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Abstract

In this paper, we introduce a method of designing optimal time}frequency detectors from training samples, which is
potentially of great bene"t when few a priori information on the nonstationary signal to be detected is available.
However, achieving good performance with data-driven detectors requires matching their complexity to the available
amount of training samples: receivers with a too large number of adjustable parameters often exhibit a poor generaliz-
ation performance whereas those with an insu$cient complexity cannot learn all the information available in the design
set. Then, using the principle of structural risk minimization proposed by Vapnik, we introduce procedures which
provide powerful tools for tuning the complexity of generalized linear detectors and improving their performance. Next,
these methods are successfully experimented on simulated and real data, with linear detectors operating in the
time}frequency domain: it is in such high-dimensional feature spaces that procedures of deriving reduced-bias receivers
from training samples are of prime necessity. Finally, we show that our methodology may o!er a helpful support for
designing detectors in many applications of current interest, such as biomedical engineering and complex systems
monitoring. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel stellen wir eine Methode zum Entwurf optimaler Zeit}Frequenz-Detektoren aufgrund von Trainings-
daten vor. Diese Methode ist potentiell von gro{em Nutzen, wenn wenig A-priori-Information uK ber das zu detektierende
instationaK re Signal vorhanden ist. FuK r eine gute LeistungsfaK higkeit datengesteuerter Detektoren ist es jedoch erforder-
lich, deren KomplexitaK t an die Menge verfuK gbarer Trainingsdaten anzupassen: EmpfaK nger mit zu vielen einstellbaren
Parametern besitzen oft eine schlechte VerallgemeinerungsfaK higkeit, waK hrend solche mit unzureichender KomplexitaK t
nicht die gesamte Information erlernen koK nnen, die in den fuK r den Entwurf verwendeten Daten enthalten ist. Unter
Verwendung des von Vapnik vorgeschlagenen Prinzips der strukturellen Risikominimierung stellen wir weiters leistun-
gsstarke Methoden zur Abstimmung der KomplexitaK t verallgemeinerter linearer Detektoren und zur Verbesserung ihrer
LeistungsfaK higkeit vor. Diese Methoden werden experimentell anhand simulierter und echter Daten fuK r im
Zeit}Frequenz-Bereich arbeitende lineare Detektoren bestaK tigt: gerade in solchen hochdimensionalen MerkmalsraK umen
sind Prozeduren, die den datengesteuerten Entwurf von EmpfaK ngern mit reduziertem mittlerem Fehler erlauben, von
gro{er Wichtigkeit. Schlie{lich zeigen wir, da{ unsere Methode in zahlreichen Anwendungen von aktuellem Interesse
} wie der Biomedizintechnik und der UG berwachung komplexer Systeme } eine UnterstuK tzung beim Entwurf von
Detektoren bieten kann. ( 1999 Elsevier Science B.V. All rights reserved.
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Re2 sume2

Dans cet article, nous exposons dans un premier temps une meH thode pour la synthèse de deH tecteurs temps}freH quence
à partir d'un ensemble d'apprentissage, ce qui preH sente un inteH re( t majeur lorsque les hypothèses en compeH tition sont
di$cilement caracteH risables. Il apparam( t cependant que les deH tecteurs reH sultant d'un processus d'apprentissage preH sentent
un biais important lorsque la quantiteH de donneH es disponibles est relativement faible. Pour remeH dier à ce problème, nous
preH sentons dans un second temps plusieurs meH thodes baseH es sur le principle SRM de Vapnik permettant d'adapter la
complexiteH des deH tecteurs lineH aires à la taille de l'ensemble d'apprentissage. Ceci a pour e!et d'ameH liorer signi"cativement
leurs performances. Finalement, ces meH thodes sont valideH es à l'aide de donneH es simuleH es et reH elles, pour des deH tecteurs
lineH aires opeH rant dans le domaine temps}freH quence. C'est en e!et dans ce type d'espace de repreH sentation de grande
dimension que le contro( le de la complexiteH des deH tecteurs est primordial, lors du processus d'apprentissage. En"n, nous
montrons que l'approche preH senteH e peut e( tre avantageusement utiliseH e dans des domaines aussi varieH s que la surveillance
de systèmes complexes ou l'ingeH nierie biomeH dicale. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cohen's class time}frequency (CTFD) repres-
entations have been extensively used for detection
in applications ranging from radar to machine fault
diagnostics, due to the need for dealing with non-
stationary signals. Most of the time}frequency (TF)
detectors which have been proposed are linear
structures operating in the TF domain and are
merely equivalent to quadratic receivers usually
de"ned in the time domain [3]. However, a promis-
ing TF-based quadratic detection theory has also
been introduced in [16}18]: Sayeed et al. identi"ed
several scenarios in which detectors are optimum
and fully exploit the many degrees of freedom avail-
able in the TF representations.

