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Linear Redundancy of Information Carried by the
Discrete Wigner Distribution

Cédric Richard, Member, IEEE

Abstract—The discrete Wigner distribution (WD) encodes in-
formation in a redundant fashion since it derives by repre-
sentations from -sample signals. The increased amount of data
often prohibits its effective use in applications such as signal de-
tection, parameter estimation, and pattern recognition. As a con-
sequence, it is of great interest to study the redundancy of infor-
mation it carries. Recently, Richard and Lengellé have shown that
linear relations connect the time–frequency samples of the discrete
WD. However, up until now, such a redundancy has still not been
algebraically characterized. In this paper, the problem of the re-
dundancy of information carried by the discrete cross WD of com-
plex-valued signals is addressed. We show that every discrete WD
can be fully recovered from a small number of its samples via a
linear map. The analytical expression of this linear map is derived.
Special cases of the auto WD of complex-valued signals and real-
valued signals are considered. The results are illustrated by means
of computer simulations, and some extensions are pointed out.

Index Terms—Algebraic characterization, discrete Wigner dis-
tribution, linear redundancy, time–frequency analysis.

I. INTRODUCTION

T HE WIGNER distribution (WD) plays an important role in
signal analysis and signal processing since it extends the

usual spectral analysis by making it time dependent. Its useful-
ness partly derives from the fact that it satisfies many desirable
mathematical properties [3], [6], [9], [18]. For a practical imple-
mentation on a digital computer, the WD must be reformulated
in a discrete-time, discrete-frequency setting. There are several
different approaches to extending its definition to the discrete
case. For example, a group theoretic definition has been used in
[28]. The resulting discrete distribution satisfies several math-
ematical properties analogous to those satisfied by the contin-
uous distribution. However, its definition depends on the parity
of the signal length. In [20], an axiomatic approach has been de-
veloped. Under an alternative definition for the WD, it is shown
that the discrete distribution exists only for odd-length signals
and corresponds to the one originally defined in [28]. In addi-
tion, this approach has been extended in [21] to derive a discrete
Cohen class. There has also been a lot more work investigating
discretization methods [22] and techniques for overcoming the
inherent aliasing effects [2], [4], [19]. Among the various defi-
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nitions for the discrete WD, the most commonly used form is

with (1)

Here, and are -sample complex-valued signals, and the
local cross correlation is given by

if and 0
otherwise. is the cross WD of two signals, . The corre-

sponding auto WD is then defined as . This discrete
distribution can be computed in a straightforward manner using
the discrete Fourier transform. The resulting time–frequency
(TF) representation is a halfband representation, meaning that
frequency components of signals are computed in the normal-
ized range of .

Since representations are derived from-sample sig-
nals, it is clear that the discrete WD defined by (1) encodes in-
formation in a redundant fashion. The increased amount of data
often prohibits the effective use of this distribution in applica-
tions such as signal detection, parameter estimation, and pattern
recognition. Various methods of data reduction have been pro-
posed. For example, the singular value decomposition [8] of the

matrix of samples has been used in [13]–[17],
and techniques based on the statistical learning theory of Vapnik
[29] have been proposed in [24], [25], and [27]. In [1] and [5],
scatter criteria have been considered for the dimensionality re-
duction of a TF classifier. Even if it is of great interest to study
the redundancy of information carried by the discrete WD, as far
as we know, this problem has not been completely resolved. In
[23], [26], and [27], Richard and Lengellé prove that linear rela-
tions connect the samples of the discrete auto WD. This means
that sets of TF locations exist, and are denoted, so that every
sample with can be ex-
pressed as a linear combination of the elements of :

, which is denoted , for all . However,
up to now, and the associated linear map that allows the
generation of every sample of the discrete auto WD
from have still not been characterized.

