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Linear Redundancy of Information Carried by the
Discrete Wigner Distribution

Cédric RichardMember, IEEE

Abstract—The discrete Wigner distribution (WD) encodes in- nitions for the discrete WD, the most commonly used form is
formation in a redundant fashion since it derives N by IN repre- L
. _ . . y 2,'
sentations from IN-sample signals. The increased amount of data Wy (n, m) A Z Ruy(n, k) exp<_ JTm )
k

often prohibits its effective use in applications such as signal de-

tection, parameter estimation, and pattern recognition. As a con-

sequence, it is of great interest to study the redundancy of infor- with (n, m) € {0, ..., N —1}2. (1)
mation it carries. Recently, Richard and Lengellé have shown that

linear relations connect the time—frequency samples of the discrete Here,z andy are N-sample complex-valued signals, and the

WD. However, up until now, such a redundancy has still not been : P A
algebraically characterized. In this paper, the problem of the re- local cross correlatiorfiz, is given by Roy(n, k) = #(n +

* ; 2

dundancy of information carried by the discrete cross WD of com- k)y (”__ k) if _(” +kon—k) € {0, e N —1}"and 0
plex-valued signals is addressed. We show that every discrete WDOtherwise W..,, is the cross WD of two signals, . The corre-
can be fully recovered from a small number of its samples via a sponding auto WD is then defined @5, 2 W.,... This discrete

linear map. The analytical expression of this linear map is derived. . ... .. ; ; ;
Special cases of the auto WD of complex-valued signals and real_dlstrlbutlon can be computed in a straightforward manner using

valued signals are considered. The results are illustrated by means the discrete Fourier transform. The resulting time—frequency
of computer simulations, and some extensions are pointed out. ~ (TF) representation is a halfband representation, meaning that
Index Terms—Algebraic characterization, discrete Wigner dis- frequency components of signals are computed in the normal-
tribution, linear redundancy, time—frequency analysis. ized range of—(1/4), 1/4].
SinceN x N representations are derived fra¥irsample sig-
nals, it is clear that the discrete WD defined by (1) encodes in-
formation in a redundant fashion. The increased amount of data
often prohibits the effective use of this distribution in applica-
|. INTRODUCTION tions such as signal detection, parameter estimation, and pattern

HE WIGNER distribution (WD) plays an important role inrecognition. Various methods of data reduction have been pro-
T signal analysis and signal processing since it extends PRsed. For example, the singular value decomposition [8] of the
usual spectral analysis by making it time dependent. Its usefd-< IV matrix of samplesV’,(n, m) has beenused in [13]-[17],
ness partly derives from the fact that it satisfies many desirai§igd techniques based on the statistical learning theory of Vapnik
mathematical properties [3], [6], [9], [18]. For a practical implel29] have been proposed in [24], [25], and [27]. In [1] and [3],
mentation on a digital computer, the WD must be reformulat&§atter criteria have been considered for the dimensionality re-
in a discrete-time, discrete-frequency setting. There are sevéldftion of a TF classifier. Even if it is of great interest to study
different approaches to extending its definition to the discreti® redundancy of information carried by the discrete WD, as far
case. For example, a group theoretic definition has been use@$ive know, this problem has not been completely resolved. In
[28]. The resulting discrete distribution satisfies several matf%3], [26], and [27], Richard and Lengellé prove that linear rela-
ematical properties analogous to those satisfied by the contins connect the samples of the discrete auto WD. This means
uous distribution. However, its definition depends on the paritjat sets of TF locations exist, and are denafedo that every
of the signal length. In [20], an axiomatic approach has been G&MPIEW:(n, m) with (n, m) € {0, ..., N — 1}* can be ex-
veloped. Under an alternative definition for the WD, it is showRressed as a linear combination of the element{Siof(n, m):
that the discrete distribution exists only for odd-length signaf&: ™) € £}, which is denotedi,, for all z € CV. However,
and corresponds to the one originally defined in [28]. In addiP t© now,£ and the associated linear mdp that allows the
tion, this approach has been extended in [21] to derive a discrégeration of every sampl&.(n, m) of the discrete auto WD
Cohen class. There has also been a lot more work investigatifR 9« have still not been characterized. _
discretization methods [22] and techniques for overcoming the | e general subject of this paper is the algebraic study of the

inherent aliasing effects [2], [4], [19]. Among the various defilinéar redundancy of the information carried by the discrete WD
defined by (1). We wish to formally characterize the elements