Unfortunately, the design of detectors requires
a priori knowledge of signals whereas phenomena
are complex in many applications of current inter-
est (e.g., biomedical engineering, complex systems
monitoring). Since the collection of labeled signals
is often feasible, Jones and Sayeed derived TF de-
tectors directly from training data via the maximiza-
tion of the Fisher criterion [5]. However, it is stated in
[1] that the resulting discriminants can be arbitrarily
bad: there are distributions such that even though the
two classes are linearly separable, the Fisher linear
discriminant has a probability of error close to one.
Then, a method of obtaining optimal TF detectors
from training samples was developed [12].

It is well known in Pattern Recognition that
classi"ers designed from training data often have

a large bias, particularly when the number of train-
ing samples is small compared with the dimension
of data [4]. This experimental evidence was theor-
etically studied by Vapnik and Chervonenkis, who
exhibited links between the generalization perfor-
mance of receivers, their complexity and the size of
the training set [20]. Then, the principles of structural
risk minimization (SRM) [19] and minimum description
length (MDL) [13] were proposed to match the com-
plexity of classi"ers to the available amount of data
in order to improve their performance.

In this paper, after a brief description of the usual
time and TF linear approaches to decision prob-
lems in Section 2, we expose a method of designing
optimal linear detectors from training data in Sec-
tion 3. Then, we show the suboptimality of any
linear receiver resulting from the maximization of
the Fisher criterion or the signal-to-noise ratio.
Finally, we derive a linear detector operating in the
TF domain from simulated training data in order
to demonstrate the excellent performances of the
method. In Section 4, we illustrate the e!ect of
a small training set on the performance of a de-
tector and we brie#y justify this phenomenon with
a fundamental result of Vapnik and Chervonenkis'
theory [20]. Then, we propose methods of improv-
ing the performance of linear detectors derived
from a small training set and we experiment it on
simulated data in the TF domain. Finally, our
procedure is successfully applied to a set of EEG
events in Section 5. Some conclusions are presented
in Section 6.
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2. Time and time}frequency approaches
to decision problems

2.1. Cohen's class time}frequency representations
review

2.1.1. Dexnition
The Wigner}Ville distribution, which has been

extensively studied in recent years, is de"ned as [2]

=
x
(t, f )"P

`=

~=
R

x
(t,q)exp(!2jp fq) dq, (1)

where R
x
(t,q)"x(t#q/2)xH(t!q/2) is the instan-

taneous autocorrelation function of the signal x.
This distribution is known for its high resolution

in the TF domain and the large number of proper-
ties it satis"es [2]. However, its use in practical
applications is limited due to the numerous cross-
components generated by its bilinear structure.
This di$culty can be removed by applying a bi-
dimensional "lter F to the instantaneous autocor-
relation function R

x
. This leads us to the following

de"nition of Cohen's class TF distributions
(CTFD) [2]:
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]exp(!2jp fq) dt@dq, (2)

where F is called the autocorrelation domain ker-
nel.

