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ABSTRACT
Recently, it was shown that information conveyed by the
discrete Wigner distribution is highly redundant, linear
relations connecting its time-frequency components. This
means that every component of the discrete Wigner
distribution can be expressed as a linear combination of
the elements of a basis. This set of generators consists of
particular time-frequency components of the distribution.
However, up to now, this basis and the associated linear
map that allows to entirely generate the representation
have still not been characterized. In this paper, this
problem is addressed in the case of real-valued signals.
Results are illustrated by means of computer simulations.
Finally, some extensions are pointed out.

1. INTRODUCTION
The Wigner distribution (WD) is a prominent tool that
combines a temporal and a spectral analysis of signals by
representing them over a joint time-frequency (TF) plane.
Its usefulness partly derives from the fact it satisfies many
desirable mathematical properties [1, 2, 3, 4]. For a
practical implementation of TF analysis on a digital
computer, the WD of a signal x, which will be denoted
Wx , must be reformulated in a discrete-time discrete-
frequency setting. It is clear that information conveyed by
Wx  is redundant since the discrete WD derives N × N
representations from N-sample signals. As far as we
know, this redundancy was only studied in [5, 6], where it
is shown that linear relations connect TF components of
the discrete WD. This means that every component
W [ , ]x n m  can be expressed as a linear combination of the
elements of a basis denoted . This set of generators
consists of particular TF components W [ , ]x n m . However,
up to now,  and the associated linear map that allows to
generate every TF component, which will be denoted L ,
have still not been absolutely characterized. The general
subject of this work is the analytic characterization of 
and L  when x is a real-valued signal.

This paper is organized as follows. In Section 2, the
number of linearly-independent TF components W [ , ]x n m
of the discrete WD, denoted N , is determined. Section 3
provides a necessary and sufficient condition satisfied by
the N  elements of . Then, the linear map L  is
characterized. Section 4 presents an example. Finally,
some extensions are pointed out in the concluding
Section 5.

2. DETERMINATION OF N

Let x = <(x[ ], ..., x[ ])0 1N T  be an element of a linear
discrete-time signal space . In this work, we shall
consider that  denotes the space of N-sample real-
valued signals with N an even integer.1 The discrete-time
discrete-frequency WD of x is defined as
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with ( , ) , ...,n m ND <{ }0 1 2 . Here, the autocorrelation
function R [ , ]x n k  is given by R [ , ] x[ ] x [ ]x

*n k n k n k= + <
if ( , ) , ... ,n k n k N+ < D <{ }0 1 2 , 0 otherwise. From the
definition (1), we define the maps r and w as

( )x x r rr T
r n k±A± = =( ) ..., R [ , ], ...x x x where 

( )r r w wx x x x x( ) ..., W [ , ], ...w T
w n m± A± = = where 

such that w xx ( )( )= w r . Let  and  denote the
spaces spanned by r( )x  and ( )( )w r x , respectively, i.e.,
that are given by

{ }= = Dr r x xx x: ( ),r

{ }= = Dw w x xx x: ( )( ),w r .
Since vectors rx  and w x  have finite numbers of
components, there exist finite sets of linearly-independent
vectors that are generators for  and , respectively.2
In this work, we shall define the dimension of  and ,
which will be denoted dim( ) and dim( ), as the
                                                       
1 Analogous results can be obtained in the case where N is odd.
2 Vectors generating  and  are not necessarily members of

 and , respectively, since these spaces are not linear one.



minimum number of vectors required to generate these
spaces. The reader will see at once that the number N  of
linearly-independent components of w x  is in fact
dim( ) [7, 8 ,9]. Since, given n, the WD is the Fourier
transform of the autocorrelation function, w is an
isomorphism of the space  into . This implies
dim( ) = dim( ) = N . The next theorem provides N .

Theorem 1. Let x = <(x[ ], ..., x[ ])0 1N T  be a N-sample
real-valued signal with N an even integer. The number of
linearly-independent TF components W [ , ]x n m  of the
discrete WD is given by
N N N= +2 4 2 . (2)

Proof. We leave it to the reader to verify that the only
linear relations connecting the components of rx  are
those connecting x[ ] x [ ]*n k n k+ < , k > 0 , and
x[ ] x [ ]*n k n k+ < , k < 0 . It then follows from the set of
generators for  proposed in Fig. 1 that
N
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0 ) )k n  if 0 1 2) ) <n Nint{ }( ) / , 0 1) ) < <k N n
otherwise.3 Since N is even, we finally obtain
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The orthogonal vectors r (. , .)  defined in Fig.1 are
generators for , and  and  are isomorphic via w.
This yields the next result.