. . _ .and the cardinality ofZ and, givent, to derive the associated
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Finally, some further areas of investigation are suggested in Sec- lag &
tion V.

Il. LINEAR REDUNDANCY OF THE DISCRETECROSSWD OF
COMPLEX-VALUED SIGNALS

As a basis for subsequent development, Section Il provides a
brief review of linear spaces, and the concept of induced spaces 0
is introduced [10]. Next, an algebraic characterization of the
linear redundancy of information carried by, with «, y €
C" is proposed.

. . 1- % time n
A. Linear Signal Spaces, Induced Spaces, and Bases 0 -14 N-1

wlz

A linear signal space& over the fieldC is a collection of Fo 1 C \ation domai ¢ region defined as follaf
f s f . . . . 1g. 1. ross correlation aomain support region detinea as 1o S—=

signals that satisfies the following Imean'_[y propertyzlfe S (0. k) €22 (n+ k. n—Fk) € {0, ... N —1}2}.
andy € S, then(ax + py) € S for arbitrary complex co-
efficientsa, 3. Let {s,} be a nonempty set of elements &f . .
We will say that it is a basis fof if it is linearly indepen- K’ggﬁr’nz) itSh:t 3;? tfilﬂ%'/%r;t to reconstruct every.., via a
dent and if it generate§. The basis{s,} is orthonormal if piseq '
(sq]84) = b4y, Whereé,, is the Kronecker delta symbol.
Then, everyr € S can be represented as= 3 o, s,, where
aq = (z]sg) = SN0 #(n)sk(n) is the inner product of and
s4. In this section, we will consider th& is the linear space of
N-sample complex-valued signals over the fi€ld

In the process of discrete WD calculation as expressed by
two mapsr andw can be distinguished:

B. Redundancy of Information Carried by,

Following this brief presentation of the induced spates
andW, we will now study the linear redundancy of informa-
tion encoded by the discrete cross WD of complex-valued sig-
E?Is. To further establish that linear relations connect the sam-
(pwésny(n, m) of W,,,, we first have to determine a basis for
W. We will use it to calculatelim(1V). By construction, the
(z, ) T Ra, W, W, cross correlatior?,,,, can be represented as

Ra;y = Z x(n + k)y* (n — k)RA(n#»k)A(nfk) (2)

such thatV,,,, 2 (wor)(z, y). Here,R,,, andW,,,, denoteN x (nles

N matrices whose components dg,(n, k) andW,,(n, m),
respectively. LetR and W be the images of and(w o r), where J is the set of pairs(n, k) such that both

respectively. These spaces are then given by n+k e {0,...,N—1tandn — k € {0,..., N — 1},
as depicted schematically in Fig. 1, anH, is the pulse
R 2 {Ryy: Ruy = r(z, y) with z, y € CV'} defined byA,(m) = 1if m = p and 0O otherwise, withn,

p €1{0, ..., N—1}. Hence{Ra,  ,,a, . (n, k) € T}
generates the spaé Furthermore, simple calculus shows that
<'F_{A(ﬂ+k>ﬂ(ﬂ*k> |RA(77.’+k’)A(n’—k’)> equal; 6nn’6kk’ From
this, we conclude at once that our family is an orthonormal
Basis fork. As defined by (1), the discrete WD at time-index
n is the discrete Fourier transform of the local correlation at
time-indexn. This implies that the linear mag is an isomor-
hism of R into W that preserves orthonormality. It follows
hat the family of generatofiVa,, A, 4, (0, k) € J}is
an orthonormal basis fa. In addition, we note that the cross
WD of any complex-valued signalsandy can be expanded in
the following form:

W2 (W, W,, = (wor)(z, y)withz, y € CV}.