2.1.2. Discrete dexnition
In practice, sampled data are usually processed

and F has a "nite support S
F

de"ned as

S
F
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in which case the following equivalent of de"nition
(2) can be used:
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In the above expression, R
x

denotes the discrete
instantaneous autocorrelation function of x:

R
x
(n,m)"x(n#m)xH(n!m). (5)

The properties of discrete CTFD are similar to
the continuous time case except for the periodicity
in the frequency variable, in which the period is
equal to one-half the sampling frequency. To avoid
aliasing, this implies that the sampling frequency
must be at least twice the Nyquist rate if x is real.
Otherwise, the analytic signal x#jH(x) must be
used, where H()) denotes the Hilbert transform: the
absence of a negative frequency spectrum elimin-
ates the problem of aliasing which occurs if the
signal is sampled at the Nyquist rate [2].

2.2. Time and time}frequency detection frameworks

2.2.1. Linear detection in the time domain
The detection scenario we consider is as follows.

Given a discrete-time signal x received over the
interval M1,2,dN, where x"[x(1)2x(d)], one
must decide between the two competing hypotheses
H

0
and H

1
:

H
0
: x(k)"n(k),

H
1
: x(k)"s(k)#n(k), (6)

k3M1,2,dN,

where s is the underlying signal to be detected and
n some additive noise.

The decision between H
0

and H
1

is often made
by comparing a test statistic j(x), computed from
the observation, to some preset threshold l [8]. As
an example, when s is a known deterministic signal
and n some white Gaussian noise with a known
variance p2, it can be shown that the following
test statistic is optimal to solve the detection pro-
blem (6):

j
T
(x;s)"

d
+
k/1

s(k)x(k). (7)

This detection structure is called a matched "lter.
Note that this linear test statistic also maximizes
the output signal-to-noise ratio when the noise n is
non-Gaussian.

2.2.2. Linear detection in the time}frequency domain
In the perspective of a TF-based detection

scheme, the hypothesis testing problem (6) can be
rewritten in time and frequency terms using the
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WV representation:1

H
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k3M1,2,dN, i3M1,2,dN.

By analogy with the classical matched "lter theory,
one can consider the general class of detectors
based on linear "ltering operations in the TF do-
main

j
TF

(x;g
TF
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d
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d
+
i/1

g
TF

(k, f
i
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x
(k, f

i
), (9)

where g
TF

is a TF reference to be determined using
the a priori known statistics of the signal s and the
noise n. It is of major importance to note that the
key di!erence between the test statistics (7) and (9)
is that j

TF
is a quadratic function of the samples

x(k) whereas j
T

is a linear one. This implies that
j
TF

can provide an optimal hypothesis test when
the signal s to be detected is a random Gaussian
signal and n is a white Gaussian noise. It is known
that the quadratic test statistic j

TF
can equivalently

be implemented in the time domain. However,
its formulation is much more transparent in the
intuitive and physically meaningful TF domain.
Moreover, Sayeed and Jones identi"ed several non-
stationary composite hypothesis testing scenarios
for which TF detectors fully exploit the degrees of
freedom available in the TF representations [16].2

In Eq. (9), the determination of g
TF

can be
achieved by maximizing the Fisher criterion [5] or
the signal-to-noise ratio between the two compet-
ing hypotheses [14], when the probability densities
of=

x
under H

0
and H

1
are unknown. In Section 3,

we present an optimum design procedure for linear
detectors. Then, this approach is used to optimize
g
TF

.

1Any Cohen's class distribution can be used provided that it is
invertible to prevent loss of information.

2In this paper, we focus on the hypothesis testing problem (8).
However, the scope of our methods can easily be extended to the
seenarios identi"ed in [16], using the alignment procedure pro-
posed in [15].

3. Optimum design of linear detectors from
training data

3.1. Design of linear detectors

3.1.1. Problem formulation and resolution
Linear receivers are optimum (e.g., in the sense of

the likelihood ratio) for Gaussian distributions
with equal covariance matrices under hypotheses
H

0
and H

1
. However, even if these assumptions on

probability densities are not reasonable in many
applications, the simplicity and robustness of this
approach often compensate the loss in perfor-
mance. In this way, we discuss now how to design
optimum linear detectors from training data, re-
gardless of the statistics of the observation under
H

0
and H

1
. This method was introduced by

Fukunaga to design linear discriminants in the
context of Pattern Recognition [4], and used by
Richard and LengelleH to automatically design opti-
mum TF detectors from training data [12].

