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Bayes-Optimal Detectors Design Using Relevant
Second-Order Criteria

Cédric Richard, Régis Lengellé, and Fahed Abdallah

Abstract—Statistical detection theories lead to the fundamental specification of the conditional probability densitigg(X)

result that the optimum test consists in comparing any strictly andp, (X). Therefore, we are often led to consider a simpler
monotone function of the likelihood ratio with a threshold value. procedure for designing detectors defined as:

In many applications, implementing such a test may be impossible.
Therefore, we are often led to consider a simpler procedure for 1 if S(X

designing detectors. In particular, we can use alternative design h(X) = { , FS(X)>v @
criteria such as second-order measures of quality. In this paper, 0, otherwise.

a necessary and sufficient condition is given for such criteria

to guarantee the best solution in the sense of classical detection|n particular, we can use alternative design criteria and per-

theories. This result is illustrated by discussing the relevance of formance measures. Perhaps the most popular alternatives are

well-known criteria. ) . .
second-order measures of quality (see e.g., [2]-[4]). These cri-

Index Terms—Bayes-optimal detector, deflection, detector teria are defined in terms of second-order moments (ot ),
design, Fisher criterion, generalized signal-to-noise ratio, namely

second-order criterion.

mi 2E{Slwi},  of 2 Var{Slw:} ©)
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. INTRODUCTION

HE purpose of detection is to determine to which of twiith @ € {0, 1}. There have been many contributions to justify

classeswy or w; a given observation belongs. Let thdndividual second-order criteria, including convergence to op-
vectorz € R™ be an observation, and let € {0, 1} be its timal detectors of classical detection theories (see [3] and ref-
class. Detection is accomplished with a discriminant functigifénces therein). In [5, pp. 141-143], the objective of the au-
h(z): R® — {0, 1}, which errs onz if A(z) # y. Inthis letter, thor is to unify these results stating that the use of any function
the observations are assumed to be generated in accorda¢&o. m1, 03, of) as a design criterion guarantees the best
with the two known probability densities(X|Y = 0) and solution in the Bayes seniséor general nonlinear detector de-
p(X|Y = 1), denoted by the standard notationg X) and sign. The main contribution of our letter is to show that in fact
p1(X), respectively. Classical statistical detection theories (s¥mo, ™1, 03, 07) must satisfy a nontrivial condition to pro-
e.g., [1]) such as Bayes, Neyman—Pearson and minimax |&4ge Bayes-optimal dete.cto_rs, and thus, to b.e considered as a
to the following result of major importance that the optimurfelevant secono!-order c.rlterloftnr detector design.
test consists in comparing thigelihood ratio (LR) defined as ~ The rest of this letter is organized as follows. In the next sec-

L(X) A p1(X)/po(X) with a threshold value- in order to tion, we give statigtic%‘(X) which optimize second-order cri-
make a decision: tgrla\If(mo, my, 05, 07) as a functhq of the LR. We then de-
rive a necessary and sufficient condition for the existence of rel-
1 i) 2 p1(X) o evant second-order criteria. As shown in Section lll, this con-
h(X) = ’ T po(X) (1) dition can easily be used to test the relevance of well-known
0 design criteria. Section IV contains some concluding remarks.

otherwise.

7

Note, any strictly monotone function &f X) leads to an equiv- [I. CHARACTERIZATION OF RELEVANT

alent decision rule in the sense that theeiver operating char- SECOND-ORDER CRITERIA

ac;censhc(ROC) 'I[S tr;e SaTe't_ - ing the LR test Let ¥ be any function ofm; 2 JS(X)p;(X)dX and
n many practical applications, implementing the est, a e L )
may be an intractable problem due to excessive time and storagsg tcf) (i(zir(azcteriﬂ;:a) sﬁ;(ti)ét)igéé)wvtﬂiéheopﬁ?rﬁilz]; \ngggsrt_

requirements, or may be impossible because of incomplete . - :
ating on¥ with a variational calculus, we obtain
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Sincedém; = [6S(X)p;(X)dX andéo? = 2 [(S(X) — Substituting (9) and (10) into (8), we note thiatu, v) is a rel-

m;)0S(X)p:(X)dX with ¢ € {0, 1}, we obtain evant criterion iff
av av  av
g — l—a)— — — 0. 11
0= [ | oo o) + () Vi M | o
mo mla v The existence of the optimal statistic (6) indicates thiy 902
+2(S(X) — mo) 2— po(X) andd¥ /da? cannot be both equal to 0. With (10), we then ob-
doy tain 9V /dv # 0 so that (11) becomes
av
+2(S(X) = m) g5 ()| 6S(X)AX. - (8) a(l - a) %_:I}’ z_‘j (12)