We note that the spacR is not a linear space: linear combi-
nations of local correlations are not valid local correlation
We now associate witfR the linear spac& over the fieldC
of all linear combinations of local correlations,, with z,

y € CN.In[10], R is called “inducedR,,-domain space.”
For this space, the definition of the inner product is given
(Ray | Rauryr) = 2on 2o Bay(n, k)R::’y’(n7 k). L?t {Rq}
be a basis fofR. We will define the dimension oR, which
is denoteddim(R), as the cardinality of{?,} [11], [12].
Again, the spac#) is not a linear space. L& be the induced
W,4,-domain space over the fiefd of all linear combinations _ wio / / .

of W, with =, y € C. Here, the inner product is expressed Wy 2, wnt B n=EWa s G)
as <Wwy | Ww’y’> N = En Ern ny (7’L, m)W;’y’(nv m) ~We ~
will define dim(W) as the cardinality of W}, where{W,} By definition, any element of the linear spak# cannot have

is a basis forV. In the following, we will use bases of themore thandim(W) linearly independent components. Based
linear spacesk and W to characterize the elements of then the above results, we can now calculate this upper bound.
underlying space®k and W. For example, we note that thelt directly follows from the definition of7 that dim(W) is
number of linearly independent sampM5,,(n, m) of every given by the number of point&, k) such that both + &k €

Wey €W C W is upper bounded by the dimension of thg0, ..., N — 1} andn — k& € {0, ..., N — 1}. Combining
spaceW. This means that the maximum number of sampl€s< n+i < N—land0 <n—-k < N-1gives—n <k <n

(n, k)T
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ifo<n<|[(N-1)/2],and—(N—n—-1)< k< (N—-n-1) Letn € {0, ..., N — 1} be a given time-index, and I8
otherwise. Here,(N —1)/2| denotes integer part 6N —1)/2.  be the matrix whosém, k)-component is given by
Then, we have

/ 24 — K@)
P (m, k) 2 eXp(%) (5)
V]
dimW) = > [2n+1] wherek € {0, ..., 2K}, andm € {0, ..., N — 1*{. Then,
n=0 the discrete WD can be expressed&§)’ = P™ R{Y with
N-1
+ > RPWV-n-1)+1] R 2 [Ray(n, =K ™) Ruy(n, —K® +1) -

n=|(N—1)/2]+1 T
Ray(n, KO —1) Ryy(n, K)]
from which we finally obtain thadim(V) equalsN? /2 if N is
even and N? + 1)/2 if N is odd. This result leads directly to ng;ﬂ 2 Way(n, 0) Wyy(n, 1) ---
the following theorem. _ Way(n, N — 2)Way(n, N — 1)]T '

Theorem 1:Let x andy be V-sample complex-valued sig-
nals. The number of linearly independent sampiés, (n, m) The superscriptl’ denotes “transposition.” Proceeding as
of the discrete WD of: andy is upper bounded byv2/2if N in the proof of Theorem 1, it is a routine verification that
is even and N? 4 1)/2 if N is odd. the family {R%” : |k < K™} is a basis for the

Theorem 1 establishes that linear relations necessarily ¢ SR 5
! ! . Y C¥Buced R{?-domain space, which is denotgd™, of all
nect the sample®’,, (=, m). This means that sets of gener

a . . . .
. linear combinations over the fiel@ of local correlations
tors {Way(n, m): (n, m) € L} exist and are denoted; so ()

h h N1 b v, With =, y € CV. From this, we conclude at once
that evenyiva,, (n, m) with (n, m) € {0, ..., N —1}7canbe y o yhe dimension of this space 29" + 1. Observe that
expressed as a linear combination of the elemengs:dbr all mOW) = S VRK™ 4 1]. Since W is the Fourier
r,y € C. Each set is completely determined by a family OﬁJansform of R ’50 this im Iieg that thewydimension of the
TF locationsC depending only on the linear signal space fier ) o Pl ) i )

beforehand, which i€ here. To further derive the linear map" (ggzedWw -domain spacaV") is also2K™) + 1. Hence,
T, connecting every¥,,, (n, m) with G, we now only need Way,” can be fully recovered frong; if the latter contains

to characterize the elements@f. 2K (™ + 1 linearly independent componentsiatiy’.