For a linear test statistic j, the hypothesis testing
problem (6) can be rewritten as

if j(X;V,l)"VTX!l*0, then H
1

else H
0
,

(10)

where X is the observed signal, V the vector to be
determined and l a threshold.

Our design work consists in "nding the optimum
vector V and threshold value l in the sense of
a preselected criterion and for a given data set.
Using a minimal a priori knowledge, j can be
characterized by its expected value g

i
and variance

p2
i

under H
i
de"ned as

g
i
"EMj(X;V,l)DH

i
N

"EMVTX!lDH
i
N"V TM

i
!l, (11)

p2
i
"VarMj(X;V,l)DH

i
N

"VTEM(X!M
i
)(X!M

i
)TDH

i
NV"VTR

i
V, (12)

where M
i
"EMXDH

i
N, R

i
"EM(X!M

i
)(X!M

i
)TDH

i
N.

Let N be the class of separability criteria depend-
ing only on the parameters g

i
and p2

i
de"ned above.

Let m3N. Since the separability of H
0

and H
1

must
be maximized, the derivatives of m, with respect to
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Fig. 1. Iterative algorithm which provides the optimum linear
detector in the sense of the best criterion m(g
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In the above equations, the derivatives of g
i
and

p2
i

are given by
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,
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After the substitution of Eq. (14) into Eq. (13), the
resolution of Eq. (13) for V provides a particularly
interesting analytical solution for the design of the

test statistic:

[aR
0
#(1!a)R

1
]V"(M

1
!M

0
),

where a"
Lm/Lp2

0
Lm/Lp2

0
#Lm/Lp2

1

.
(15)

Thus, the optimum V
015

satis"es Eq. (15) regardless
of the selection of m since the e!ect of the criterion
only appears in the parameter a (0)a)1). As
shown in Fig. 1, we can choose the value of a and
the threshold l which minimize the generalization
error E

'%/%
:

j
015
O(V

015
,l
015

)Oargmin
0xax1,l

(E
'%/%

(Va,l)). (16)

Here, Va satis"es Eq. (15), given a, and E
'%/%

is
de"ned as

E
'%/%

(Va,l)"P
0Pj(X_Va,l);0

p
0
(X) dX

#P
1Pj(X_Va,l):0

p
1
(X) dX, (17)

where P
i
and p

i
(X) denote the a priori probability

and the conditional density of data under H
i
, re-

spectively.
It is evident from Eq. (17) that the calculation of

the generalization error is, in many practical prob-
lems, a di$cult task. When we cannot obtain
a closed-form expression of E

'%/%
, we can compute

upper and lower bounds using di!erent techniques
such as Leave-One-Out, Resubstitution and Boot-
strap methods [4]. The generalization error can also
be estimated on a separate test set via an error-
counting procedure, i.e., the samples of this set are
tested by the detector and the number of misclassi-
"ed ones is counted. This test error is denoted E

5%45
.

As a conclusion, the design procedure presented
in this section allows us to determine the optimal
linear test statistic j

015
in the sense of the best

criterion m3N, without setting it up.

3.1.2. Fisher linear discriminant sub-optimality
The Fisher linear discriminant is obtained by

maximizing the following criterion [1]:

m
F*4)%3

(g
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,g

1
,p2

0
,p2
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)"

(g
0
!g

1
)2
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0
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0
#(1!P

0
)p2

1

, (18)
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where P
i
denotes the a priori probability of hypo-

thesis H
i
.

The derivatives of m
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In this way, we show that the Fisher linear dis-
criminant is a particular case of Eq. (15), where a is
equal to P

0
. Consequently, this criterion is not

necessarily the best one in the class N. In [1],
Devroye et al. stated that Fisher discriminants can
be arbitrarily bad: there are distributions such as
even though the two classes are linearly separable,
the Fisher linear discriminant has a prob-
ability of error close to one.

Finally, it should be noted that the signal-to-
noise ratio criterion also belongs to the class N:
V
SNR

satis"es Eq. (15) with a equal to 1.