Corollary 1. Let x and y be N-sample real-valued
signals. Let Wxy be the cross-WD defined by extending (1)
to the correlation function Rxy[n, m] = x[n + m] y*[n - m].
The following orthogonal vectors are generators for .
w w( , )

( ) ( )
n k

n k n k= + <6 6
, ( , ) , ... ,n k n k N+ < D <{ }0 1 2 ,

where 6( ) ( )n n0  denotes the pulse defined by 6( ) ( )n n0 1=  if
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n n= 0 , 0 otherwise. From the TF expansion coefficients4
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the WD can be reconstructed according to
w wx x

( , ) ( , )
( , )=- _ n k n k
n k

, ( , ) , ... ,n k n k N+ < D <{ }0 1 2 . (4)

Proof. It suffices to note that
r r( , )

( ) , ( )
n k

n k n k= + <6 6
, ( , ) , ... ,n k n k N+ < D <{ }0 1 2 .

Since w is an isomorphism of  into  that preserves
orthogonality, it then follows that w n k n k( )( , ) ( , )r w=  are
orthogonal generators for .

3. CHARACTERIZATIONS OF  AND L

According to Theorem 1, information conveyed by the
N × N discrete WD of any N-sample real-valued signal is
redundant since every component W [ , ]x n m  can be
expressed as a linear combination of the N N2 4 2+
elements of . The next theorem provides a necessary and
sufficient condition satisfied by the elements of .

Theorem 2. Let x = <(x[ ], ..., x[ ])0 1N T  be a N-sample
real-valued signal with N an even integer. Let  be a set
of components W [ , ]x n m  defined as
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( )W [ , ]:n nn m m= D{  },
( ) , ...,n N� <{ }0 1  a set of K n( ) +1  indexes,

K nn( ) =  if n ND <{ , ..., / }0 2 1 , N n< <1 otherwise.
Let P ( )n  be the matrix whose (k, m)-component is
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Let P ( )n  be the matrix obtained by extracting from P ( )n

the first K n( ) +1  rows and the columns indexed by ( )n .
The elements of  are generators for Wx  if and only if
P ( )n  is a nonsingular matrix, � D <n N{ , ..., }0 1 .
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Figure 1. Construction of a set of orthogonal vectors that are generators for . Note that each vector r ( , )n k  is
associated with the cross-products x[ ] x [ ]*n k n k+ <  and x[ ] x [ ]*n k n k< + .



Proof. Since R [ , ] R [ , ]x xn k n k< = , and R [ , ]x n k = 0  if
k K n> ( ) , we have

W [ , ] R [ , ] R [ , ] cosx x x
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The reader will see at once that it does not exist linear
relations connecting the components R [ , ]x n k , k * 0 .5
With (1) or (6), this implies that linear relations
connecting TF components W [ , ]x n m  are of the form

a n mmm W [ , ]x =- 0 . This redundancy will be called
spectral redundancy. Given n, let the discrete WD be
expressed as w P qx

( ) ( )
x
( )n n n= , with

( )qx
( )

x x x
( )R [ , ], R [ , ], ..., R [ , ]n n

T
n n n K= 0 2 1 2 ,

( )w x
( )

x xW [ , ], ..., W [ , ]n
T

n n N= <0 1 .
Proceeding as in the proof of Theorem 1, one can show
that dim{ : }x

( ) ( )q xn nKD = + 1. It is also equal to
dim{ : }x

( )w xn D  since the Fourier transform associates
w x

( )n  with qx
( )n .6 This means that every component of

w x
( )n  can be expressed as a linear combination of K n( ) +1

linearly-independent components [7, 8, 9]. Assume that
( )n  is such a set: ( )

x
( ) ( )[ ]:n n nm m= D{  }w , with ( )n

a set of K n( ) +1 indexes. Let now the relation
w P qx
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if necessary, the rows of w x
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where w x,
( )n  is a vector whose K n( ) +1 components are

the elements of the set ( )n . Then it follows that
dim{ : } dim{ : }x

( )
x,
( ) ( )q x w xn n nKD = D = +1 .