We will now prove thati?,, can be recovered fror, if, Let {W.,(n, mo), ..., Way(n, maogey)}t be any set of
and only if, the latter contair®K ™ + 1 linearly independent 2K + 1 distinct samples of¥5). We will now prove that
W,y(n, m) for eachn = 0, ..., N — 1. Here, K™ equalsn  the elements of this set, which henceforth are denot@é@/,

ifo<n<[(V-1)/2]; otheryvise,K(") equalsN —n — 1. are inevitably linearly independent. The vectdiy}’ can be
We observe thak,.,(n, k) = 0 if [k| > K. Then, we have partitioned betweemV(Z?ﬁ and WJEZ)Z in such a way that the

X

components ofo:Z)ﬁ are the elements of”. Then, the

KO : lation W) = PRI can be rewritten in the followi
2jmmik relation Wy, ) can be rewritten in the following
Wey(n, m) =Y Ruy(n, k) eXP(- ) (4)  form:
k=—K (v n 7
It can be verified that no linear relation connecting the cross wo | =\ pm R, (6)
correlation sampleg,,(n, k) for all z, y € CV exists. With wy, L z

(4), this implies that the redundancy of information carried b#?é
the discrete cross WD consists of linear relations connecting
samples¥,, (n, m) that have the same time-indexfor each

reordering the rows o}, RS2, andP™, if necessary.
Here, P is the submatrix o™ that verifiesWag;‘?ﬁ =

n =0, ..., N—1. Throughout this paper, this redundancy wiIP(ﬁn)R;Z), namely, as shown in the equation at the bottom of
be called “spectral redundancy.” the page. Since th&kK (™) 4+ 1 components OR;Z) are linearly
2jmmo(—K™) 2jrmo(—K™ 4+ 1) 2jrmoK ™
exp N exXp N €Xp N
2jmmy (—K™) 2jrmy(—K™ 4+ 1) 2jmm K
Pé") exp N exp N exp N

2jmmagen (K ™) 2jmmygon (K™ 4+ 1) 2jmma geon K
exp< N exp N exp N
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independent, it follows that tH (") +1 components oW( )

are also linearly independent if, and onIny(")
We will now evaluate the determmanthL

is nonsmgular
. We may write

it in the following form:
2K 2j7rm<K(")
‘P(") =V(mo,...,Mogm) E) exp<—TZ>
with
Vi(mo, ..., Magon)
1 e 2jmmo o 2jmmo2K ™
PN P N
1 exp(ZTmaxem 2jmmagcon 2K
P P N

We observe that’ (my, ..., myx ) ) is a Vandermonde deter-
minant [12] whose value can be determined explicitly to be

Since cargg”) = 2K™ 4 1 for eachn € {0, ...,
it follows from Theorem 2 thatV,,
from G, =
preceding subsection, we can get an explicit expression of
the linear map connecting the componentsVIéfZ), namely,

2539

and we consider the TF samples represented by large dots. They
are listed as follows.

n=0: GV ={W,,(0,3)}

n=1 0N = W,y (1,1), Way(1,2), Way(1,4)}

n=2 GF = {Wyy(2,0), Wiy (2,1), Way (2,
W,;y(2,4 ,Ww(2,5 }

n=>5 G = {W,y(5,2), Way(5,3), Way(5,4)
Wey(5,5), Way (5,6)}

n="6 G = {W,,(6,2), W,,(6,3), W, (6,4)}

n="7 GV = {W,, (7,9}

7},

can be fully recovered
U%_, 6. From the theory developed in the

V(mo, -- -, Magon) (Way(n, 0) -« Way(n, D], to the elements og?é") for each
_ H [exp<2j7rmk> ~ exp<2j7rmi>:| . n =0, ..., 7. For example, using (7) with = 1 gives
N N