3.2. Design of linear detectors operating in the TF
domain

3.2.1. Principle
The design of the TF detector (9) is straightfor-

ward with the algorithm described in Fig. 1. In that
case, X and V must be de"ned as follows:

X"[=
x
(1, f

1
)=

x
(2, f

1
)2=x

(d!1, f
d
)=

x
(d, f

d
)]T

(20)

and

V"[g(1, f
1
) g(2, f

1
)2g(d!1, f

d
) g(d, f

d
)]T.

It should be noted that subspace-based methods
must be used to solve Eq. (15) since the matrix
[aR

0
#(1!a)R

1
] is singular, when R

i
denotes the

covariance matrix of (20) under H
i
. This result can

easily be derived from a property of the discrete
WV transform which was recently demonstrated: in
[9], it is shown that it only exists d2/4#d/2 linearly
independent TF locations in the d]d discrete WV
representation of a d-sample real signal, and d2/
4#d!1 in the representation of an analytic one.

Fig. 2. WV representation of the computer-generated signal s to
be detected.

Fig. 3. Data-driven TF detector (training set: 20,000 realizations
of H

0
and H

1
).

3.2.2. Experiment on simulated data
In the case of detecting the presence or absence of

s(k)"k]exp(!0.45 k)]sin(0.5p k#h),

k3M1,2,16N,

in zero mean white Gaussian noise, with phase
h a uniform random variable, the optimal receiver
is known to be the inner product of the Wigner}
Ville distribution=

4
of the signal s to be detected

(Fig. 2) with that of the observation x. This detector
is called a TF matched "lter. In order to illustrate
our approach, an experiment of a blind detector
design from training data was conducted with
20,000 realizations of hypotheses H

0
and H

1
. The

TF reference g
TF

resulting from the training stage is
shown in Fig. 3. It appears as an evidence that it
has the same structure as=

4
.

The performance of this receiver was estimated
using 2000 realizations each of signal present or
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Fig. 4. ROC of (a) the TF matched "lter and (b)}(c) the data-
driven TF detectors (training sets: 20,000 and 300 realizations of
H

0
and H

1
, respectively).

absent. Fig. 4 shows the receiver operator charac-
teristics (ROC) of this detector, denoted (b), and
the TF matched "lter, denoted (a). The latter
provides the upper bound on the performance of
the various detectors. In this "gure, it can be seen
that the two ROC are very similar. This illustrates
the ability of the proposed method to closely ap-
proach the optimal TF detector, when many train-
ing samples are available.

However, it is known that receivers designed
from training data have a large bias when the
number of available samples is relatively small.
This experimental evidence was theoretically
studied by Vapnik and Chervonenkis, who exhib-
ited links between the generalization performance
of receivers, their complexity and the number of
design samples [20]. In Section 4, we develop
methods of designing reduced-bias detectors. Then,
these techniques are used to design reduced-bias
TF detectors from training data.

4. Design of reduced-bias linear detectors

4.1. The method of structural risk minimization

Achieving good performances with detectors de-
signed from training samples requires matching
their complexity to the amount of available data:

receivers with a too large number of adjustable
parameters often exhibit poor generalization per-
formances whereas those with an insu$cient com-
plexity cannot learn all the information available in
the design set. In between, there is an optimal
complexity which yields the best generalization er-
ror E

'%/%
for a given number of training data. This

problem is now brie#y discussed.
Let s be a set of detectors, and let VCs be its

VC-dimension. This parameter characterizes the
complexity of receivers which are members of the
class s: it is de"ned as the maximum number of
training samples they can learn without error and
for all possible binary labelings. In the case of
generalized linear classi"ers, for example, this def-
inition implies that VCs is given by the number of
degrees of freedom available in the structure. Note
particularly that VCs is bounded by d2#1 if s is
the class of the linear TF detectors (g

TF
,l) de"ned in

Eq. (9) [9]. However, the determination of VCs is
generally much more di$cult (e.g., if s is a set of
neural networks).