To solve (12) in the case € {0, 1} presents no difficulty. We
directly obtain thatl’ must depend oifm; — mg)2. For any
« €]0, 1], (12) can be solved simply by posing= «' + +'
andv = o1 — «)(v’ — v'); this leads to¥(u, v) # ¥(uw +

To makes¥ = 0 regardless 06S(X), the[-] term given above
mustbe equal to 0. Using(X') = p1(X)/po(X), wefinally get
the expression of the statist#f X') optimizing ¥ as a function

of the LR (v/a(l — «))), wheres is any real-valued function. There-
ov n ov LX) mo 3_‘112+m1 a—\I;L(X) fore, criteria depending. on a weighted sum of the between-
S(X) = 1 9mg  Omy n dog 0o class scatter and the within-class scatter are nonrelevant, e.g.,
2 oV o L(X) or oY L(X) Y(mo, m1, 05, 0f) = a(l—a)(mi—mo)*+aof+(1-a)og.
ol ' do? ol ' do? In the present case, we verify th&f X ) given by (6) does not

(6) depend or.(X), which conforms to Condition (8). Intuitively,
The above statistic is completely equivalent to the LR iff it is aote that such criteria are not satisfactory: they combine antag-
strictly monotone function of.(X). Evaluating the first order onistic quantities, the between-class scatter and the within-class

derivative ofS(X) with respect ta.(X ), we obtain scatter, via a sum.
ds Thegeneralized signal-to-noise rat{@SNR) postulates the
1L (X) performance measure 6{.X) to be the quantity (see e.g., [3])
OU AU 1/9U U OV 9T W(u, v) = —. (13)
(1 =m0) 552 852 ¥ 2\ 302 Bmo 807 B | Ceri |
_ %9 9071 01 Omg  0op 01y @ The value ofl is a measure of clustering for the two competing

<8_\If+8_\lf L(X)>2 classesyy andw; : it tends to be large when £ (m1 — mo)?

dol * do? increases and = ao? + (1 — «r)o2 decreases. This design crite-
rion includes as particular cases various second-order measures
used in practice such as Fisher criterion=£ 1/2) [5], deflec-

{ion (v = 1) and complementary deflectioa (= 0) [3]. Ob-
serving that (13) satisfies (12), we immediately conclude that
the GSNR is a relevant second-order criterion.

Since the denominator of (7) is strictly positive for All, we
thus note thab( X) defined by (6) is a strictly monotone func-
tion of LX) iff the numerator of (7) is not equal to 0. This resul
leads directly to the following proposition.

Proposition  1: ¥(mg, m1, 03, 07) is a relevant
second-order criterion, i.e., it guarantees the best solution
in the Bayes sense for detector design, iff

av ov 1<8\I/ ov ov 8\I/> 0
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IV. CONCLUDING REMARKS

The theoretical results reported in this paper are concerned
with the relevance of second-order criteria used for general non-
linear detector design. We have given a necessary and sufficient
condition for these widely used measures of quality to guar-

Since itis very difficult, if notimpossible, tofind the SOlm'onsantee the best detector in the sense of classical decision theories.

ck)f (8), c()jur Q|scu§tspn _vwltlhbe I'mt'ted Ep the relevance of We"We have illustrated this result by discussing the relevance of
nown design critenia in the next section. well-know design criteria. From this study, it can be concluded
that there is a broad class of relevant second-order criteria. How-

IIl. EXAMPLES OF SECOND-ORDER CRITERIA ever, it should be noted that obtaining the optimum detector re-

We are concerned with a type of second-order criteria tha@@ins an unsolved problem.
is frequently used in practice. These criteria are of the form

(m1 —mo)

A .
T(u, v), whereu = (m; —mg)? is a measure dietween-class REFERENCES
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