0<i<k<2K (™) wi;)f
Sincem; # my for ¢ # k, it follows that V(my, ..., m‘
morty) # 0 and |P(£")| # 0. Then, the components of W (1, 3)
Wf,z)ﬁ are linearly independent. This implies that$}’ can FYAT
be recovered by choosing agys (™ + 1 distinct components Way (1, 5)
Wagz)(m) for eachn = 0, ..., N — 1. This property leads Way(1, 6)
directly to the following theorem, which states a necessary and W,y (1, 7)

sufficient condition for the elements of any set of generators.

Theorem 2:Let {W,,(n, m): (n, m) € L} be a family of
samples o#V,,,, which is denoted:, wherex andy are com-
plex-valued signals of lengthv. W, can be fully recovered
from G, provided thatj; contains at leastK () + 1 distinct
components¥,,(n, m) for eachn = 0, ..., N — 1. Here,
K™ equalsyif 0 < n < |(N—1)/2]; otherwise K (™ equals
N —n—1.

For every signal;, y € CV, we can now characterize the
linear relatiorlI' ; between the samplé¥,, (n, m) of W, and
any setG, of generators satisfying the conditions of Theorem
2. Spectral redundancy enables us to restrict our attention to the
linear mapTé") connecting the componentsﬁf,,(ﬁ) to any set
G of 2K 4 1 distinct componentsV;’ (m). By (6), we
have

W(")_ — W(")

() p(n) _ p) (P
) =PYRE =PL (Pﬁ ) @)

since the matri>P2") is nonsingular. The expressions’ﬁﬁ")
andT . directly follow from the above equation.

C. Example
For the better understanding of the results established in Sec-

pw
z

(2i70-0)/8

N

(2w 0(—1))/8
(2im3-(~1))/8
— | pim5(=1)/8
(25T 6-(—1))/8

(20 T-(~1))/8

(2i70-1)/8
o(257:3-0)/8
o(2i75:0)/8

o(2576:0)/8

e(27-3-1)/8
e(2im5-1)/8
e(2im6-1)/8
(2 7-0)/8  ,(2j77-1)/8
(2T 1(=1))/8 o(2jm-1.0)/8 (2jm-1-1)/8\ ~1
e(2im2:(=1))/8 (2j7-2:0)/8 (2jm-2:1)/8

(20T 4(=1))/8  (2j7-4-0)/8  (2j7-4-1)/8

)
Wy (1, 1)
Wy (1, 2) (8)
Way(1, 4)
VVI(-BL

To get (8), the vectoiVs;) has been partitioned betwe®r|,’ .
ndw__in such a way that the componentsif, . are the

xY,

tion 11-B, we will now give an example where a %t of gen- €lements ogﬁ) The rows oin) andP(Zl) have been extracted

erators is explicitly defined. In Fig. 2, we suppose that §,

from the matrixP") defined in (5) and reordered so that (6) is
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frequency m generateW,, for all + € R. Furthermore, these gen-
Gr erators are linearly independent since the elements of

7 WaninAm_wy: (0, k) € J} are orthonormal. Then, it

6 follows from the definition of 7 that the number of linearly
independent components ¥, is upper bounded by the

5 number of pointgn, k) so that botm + k € {0, ..., N — 1}

4 andn — k& € {0, ..., N — 1} with £ > 0. Combining these
conditions yields) < &k < nif 0 < n < [(NV — 1)/2;

3 / otherwise,0 < k£ < (N — n — 1). Hence,lW,, cannot have

2 more than

1 L(v—-1)/2] N-1

. e o b+l+ ) (W—n—-D+1]