As shown in [19], the VC-dimension of a receiver
allows to derive an upper bound of its generaliz-
ation error from its error rate E

53!*/
on the training

set and the number N of design samples. With
probability 1!g, the following inequality holds:

E
'%/%

)E
53!*/

#D(N,VCs,g),

where

D(N,VCs,g)

"S
VCs
N A1#logA

2N

VCsBB!
1

N
logA

g
4B. (21)

The method of structural risk minimization intro-
duced by Vapnik et al. [19] consists in matching
VCs to the amount of training data in order to get
the best compromise between the competing terms
E
53!*/

and D()): reducing VCs causes D()) to decrease
but E

53!*/
to increase. In order to give a precise

statement of the VC-dimension selection problem,
we assume the following nested sequence of subsets
s
i
in the class s:

s
1
L2Ls

r
L2L s

which implies that VCs1
)2)VCsr

)VCs.
(22)
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Vapnik proposed to approximate the target re-
ceiver j

015
in s as follows:

j
015
OargminE

'%/%
Mj3sN

+argminE
'%/%

Mj
i,015

3s
i
N, (23)

where j
i,015

"argminE
53!*/

Mj3s
i
N. (24)

When too few data is available to be split into
a training and a test set, Vapnik suggested to opti-
mize the upper bound (21) rather than an estimate
of E

'%/%
.

In the next section, we examine three methods of
determining sequences of subsets as in Eq. (22).

4.2. VC-dimension control

4.2.1. Principle of optimal brain damage
One common way of adjusting the VC-dimen-

sion of the linear test statistic (10) is to prune some
of the components of V.3 This principle is reminis-
cent of optimal brain damage (OBD), a procedure
commonly applied after neural networks training
[6].

From Eq. (15), we de"ne the best candidate for
pruning as the component which minimizes the
increase dSEa of the squared error SEa de"ned as

SEa"DDRaV!MDD2,

where

Ra"aR
0
#(1!a)R

1
and M"M

1
!M

0
.

(25)

The increase dSEa of SEa can be approximated by

dSEa"+
i

LSEa
L(V i)

(dV i)#
1

2
+
i

L2SEa
L(V i)2

(dV i)2

#

1

2
+
iEj

L2SEa
L(V i)L(V j)

(dV i)(dV j)

#O(DDVDD2), (26)

where V i denotes the ith component of the vector
V.4

3Let <C0
s

be the VC-dimension of the class s of the linear TF
detectors (g

TF
, l) de"ned in Eq. (9). <C

s
"<C3

s
!n when

n components of g
TF

are proved.
4If V satis"es Eq. (15), i.e., <"<

a
, the "rst term in Eq. (26) is

zero.

To facilitate the decision about the components
V i to set to zero, the pruning process is performed
in a basis of normalized eigenvectors Ua of Ra.5

In such a basis, SEa is given by

SEa"+
i

(kiaVI i!MI i)2,

where

VI "QTV and MI "QTM. (27)

Here, the ith column of the matrix Q is the eigen-
vector corresponding to the ith eigenvalue kia of Ra.
VI i and MI i are the ith components of VI and MI ,
respectively.

If VI "VI aOQTVa, where Va satis"es Eq. (15), re-
placing SEa in Eq. (26) by (27) yields

dSEa"+
i

(kia)2 (dVI ia)2. (28)

Consequently, the increase dSEia of SEa due to
pruning the ith component of Va is as follows:

dSEia"[kiaVI ia]2. (29)

Thus, the components of VI a corresponding to the
smallest increases given by Eq. (29) are good candi-
dates for pruning.

4.2.2. Principle of weight decay (WD) [11]
Vapnik proposed to control the complexity of

receivers through an additional penalty term
cDDVaDD2 to be simultaneously minimized with SEa
[19]. In the case of linear detectors, this operation
is equivalent to pull the components of VI a to zero
predominantly along the principal directions of
Ra associated with its small eigenvalues since we
have

VI ia,cO(kia)2/[(kia)2#c]VI ia. (30)

Here, kia and VI ia are de"ned as in Section 4.2.1.
As a conclusion, the e!ect of the penalty term

cDDVaDD2 can be compared to that of a pruning pro-
cedure, where c controls the complexity of Va. By
analogy with the OBD procedure, we introduce the
following expression to approximate the learning

5The matrix Ra can be diagonalized since it is symmetric.
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capacity of the receiver VI a,c:

VCsc
"+

i

kia
kia#c

, given a. (31)

This expression is valid only for broad spectra of
eigenvalues [7].