The general subject of this paper is the algebraic study of the
linear redundancy of the information carried by the discrete WD
defined by (1). We wish to formally characterize the elements
and the cardinality of and, given , to derive the associated
linear map . The paper is organized as follows. Section II
provides a study of the linear redundancy of for all ,

. Section III considers the special cases of where
is any complex-valued signal or any real-valued signal. In Sec-
tion IV, results are illustrated by means of computer simulations.
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Finally, some further areas of investigation are suggested in Sec-
tion V.

II. L INEAR REDUNDANCY OF THE DISCRETECROSSWD OF

COMPLEX-VALUED SIGNALS

As a basis for subsequent development, Section II provides a
brief review of linear spaces, and the concept of induced spaces
is introduced [10]. Next, an algebraic characterization of the
linear redundancy of information carried by with ,

is proposed.

A. Linear Signal Spaces, Induced Spaces, and Bases

A linear signal space over the field is a collection of
signals that satisfies the following linearity property: If
and , then for arbitrary complex co-
efficients , . Let be a nonempty set of elements of.
We will say that it is a basis for if it is linearly indepen-
dent and if it generates . The basis is orthonormal if

, where is the Kronecker delta symbol.
Then, every can be represented as , where

is the inner product of and
. In this section, we will consider that is the linear space of
-sample complex-valued signals over the field.
In the process of discrete WD calculation as expressed by (1),

two maps and can be distinguished:

such that . Here, and denote
matrices whose components are and ,

respectively. Let and be the images of and ,
respectively. These spaces are then given by

with

with

We note that the space is not a linear space: linear combi-
nations of local correlations are not valid local correlations.
We now associate with the linear space over the field
of all linear combinations of local correlations with ,

. In [10], is called “induced -domain space.”
For this space, the definition of the inner product is given by

. Let
be a basis for . We will define the dimension of , which
is denoted , as the cardinality of [11], [12].
Again, the space is not a linear space. Let be the induced

-domain space over the field of all linear combinations
of with , . Here, the inner product is expressed
as . We
will define as the cardinality of , where
is a basis for . In the following, we will use bases of the
linear spaces and to characterize the elements of the
underlying spaces and . For example, we note that the
number of linearly independent samples of every

is upper bounded by the dimension of the
space . This means that the maximum number of samples

Fig. 1. Cross correlation domain support region defined as follows:J =
f(n; k) 2 : (n+ k; n � k) 2 f0; . . . ; N � 1g g.

that are sufficient to reconstruct every via a
linear map is equal to .

B. Redundancy of Information Carried by

Following this brief presentation of the induced spaces
and , we will now study the linear redundancy of informa-
tion encoded by the discrete cross WD of complex-valued sig-
nals. To further establish that linear relations connect the sam-
ples of , we first have to determine a basis for

. We will use it to calculate . By construction, the
cross correlation can be represented as

(2)

where is the set of pairs such that both
and ,

as depicted schematically in Fig. 1, and is the pulse
defined by if and 0 otherwise, with ,

. Hence, :
generates the space. Furthermore, simple calculus shows that

equals . From
this, we conclude at once that our family is an orthonormal
basis for . As defined by (1), the discrete WD at time-index

is the discrete Fourier transform of the local correlation at
time-index . This implies that the linear map is an isomor-
phism of into that preserves orthonormality. It follows
that the family of generators : is
an orthonormal basis for . In addition, we note that the cross
WD of any complex-valued signalsand can be expanded in
the following form:

(3)

By definition, any element of the linear space cannot have
more than linearly independent components. Based
on the above results, we can now calculate this upper bound.
It directly follows from the definition of that is
given by the number of points such that both

and . Combining
and gives
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if , and
otherwise. Here, denotes integer part of .
Then, we have

from which we finally obtain that equals if is
even and if is odd. This result leads directly to
the following theorem.

Theorem 1: Let and be -sample complex-valued sig-
nals. The number of linearly independent samples
of the discrete WD of and is upper bounded by if
is even and if is odd.