0Nl 2 3 5 6 7 n=0 n=[(N-1)/2]+1

linearly independent components. This expression leads directly
Fi%. 2. Generators d#.., depicted schematically by large dots, forally € to the following theorem.
e Theorem 3: For allz € RY, the number of linearly indepen-
dent component®,.(n, m) of the discrete WD oft is upper
verified by the vectorWéé) andei)Z fixed beforehand, and bounded by N? + 2N)/4 if N isevenand N +1)?/4if N is
1 : T odd.
Bay = [Bay(1, =1) Ray(1, 0) By (1, D] This result establishes that the discrete auto-WD encodes in-
formation carried by real-valued signals in a redundant fashion.
In the light of Section IlI-A, we note the decrease in the number
In the previous section, we have studied the redundancyafflinearly independent componenfs,(n, m) due to the sym-
information encoded by the discrete cross WD in the case mktry propertyR,.(n, k) = R.(n, —k). Again, we can find
complex-valued signals. This algebraic study can be appliedsets of generator§,. so that every component &%, can be

I1l. LINEAR REDUNDANCY OF THE DISCRETEAUTO WD

various situations. Two examples are proposed below. expressed as a linear combination of the elemengs.dbr all
x € RV. The next theorem specifies how to construct such sets.
A. Discrete Auto-WD of Complex-Valued Signals Theorem 4:Let {W.(n, m): (n, m) € L} be a family of

The first example is concerned with the linear redundancy §pmMPonents ofv.., which is denotedj., wherex is any real-
information carried by the discrete auto WD of any complex/@luéd signal of lengtiV. W, can be fully recovered frori..,
valued signalr. This is a special case of Section II-B, and w@rovided thaig, contains at leask( ) + 1 distinct samples
can check that the proofs of Theorems 1 and 2 are applicabldfe(: ) foreachn =0, ..., N —1. Asin Theorem 2K
W,. These results remain unchanged, and (7) still holds. ~ €aualsn Ifl 0 < n < [(N—1)/2]; otherwise,K ") equals

—n — 1.
B. Discrete Auto-WD of Real-Valued Signals Theor_em 4is eqlfivalent to Theo_rem 2 applied to the case
] ] =y with z, ¥y € RY. In the Appendix, the proof proposed in

The second example presented is concerned with the disciglg+ion |1-B is then used with a minor modification of the defini-
auto-WD in the case where the signal of interest an element o (5) to prove the above theorem. We conclude the Appendix
of the linear space of real-valued signals of lengttover the  ith the expression of the linear map connecting the compo-
field R. To establish an upper bound to the number of linearlyants of W, to any set of generators, which is of the form (7)
independent components Bf,., we proceed as we did in Sec'applied to modified definitions foP " andP™.
tion 11-B. We first expand#¥,, in the following form: £ £

IV. SIMULATION EXAMPLES
Wo= > Ra(n, )Wagnao . ©) . . :
(n,k)ed Let us now concentrate on computer simulations to illustrate
the main theoretical results presented in previous sections.
Since the signalr is real-valued, it directly follows that

Ry(n, k) = Ry(n, —k) and A. Experiment 1: Locations of Generators, Reconstruction
N1 Figs. 3 and 4 illustrate the redundancy of information car-
W, = Z R.(n, 0)Wa, + Z R.(n, k) ried by the d_iscrete auto WD of complex-valued signals and
=0 (n RCT real-valued signals, respectively. Theorems 2 and 4 were used
k>0 to find locations of generators in the TF domain, which are rep-
Waminaon  Wan_odmee] - (10) resented inthese figures by white colored areas. This means that
information carried by black colored areas can be derived from
From this, we see that the elements of information carried by white colored ones using linear transfor-

mations. The matrices associated with such linear transforma-
Watindmen TWag A (k) € T, k 20} tions were computed as shown previously. Then, they were used
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(a) (b)

frequency m frequency m

63

time n time n
0 63

Fig. 3. Linear redundancy of information carried by discrete auto WD of 64-sample complex-valued signals. In (a) and (b), information carridddky the b
colored areas can be derived from information carried by the white colored ones using linear transformations.