4.2.3. Time}frequency domain partitioning.
In [10], a method of designing reduced-bias lin-

ear detectors operating in the TF domain was pro-
posed. It consists in forcing the function g

TF
in

Eq. (9) to be constant over the cells A
1
,2,A

r
of

a partition of the TF domain.
Since the VC-dimension of the class s

r
de"ned in

Eq. (32) is equal to r#1, 1)r)d2, the principle
of structural risk minimization described in Section
4.1 can advantageously be used to control the com-
plexity of the TF detector (g

TF
,l).

s
r
"M(g

TF
,l)Dg

TF
(k, f

i
)"a

p
onA

p
, p"1,2,rN. (32)

Unfortunately, the optimization of the partition
MA

1
,2,A

r
N is computationally expensive [10]. As

a consequence, this technique is not experimented
in the next sections.

4.3. Experiment on simulated data

In order to illustrate the e!ects of the training set
size on the design of a TF detector from training
data, the experiment described in Section 3.2.2 was
conducted with only 300 realizations of hypotheses
H

0
and H

1
. The TF reference resulting from the

direct application of the training algorithm present-
ed in Section 3 is shown in Fig. 5. It appears as an

Fig. 5. Data-driven TF detector (training set: 300 realizations of
H

0
and H

1
).

Fig. 6. Error rate of the reduced-bias TF detector as a function
of its VC-dimension and a (OBD method).

Fig. 7. Reduced-bias TF detector (training set: 200 realizations
of H

0
and H

1
; OBD method).

evidence that the TF component of the signal to be
detected is less apparent than in Fig. 3. In addition,
Fig. 4 shows that this detector, denoted (c), is the
poorest performer of the receivers we synthesized.

For comparison, the design of two reduced-bias
TF detectors was performed with 200 realizations
of H

0
and H

1
, using the OBD and WD procedures.

A test set containing 100 other realizations each of
signal present or absent was also used to estimate
the performance of these receivers during the prun-
ing processes. In the case of the OBD method, the
optimization of E

5%45
, with respect to the complexity

of the detector and the parameter a, resulted in
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Fig. 8. Reduced-bias TF detector (training set: 200 realizations
of H

0
and H

1
; WD method).

Fig. 9. ROC of (a) the TF matched "lter and the (b) OBD and (c)
WD-based TF detectors (200 realizations of H

0
and H

1
to train

the receiver and 100 to estimate its generalization error during
the pruning process).

a minimum for a"0.4 and VCs"5. This result is
shown in Fig. 6. It can be seen in Fig. 7 that the
reference g

TF
is quite identical to the WV repres-

entation of the signal s. In the case of the WD
procedure, E

5%45
passed through a minimum for

a"0.3 and c+ki/3a/0.3
. The resulting reference g

TF
,

which is also similar to =
4
, is shown in Fig. 8.

Finally, the generalization performance of these
detectors was estimated with 2000 realizations each
of signal present or absent, as shown in Fig. 9. We
supposed that P

0
"P

1
"1/2. Using the TF

matched "lter, which is the optimal detector, the
generalization error was equal to 14.11%. The

generalization error of the TF receiver which was
trained with only 300 realizations of H

0
and

H
1

was equal to 18.49%. This result must be com-
pared to 15.45% and 14.37% obtained with the
OBD and WD based TF detectors, respectively. This
clearly demonstrates the ability of the proposed
methods to approach the performance of the optimal
detector, even if the size of the training set is relatively
small compared to the dimension of the problem.

