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Abstract 

Automated detection of waveforms such as delta and K-complexes in the EEG is an important 

component of sleep stage monitoring. The K-complex is a key feature that contributes to sleep stages 

assessment. However, its automated detection is still difficult due to the stochastic nature of the EEG. In 

this paper, we propose a detection structure which can be interpreted as joint linear filtering operations in 

the time and time-frequency domains. We also introduce a method of obtaining the optimum detector 

from training data, and we show that the resulting receiver offers better performances than the one 

obtained via the Fisher criterion maximization. The efficiency of this approach for K-complexes detector 

design is explored. It results from this study that the obtained receiver is potentially the best one which 

can be found in the literature. Finally, it is emphasized that this methodology can advantageously be used 

to solve many other detection problems. 
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I. INTRODUCTION 

In the last 50 years, polygraphic sleep techniques have permitted to greatly improve human sleep 

understanding (1). Unfortunately, the visual scoring of whole nights EEG, EOG and EMG records is still 

time-consuming and expensive, playing the role of a limiting factor in sleep studies development. This 

justifies the growing interest for automated sleep data analyzers. In the past two decades, significant 

advances have been made in this domain, starting with hybrid systems as in (2). Recently, in addition to 

the latter heuristic approaches, a large number of algorithms based on statistical pattern recognition 

techniques (3) and some expert systems have been proposed (4). 

Automated detection of waveforms such as alpha, delta and K-complex waves in the EEG is an 

important component of sleep stage monitoring. The K-complex is one of the key features that contributes 

to sleep stages assessment. It can occur both spontaneously or as an evoked response to an auditory 

stimuli, and seems to be associated with arousal during sleep. This transient EEG pattern has a total 

duration of between 500 and 1500 ms, and is characterized by a sharp upward wave followed by a 

downward one, orientating the y-axis from top to bottom as in electrophysiologists' convention. Its 

amplitude is 3 times background activity, and is generally larger than 75 mV (5). However, due to the 

highly non-stationary nature of the superimposed EEG background activity, the K-complex morphology 

can vary drastically, and no complete description is available (6). The automated detection of K-

complexes is a challenging proposition which has been the purpose of numerous published efforts. In (7) 

for example, Da Rosa et al. propose a detector based on a K-complex model. The resulting good detection 

and false alarm rates are respectively 89% and 49%. A multi-layer neural net is involved in (8): the 

integrated responses of two band-pass filters are used as inputs. This approach yields a detection rate 

ranging from 55 to 67%. In (6), Bankman et al. also use a neural net with 14 features extracted from EEG 

as inputs. Around 90% true positives are obtained for a 8% false positives rate. Finally, Tang and Ishii 

successfully introduce a new approach based on the discrete wavelet transform in (9), obtaining 

respectively 87% and 10% true and false positives. However, they consider that the K-complex is always 

overridden by a spindle whereas Jansen et al. (5) stated that there was no fixed relationship between these 
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two events. This emphasized that detector performances proposed in the literature strongly depends on the 

training and test sets composition. 

Time-frequency (TF) representations have been extensively used for detection in applications ranging 

from radar to machine fault diagnostics, due to the need for dealing with non-stationary signals. These 

representations are parameterised in terms of time and frequency, and describe the non-stationary signal 

characteristics via their time-varying spectral content. Most of the TF-based detection schemes which 

have been proposed are based on Moyal's relationship (10), and implement classical optimum receptors 

equivalently in the TF domain (11). Recently, Sayeed and Jones identified several scenarios in which TF-

based detectors are both optimum and fully exploit the many degrees of freedom available in TF 

representations (12). It is stated that invertible bilinear TF representations are only promising for 

situations in which the optimum detector is a quadratic function of the observations. This justifies for 

example the TF matched filter sub-optimality for known deterministic signal detection in the presence of 

white Gaussian noise. Finally, it is noteworthy that all these approaches require substantial knowledge on 

signals whereas phenomena are complex and poorly understood in many applications. However, the 

collection of substantial amounts of labeled data is often feasible. In (13), Jones and Sayeed adopt this 

approach, and derive near-optimum TF-based detectors directly from training data by maximizing the 

Fisher linear criterion. It should be noticed that Fisher discriminants can be arbitrarily bad: there are 

distributions such that even though the two classes are linearly separable, the Fisher linear discriminant 

has a probability of error close to one (14). In (15), Richard and Lengellé develop an original method of 

obtaining optimum TF-based detectors (probability of error minimum) from training data sets, and show 

the sub-optimality of the approach proposed by Jones and Sayeed (13). 

In this paper, we introduce a new detection structure which can be interpreted as joint linear filtering 

operations in the time and TF domains. We also identify a scenario for which this statistic naturally 

appears. Then, we extend the method of obtaining optimum TF-based detectors from training data 

introduced in (15) to the studied detection structure. This original approach is used to define a new 

detector of K-complexes. The paper is organized as follows. In Section II, we start with a brief review of 

Cohen's class TF distributions, followed by a description of the usual time and TF-based approaches to 
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decision problems. Then, we introduce the new concept of joint time and time-frequency (T-TF) based 

detection, and we identify a scenario for which the considered statistic is optimal. In Section III, we 

expose our method of obtaining optimum linear detector operating in the T-TF domain, and we show the 

sub-optimality of any receiver derived from the Fisher criterion maximization. A simple example 

illustrates the efficiency of our approach. In Section IV, our procedure is applied to a set of EEG events 

(K-complexes and delta waves), and the performances of the obtained T-TF-based receiver are evaluated. 