(a) (b)

frequency m frequency m

63

32

time n time n

Fig. 4. Linear redundancy of information carried by discrete auto WD of 64-sample real-valued signals. In (a) and (b), information carried kyctiierbidic
areas can be derived from information carried by the white colored ones using linear transformations.

(a) (b)
frequency m frequency m
64 I 64
o 2440441 LY time n time n
0 127 0 27

Fig. 5. Information carried by the set of generators depicted schematically in (a) by a white colored area is used to regenerate the discrete \&d@la 128-
real-valued chirp represented in (b).

to recover the discrete auto WD depicted in Fig. 5(b) from irclass of linear detecto® operating in the whole TF domain
formation carried by the generators represented in Fig. 5(a).

N—-1N-1
1, if Mz)= We(n, m)V(n, m) > A
B. Experiment 2: Detection in the TF Domain D (=) nzzzo 7;0 ( W ) > %
This example is concerned with the following detection sce- (2) = (decisionH] )
nario. Given a discrete-time real-valued signakceived over ] o
the interval{0, ..., N — 1}, we have to decide between the 0, if Mz) < Ao, (decisionHo)

(12)
whereV is a reference to be determined. Giviénpwe now wish
Ho: 2z — to modify (12) so that the detect@r only exploits information
0. L =W R
{le = stw (11) carried by any set of generatds.

Let G, denote a set of generators. I&L™ andV ™ corre-
wheress is the underlying signal to be detected amdsome Spond to the transposition of theh row of the matricesV, and
additive noise. The decision betweHp andH, is often made V. respectively. Then, the test statisticz) can be expressed as
by comparing a test statisti(z), computed from observation A(z) = SN () with A0 (z) = (W | V). Using
x, to some preset threshold,. Here, we consider the generakthe same notation for vectoi®™ and V(™ as Section 1I-B,

competing hypothesdd, andH;:
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(a) (b)

frequency m frequency m
64 1 64
ﬁ ﬁ ﬁ 4 M time n 9 ¥ time n
0 127 0 127

Fig. 6. DetectorD operating in the set of generators depicted schematically in (a) by a white colored area is designed to detect the presence or absence of a
128-sample real-valued chirp in white Gaussian noise (SNRdB). The WD of this signal is given in (b).

(a) (b)

frequency m frequency m

L

64 64

time n _@MLQ__. time n

0 127 0 127

Fig. 7. Configurations of the detectdr operating in the set of generators represented in Fig. 6(a) or in the whole TF domain are given in (a) and (b), respectively.

A (z) can be decomposed d@fag"} | Vé’”) + (Wi’% | VZ(")>. ¢ € [0, 2x] a uniform random variable, the optimal test statistic
n) _ mn) () ’ A(z) is known to be the inner product of the discrete WD of the
Assume thatV’, 7 = T "W, z. Then, we get oés?ervationz: with that of the signal to be detected [7], an ex-
) N T ) ample of which is shown in Fig. 6(b). First, detector (14), oper-
Vel + (Tc ) Va > . (13) atinginthe set of generatofs represented in Fig. 6(a), was de-
signed as in [24] with 5600 realizations of the signal plus noise
This equation indicates that every linear detedfocan be re- and noise only. The resulting refereriée is shown in Fig. 7(a).