5. Experiment on real data

5.1. The detection of K-complexes in sleep EEG

Automated detection of waveforms such as alpha,
delta and K-complex waves in the EEG is an important
component of sleep stage monitoring. The K-complex is
one of the key features that contributes to sleep stages
assessment. This transient EEG pattern has a total
duration of between 500 and 1500 ms and is roughly
characterized by a sharp upward wave followed by
a downward one. Its amplitude is three times background
activity and is generally larger than 75 lV. The automated
detection of the K-complex is di$cult due to the
stochastic nature of the EEG: the K-complex can

Fig. 10. Examples of EEG events in the time and the TF
domains.
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Fig. 11. Detection of K-complexes in sleep EEG. ROC of (a) the
TF detector, (b) the reduced-bias TF detector and (c) the re-
duced-bias T detector.

have a large variety of shapes and it is not always
distinctly di!erent from the EEG background ac-
tivity, as shown in Fig. 10.

The EEG signals used for the design of the de-
tector were stored from the channel Cz. The raw
EEG data was digitized with an 8 bit A/D conver-
ter at a sampling frequency of 128 Hz and seg-
mented as follows. Two-second intervals, either
containing K-complexes or paroxysmal delta
bursts bearing some resemblance to K-complexes,
were selected. Then, each segment was cropped by
placing the x-axis intersection, present between the
upward and downward peaks, in the middle of the
interval. Each segment was also decimated by a fac-
tor of 8 before the evaluation of its Wigner}Ville
representation. This data was further split into
a training set (300 K-complexes and 600 delta
waves) that was used to design detectors of various
classes and a test set (150 K-complexes and 300
delta waves) from which their generalization error
was estimated during the pruning process. The re-
maining signals (159 K-complexes and 296 delta
waves) were used to asses their performance
via empirical ROC. The results are presented in
Fig. 11 and discussed below.

5.2. Discussion

(i) TF detector. The rank of the 1024]1024 ma-
trices Ra, calculated from the WV distribution of

our 32-sample analytic signals, was equal to 287.
This conforms to the theory evoked in Section
3.2.1. Although we then use a subspace based
method to solve Eq. (15), the resulting TF detector,
denoted (a) in Fig. 11, performed poorly. This
might be partly due to the insu$cient number of
training data compared with the dimension of the
problem.

(ii) Reduced-bias TF detector. The design of an
OBD-based TF detector was performed. Its error
rate E

5%45
on the test set passed through a minimum

for a"0.6 and VCs"54. This resulted in im-
proved performances of the reduced-bias TF de-
tector, denoted (b) in Fig. 11, as compared to (a).

(iii) Reduced-bias T detector. For the sake of com-
parison, the linear statistic (7) operating in the time
domain was designed and its VC-dimension was
optimized using the OBD procedure. As shown in
Fig. 11, this receiver (c) performed better than (a)
but poorer than (b). This justi"es the use of a quad-
ratic test statistic rather than a linear one to solve
this problem of detection. However, a pruning pro-
cedure must be used to improve the performance of
the quadratic receiver since few training data are
available.

This experiment demonstrates the ability of our
methodology to design a reduced-bias detector of
K-complexes without prior knowledge of these
events. This is of great bene"t in this application
since phenomena are so complex and poorly
understood that there is little hope of well
modeling.

6. Conclusion

In this paper, we have introduced a method of
designing optimal generalized linear detectors
which requires no prior knowledge of the event to
be detected. These receivers, which are directly
derived from training data, theoretically perform
better than those obtained via the maximization of
the Fisher criterion and the signal-to-noise ratio.

However, it is well known in Pattern Recogni-
tion that the generalization error of classi"ers
strongly depends on their complexity and the num-
ber of available training samples. The procedures
developed here, which are based on the principle
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of structural risk minimization developed by
Vapnik, provide powerful tools for tuning the
VC-dimension of linear detectors of various kinds
and improving their performance.

Finally, we have successfully experimented our
approach on simulated and real data, with linear
detectors operating in the time and time}frequency
domains. In particular, an experiment on a set of
EEG events has pointed out its ability to design
a reduced-bias TF receiver without prior know-
ledge of phenomena.

As a conclusion, this blind methodology may
o!er an helpful support for designing e$cient de-
tectors in many applications of current interest,
such as complex systems monitoring and biomedi-
cal engineering.
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