Theorem 1 establishes that linear relations necessarily con-
nect the samples . This means that sets of genera-
tors : exist and are denoted so
that every with can be
expressed as a linear combination of the elements offor all

, . Each set is completely determined by a family of
TF locations depending only on the linear signal space fixed
beforehand, which is here. To further derive the linear map

connecting every with , we now only need
to characterize the elements of .

We will now prove that can be recovered from if,
and only if, the latter contains linearly independent

for each . Here, equals
if ; otherwise, equals .
We observe that if . Then, we have

(4)

It can be verified that no linear relation connecting the cross
correlation samples for all , exists. With
(4), this implies that the redundancy of information carried by
the discrete cross WD consists of linear relations connecting the
samples that have the same time-indexfor each

. Throughout this paper, this redundancy will
be called “spectral redundancy.”

Let be a given time-index, and let
be the matrix whose -component is given by

(5)

where , and . Then,
the discrete WD can be expressed as with

The superscript denotes “transposition.” Proceeding as
in the proof of Theorem 1, it is a routine verification that
the family is a basis for the

induced -domain space, which is denoted , of all
linear combinations over the field of local correlations

, with , . From this, we conclude at once
that the dimension of this space is . Observe that

. Since is the Fourier
transform of , this implies that the dimension of the
induced -domain space is also . Hence,

can be fully recovered from if the latter contains
linearly independent components of .

Let be any set of
distinct samples of . We will now prove that

the elements of this set, which henceforth are denoted by,
are inevitably linearly independent. The vector can be
partitioned between and in such a way that the

components of are the elements of . Then, the

relation can be rewritten in the following
form:

(6)

by reordering the rows of , , and , if necessary.
Here, is the submatrix of that verifies

, namely, as shown in the equation at the bottom of
the page. Since the components of are linearly

...
...

...
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independent, it follows that the components of

are also linearly independent if, and only if, is nonsingular.
We will now evaluate the determinant of . We may write

it in the following form:

with

...
...

...

We observe that is a Vandermonde deter-
minant [12] whose value can be determined explicitly to be

Since for , it follows that
and . Then, the components of

are linearly independent. This implies that can
be recovered by choosing any distinct components

for each . This property leads
directly to the following theorem, which states a necessary and
sufficient condition for the elements of any set of generators.

Theorem 2: Let be a family of
samples of , which is denoted , where and are com-
plex-valued signals of length . can be fully recovered
from , provided that contains at least distinct
components for each . Here,

equals if ; otherwise, equals
.

For every signal , , we can now characterize the
linear relation between the samples of and
any set of generators satisfying the conditions of Theorem
2. Spectral redundancy enables us to restrict our attention to the
linear map connecting the components of to any set

of distinct components . By (6), we
have

(7)

since the matrix is nonsingular. The expressions of
and directly follow from the above equation.

C. Example

For the better understanding of the results established in Sec-
tion II-B, we will now give an example where a set of gen-
erators is explicitly defined. In Fig. 2, we suppose that ,

and we consider the TF samples represented by large dots. They
are listed as follows.

Since card for each ,
it follows from Theorem 2 that can be fully recovered
from . From the theory developed in the
preceding subsection, we can get an explicit expression of
the linear map connecting the components of , namely,

, to the elements of for each
. For example, using (7) with gives

(8)

To get (8), the vector has been partitioned between

and in such a way that the components of are the

elements of . The rows of and have been extracted
from the matrix defined in (5) and reordered so that (6) is
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Fig. 2. Generators ofW depicted schematically by large dots, for allx; y 2

.

verified by the vectors and fixed beforehand, and

.

III. L INEAR REDUNDANCY OF THEDISCRETEAUTO WD

In the previous section, we have studied the redundancy of
information encoded by the discrete cross WD in the case of
complex-valued signals. This algebraic study can be applied to
various situations. Two examples are proposed below.

A. Discrete Auto-WD of Complex-Valued Signals

The first example is concerned with the linear redundancy of
information carried by the discrete auto WD of any complex-
valued signal . This is a special case of Section II-B, and we
can check that the proofs of Theorems 1 and 2 are applicable to

. These results remain unchanged, and (7) still holds.