AP () = <Wg§j‘}

formulated as Second, (15) was used to derive detector (12) figmThe re-
1, if AMz) = (n, m)es Wa(n, m)Uz(n, m) sult represented in Fig. 7(b) conforms with our theeretical re-
D(z) = > Ao sults_ since the referendé clos_ely resemblesV;. Obviously,
0, if Az) < Ao configurations (12) and (14) yield the same performance.
(14)
with U 2 v 4 (T2 TV foreachn =0, ..., N — 1. V. CONCLUSION
Conversely, every component 8™ can be computed from  An algebraic study of the linear redundancy of the infor-
Ué") by solving the linear system mation carried by the discrete cross WD has been proposed.
- We have shown that se{dV,.(n, m): (n, m) € L} of gener-
Ui =y g (Tén)) VZ(") (15) ators exist (which are denotegl:) so that every component
W,y (n, m) with (n, m) € {0, ..., N — 1} can be expressed
with V7 = Ty ™ foreachn = 0, ..., N — 1, since as a linear combination of the elementgeffor all N-sample
“ complex-valued signals, y. We have formally identified the
@) |7\ _ () | () O\ T ma(n) g (1) elements oG, and we have derived the linear madj con-
<W’°‘7‘ Ve > - <W’”~C [ (T‘ ) Tz > necting every component &F..,, with G .. Finally, we have con-
_ <W(n) V(n)> n <W(nl V_(n)> sidered the special cases of discrete auto WD of complex-valued
SER R z, L] L signals and real-valued signals, and we have illustrated the re-
- <W£") V) > ) sults by means of computer simulations. To complete the work

begun in this paper, two important problems remain unsolved
An experiment of blind derivation of detectors solely fromand are a potential ground for future research.

training data was conducted to illustrate configurations (12) andFirst, our results need to be extended to other linear signal

(14) of the detectoD. In the case of detecting the presencspaces like that of analytic signals, which are currently used in

or absence of th&v-length signals(n)c’® embedded in white TF analysis for improving the clearness and the readability of

Gaussian noise, witlh a deterministically known signal andrepresentations. Partial results have been obtained in [26] and
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[27]. For any analytic signal: of even lengthV, it is shown by reordering the rows o™, RUY, and P, if nec-

that every component d¥, can be expressed as a linear comessary. Here, P is the submatrix of P such that

bination of N2/4 + N — 1 generators, but the problem, in |tsW(N>£ — P(ﬁn)R,@ , namely

full generality, remains open since locations of generators in the™

TF domain have still not been identified. 27mg 2rmoK ()
Second, this study needs to be extended to other representa- 1 COS( N ) T COS(T)

tions of Cohen’s class. One direct application could be the con- (n)

trol of the dimensionality of classifiers operating in the TF do- 1  cos <M) cee COS <M)

main by selecting appropriate representations. Such results nPag/ N N

be also a potential area of new research in applications like the

suppression of interference terms, denoising, fast algorithms, ' 27r'm ’ 27rm" K™
and the resolution of signal synthesis problems. 1 co < A;‘“”) N <$)

APPENDIX It can be verified in a manner similar to the one used in the proof

We will prove Theorem 4 by limiting the proof of TheoremOf Theorem 2 that the elements@f are linearly independent
if, and only if, P(") is a nonsingular matrix. To evalude(")|

2 to the caser = y with =, y € R"™. We first have to show
thatW’, can be fully recovered frord_ if, and only if, the latter 1S @ tedious calculus exercise leading to the result
(R)| _ KK _1)/2
‘P£ — oK (KM 1)/ 11

containsk (™ 4-1 linearly independent componerits, (n, m)
foreachn = 0, ..., N — 1. SinceR,(n, k) = 0if |k| > K
andR,.(n, k) = R.(n, —k), we have Ok KO
2mmy, 2mm;
oo (2 — o (222

Then,|[PU| # 0 if, and only if

IS(77'>
2rmk
z\Tt, = Li\N, 2 z\Ty .
We(n,m) = R,(n, 0) + Z R.(n k)cos( ~ )

k=1

Letn € {0, ..., N — 1} be a given time-index, and I&™ be cos (2rmy /N) # cos (2rm; /N).

the matrix whosém, k)-component is given by ) o )
This condition is ensured byt; # my, andm,; # N —my, since

27rmk> mg, my €10, ..., N =1}, e, We(n, m;) # Wo(n, mg),

thereby proving Theorem 4. Finally, we note that the compo-
nents ofW( l can be deduced frorW( Z using (7) applied to
with m € {0, ..., N —1} andk € {0, ..., K"}. Then, the the matrle<"> defined in this Appendix.

discrete auto-WD of: can be expressed &™) = P™ R{™
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