From the above we conclude that the matrix P ( )n

satisfying w P qx,
( ) ( )

x
( )n n n=  is nonsingular [7, 8, 9].

Let n be given, and let ( )
x

( )W [ , ]:n nn m m= D{  } be a
set of generators for the TF components W [ , ]x n m ,
m ND <{ , ..., }0 1 . The following two properties are
consequences of Theorem 2:
P1. The elements of {  }W [ , ]:x

( )N n m m n< < D1  are
generators for { } {0, ..., }W [ , ]:x N n m m N< < D <1 1 .
P2. The elements of {  }W [ , ]:x

( )n N m m n2 < D  are
generators for { } {0, ..., }W [ , ]:x n m m ND <1 .
Proof. Use successively the following relations to prove
P1 and P2: K Kn N n( ) ( )= < <1 , P P( ) ( )[ , ] [ , ]n nk m k N m= <2 .

We shall now characterize the linear relation L  between
components of Wx  and any set  of generators. Spectral
redundancy of the discrete WD enables us to restrict our
attention to linear maps L( )n  that connect, given n, every
W [ , ]x n m  to any set ( )n  satisfying the conditions of
Theorem 2.
Corollary 2. Assume that ( )

x
( ) ( )[ ]:n n nm m= D{  }w  and

( )
x
( ) ( )[ ]: , ...,n n nm m N= D <{  { } \ }w 0 1  are sets of

linearly independent and dependent components of w x
( )n ,

respectively. Let w x,
( )n  and w x,

( )n  be vectors whose
components are the elements of ( )n  and ( )n ,
respectively. Let P ( )n and P ( )n  be the matrices obtained
by extracting from P ( )n  the first K n( ) +1  rows, and the
columns indexed by ( )n  and { , ..., } \ ( )0 1N n< ,
respectively.
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Figure 2. Examples of sets  of time-frequency generators W [ , ]x n m  for N = 32, 64, 128, and 256 (black areas).



The matrix L( )n  associated with the linear map L( )n

satisfying L( )n ( )x,
( )

x,
( )w wn n=  is given by

( )L P P( ) ( ) ( )n n n=
<1. (9)

Proof. By (7), it follows that

( )w P q P P wx,
( ) ( )

x
( ) ( ) ( )

x,
( )n n n n n n= =

<1
.

4. SIMULATION EXAMPLES
Emphasis is now placed on computer simulations to
illustrate the main theoretical results presented in
previous sections.
In Figure 2, the black colored areas are examples of sets

 of N N2 4 2+  TF generators W [ , ]x n m  for N = 32, 64,
128, and 256. This means that information conveyed by
white colored areas can be derived from information
conveyed by black colored one using a linear
transformation L . These sets of generators were found as
follows. Let n be given, and let P( , )n m  be the matrix
obtained by extracting from P ( )n  defined in (5) the first
K n( ) +1 rows and the first m columns. Let l( )( , )P n m  be
the rank of P( , )n m . Each subset ( )n  such that = ( )n

n

was determined by analyzing the variations of l( )( , )P n m

as a function of the variable m, m K nD{ , ..., }( )0 :
l l( ) ( )( , ) ( , )P Pn m n m> <1  means that W [ , ]x

( )n m nD .
Finally, each matrix L( )n  associated with ( )n  was
computed using (9). There we used to generate the
discrete WD represented in Figure 3.b from nonredundant
information conveyed by the generators presented in
Figure 3.a.

5. CONCLUSION
In this paper, we have extended the works [5, 6] on the
redundancy of the discrete WD by an analytic
characterization of sets  of TF generators, and by
studying some of their properties. Then we have
characterized the linear map that connects these
generators to every TF component.

Our results can be extended in the following directions:
• All results can be easily reformulated for the discrete

ambiguity function.
• Redundancy of other representations of Cohen's class

can be studied.
• This work can be extended to other linear signal

spaces  such as discrete-time complex-valued and
analytic signal spaces.

• These results were exploited to efficiently compute
TF-based detectors [6, 7]. However, there are other
potentially interesting applications such as
interference terms suppression, denoising, fast
algorithms, etc. They can also certainly play a role in
the resolution of signal synthesis problems.
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Figure 3.a. Nonredundant information conveyed by the WD of a 256-sample real-valued signal, here the sum of two chirps.
Figure 3.b. WD reconstructed from nonredundant information represented previously.