B. Discrete Auto-WD of Real-Valued Signals

The second example presented is concerned with the discrete
auto-WD in the case where the signal of interestis an element
of the linear space of real-valued signals of lengthover the
field . To establish an upper bound to the number of linearly
independent components of , we proceed as we did in Sec-
tion II-B. We first expand in the following form:

(9)

Since the signal is real-valued, it directly follows that
and

(10)

From this, we see that the elements of

generate for all . Furthermore, these gen-
erators are linearly independent since the elements of

are orthonormal. Then, it
follows from the definition of that the number of linearly
independent components of is upper bounded by the
number of points so that both
and with . Combining these
conditions yields if ;
otherwise, . Hence, cannot have
more than

linearly independent components. This expression leads directly
to the following theorem.

Theorem 3: For all , the number of linearly indepen-
dent components of the discrete WD of is upper
bounded by if is even and if is
odd.

This result establishes that the discrete auto-WD encodes in-
formation carried by real-valued signals in a redundant fashion.
In the light of Section III-A, we note the decrease in the number
of linearly independent components due to the sym-
metry property . Again, we can find
sets of generators so that every component of can be
expressed as a linear combination of the elements offor all

. The next theorem specifies how to construct such sets.
Theorem 4: Let be a family of

components of , which is denoted , where is any real-
valued signal of length . can be fully recovered from ,
provided that contains at least distinct samples

for each . As in Theorem 2,
equals if ; otherwise, equals

.
Theorem 4 is equivalent to Theorem 2 applied to the case

with , . In the Appendix, the proof proposed in
Section II-B is then used with a minor modification of the defini-
tion (5) to prove the above theorem. We conclude the Appendix
with the expression of the linear map connecting the compo-
nents of to any set of generators, which is of the form (7)
applied to modified definitions for and .

IV. SIMULATION EXAMPLES

Let us now concentrate on computer simulations to illustrate
the main theoretical results presented in previous sections.

A. Experiment 1: Locations of Generators, Reconstruction

Figs. 3 and 4 illustrate the redundancy of information car-
ried by the discrete auto WD of complex-valued signals and
real-valued signals, respectively. Theorems 2 and 4 were used
to find locations of generators in the TF domain, which are rep-
resented in these figures by white colored areas. This means that
information carried by black colored areas can be derived from
information carried by white colored ones using linear transfor-
mations. The matrices associated with such linear transforma-
tions were computed as shown previously. Then, they were used
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Fig. 3. Linear redundancy of information carried by discrete auto WD of 64-sample complex-valued signals. In (a) and (b), information carried by the black
colored areas can be derived from information carried by the white colored ones using linear transformations.

Fig. 4. Linear redundancy of information carried by discrete auto WD of 64-sample real-valued signals. In (a) and (b), information carried by the black colored
areas can be derived from information carried by the white colored ones using linear transformations.

Fig. 5. Information carried by the set of generators depicted schematically in (a) by a white colored area is used to regenerate the discrete WD of a 128-sample
real-valued chirp represented in (b).

to recover the discrete auto WD depicted in Fig. 5(b) from in-
formation carried by the generators represented in Fig. 5(a).

B. Experiment 2: Detection in the TF Domain

This example is concerned with the following detection sce-
nario. Given a discrete-time real-valued signalreceived over
the interval , we have to decide between the
competing hypotheses and :

(11)

where is the underlying signal to be detected andsome
additive noise. The decision between and is often made
by comparing a test statistic , computed from observation

, to some preset threshold . Here, we consider the general

class of linear detectors operating in the whole TF domain

if

decision

if decision
(12)

where is a reference to be determined. Given, we now wish
to modify (12) so that the detector only exploits information
carried by any set of generators .

Let denote a set of generators. Let and corre-
spond to the transposition of theth row of the matrices and

, respectively. Then, the test statistic can be expressed as
with . Using

the same notation for vectors and as Section II-B,
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Fig. 6. DetectorD operating in the set of generators depicted schematically in (a) by a white colored area is designed to detect the presence or absence of a
128-sample real-valued chirp in white Gaussian noise (SNR= 0 dB). The WD of this signal is given in (b).

