant second-order criterion.

IV. CONCLUDING REMARKS

The theoretical results reported in this paper are concerned
with the relevance of second-order criteria used for general non-
linear detector design. We have given a necessary and sufficient
condition for these widely used measures of quality to guar-
antee the best detector in the sense of classical decision theories.
We have illustrated this result by discussing the relevance of
well-know design criteria. From this study, it can be concluded
that there is a broad class of relevant second-order criteria. How-
ever, it should be noted that obtaining the optimum detector re-
mains an unsolved problem.
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