Fig. 7. Configurations of the detectorD operating in the set of generators represented in Fig. 6(a) or in the whole TF domain are given in (a) and (b), respectively.

can be decomposed as .

Assume that . Then, we get

(13)

This equation indicates that every linear detectorcan be re-
formulated as

if

if
(14)

with for each .
Conversely, every component of can be computed from

by solving the linear system

(15)

with , for each , since

An experiment of blind derivation of detectors solely from
training data was conducted to illustrate configurations (12) and
(14) of the detector . In the case of detecting the presence
or absence of the -length signal embedded in white
Gaussian noise, with a deterministically known signal and

a uniform random variable, the optimal test statistic
is known to be the inner product of the discrete WD of the

observation with that of the signal to be detected [7], an ex-
ample of which is shown in Fig. 6(b). First, detector (14), oper-
ating in the set of generators represented in Fig. 6(a), was de-
signed as in [24] with 5600 realizations of the signal plus noise
and noise only. The resulting reference is shown in Fig. 7(a).
Second, (15) was used to derive detector (12) from. The re-
sult represented in Fig. 7(b) conforms with our theoretical re-
sults since the reference closely resembles . Obviously,
configurations (12) and (14) yield the same performance.

V. CONCLUSION

An algebraic study of the linear redundancy of the infor-
mation carried by the discrete cross WD has been proposed.
We have shown that sets of gener-
ators exist (which are denoted ) so that every component

with can be expressed
as a linear combination of the elements of for all -sample
complex-valued signals, . We have formally identified the
elements of , and we have derived the linear map con-
necting every component of with . Finally, we have con-
sidered the special cases of discrete auto WD of complex-valued
signals and real-valued signals, and we have illustrated the re-
sults by means of computer simulations. To complete the work
begun in this paper, two important problems remain unsolved
and are a potential ground for future research.

First, our results need to be extended to other linear signal
spaces like that of analytic signals, which are currently used in
TF analysis for improving the clearness and the readability of
representations. Partial results have been obtained in [26] and
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[27]. For any analytic signal of even length , it is shown
that every component of can be expressed as a linear com-
bination of generators, but the problem, in its
full generality, remains open since locations of generators in the
TF domain have still not been identified.

Second, this study needs to be extended to other representa-
tions of Cohen’s class. One direct application could be the con-
trol of the dimensionality of classifiers operating in the TF do-
main by selecting appropriate representations. Such results may
be also a potential area of new research in applications like the
suppression of interference terms, denoising, fast algorithms,
and the resolution of signal synthesis problems.

APPENDIX

We will prove Theorem 4 by limiting the proof of Theorem
2 to the case with , . We first have to show
that can be fully recovered from if, and only if, the latter
contains linearly independent components
for each . Since if
and , we have

Let be a given time-index, and let be
the matrix whose -component is given by

with and . Then, the
discrete auto-WD of can be expressed as
with

The proof given in Section II-B for the analog of Theorem 4
can be applied without modification to prove that the number of
linearly independent components of is upper bounded by

.
Let be any set of
distinct components of . It remains to be proven that

the elements of this set, which are denoted , are linearly
independent. The vector can be partitioned between

and in such a way that the components of are the

elements of . Then, the relation can be
rewritten in the following form:

by reordering the rows of , , and , if nec-
essary. Here, is the submatrix of such that

, namely

...
...

...

It can be verified in a manner similar to the one used in the proof
of Theorem 2 that the elements of are linearly independent
if, and only if, is a nonsingular matrix. To evaluate
is a tedious calculus exercise leading to the result

Then, if, and only if

This condition is ensured by and since
, , i.e., ,

thereby proving Theorem 4. Finally, we note that the compo-
nents of can be deduced from using (7) applied to

the matrix defined in this Appendix.
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