Finally, we present some conclusions regarding our approach in Section V. 

II. TIME-FREQUENCY-BASED APPROACH TO DECISION PROBLEMS 

1. Cohen's class time-frequency representations review 

i) Definition: The Wigner-Ville distribution, which has been extensively studied in recent years, is 

defined as follows (10): 

, [1] 

where Rx (t, t) = x (t + t/2) x*(t - t/2) is the instantaneous autocorrelation function of the signal x(t). 

This distribution is well-known for its high resolution in the TF domain and the large number of 

properties it satisfies (10). Unfortunately, its use in practical applications is limited due to the numerous 

non-negligible cross-components generated by its bilinear structure. This difficulty can be removed by 

filtering the instantaneous autocorrelation function Rx. This operation leads to the following definition of 

Cohen's class TF distributions (CTFD) (10)(16): 

, [2] 

where F is called the autocorrelation-domain kernel (17). 

One can also show that members of Cohen's class corresponds to filtered versions of the Wigner-Ville 

distribution: 

, [3] 

where . [4] 
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Finally, it is noteworthy that Cohen's class includes numerous well-known TF distributions as special 

cases: as an example, the classical Spectrogram with short-time window w(t) can be obtained from Eq. 

{3} if the kernel P is chosen as the Wigner-Ville distribution of w(t) (10). 

ii) Discrete definition: In practice, sampled data are usually processed, and F has a finite support SF 

defined as: 

, [5] 

in which case the following discrete equivalent {6} of the definition {2} can be used. The sampling 

frequency fs is normalized to unity. 

. [6] 

In the expression introduced above, the bidimensional function Rx (n, m) denotes the discrete time 

instantaneous autocorrelation function of the signal x(k): 

. [7] 

The discrete CTFDs properties are similar to the continuous time case except for the periodicity in the 

frequency variable, which period is equal to one-half the sampling frequency. This implies that the 

sampling frequency fs must be at least twice the well-known Nyquist rate to avoid aliasing, when the 

signal x (k) is real (18). This constraint is equivalent to: 

, where B denotes the bandwidth of the signal x(k). [8] 

To remove this difficulty, one can replace the real signal x(k) by its corresponding analytic signal z x 

(k), which is defined as follows in the frequency domain (18): 

 [9] 

Consequently, even if the periodicity is unchanged, the absence of a negative frequency spectrum 

eliminates the problem of aliasing which otherwise occurs when data is sampled at the Nyquist rate (18). 

Then, the previous sampling frequency constraint {8} obviously becomes: 

, where B denotes the bandwidth of the signal x(k). 
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Finally, the use of analytic signals is also important in avoiding artifacts around the frequency origin, 

due to cross products between negative and positive frequencies. A detailed discussion can be found 

in (18). For the two reasons mentioned in this section, each real signal studied in this paper will be first 

transformed into an analytic one using Eq. {9}. 

iii) Fast implementation: Evaluating CTFDs by the direct application of Eq. {6} requires the calculation 

of the smoothed autocorrelation function, and of a 2M-sample FFT at each time-instant. This algorithm is 

computationally expensive, and consequently cannot easily be used to compute the TF representations of 

long biomedical signals. In order to reduce computation time, several ideas have been proposed (17-21). 

The recursive approach presented below, introduced by Amin (20) and adopted by Richard and 

Lengellé (21) in their fast algorithm dedicated to CTFDs modified by the reassignment method (22), 

seems to be the most efficient one. 

In the case when the distribution kernel F belongs to the family K rec defined as follows: 

, [10] 

it is straightforward to show that the corresponding TF distribution satisfies the following recursive 

formulation: 

, [11] 

where , , 

. [12] 

In the above expression, j  t (k,m) is given by: 

 [13] 

We can notice that K rec is composed of functions with separable (p, m) variables. Then, this algorithm 

only authorizes the evaluation of smoothed pseudo Wigner-Ville distributions (SPWVD). This constraint 

on the distribution choice is not restrictive. With its separable kernel, the SPWVD allows the time and 

frequency smoothing to be adjusted independently, making this representation one of the most versatile of 
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Cohen's class. However, it should be mentioned that SPWVDs do not allow a directional time-frequency 

smoothing, which is sometimes useful (when analyzing multi-component chirp signals for example). 

Finally, it is noteworthy that the following truncating windows can advantageously be used since they 

belong to the class Krec: rectangular (T = 1), half-sine (T = 2), Hamming (T = 3), Hanning (T = 3) and 

Blackman (T = 5) windows, considered as functions of the variable p, and post multiplied by any function 

h of the variable m. 

2. Time and time-frequency-based detection frameworks 

i) Linear detection in the time domain: The detection problem we consider is as follows. Given a 

discrete-time (complex) signal x received over the interval {0, ..., K}, where x = [x (0) ... x (K)]T, one must 

decide between the two competing hypotheses H0 and H1: 

, k Î {0, ..., K}, [14] 

where s is the underlying discrete-time (complex) signal to be detected, and n some additive (complex) 

noise. 

The decision between H0 and H1 is often made by comparing a statistic l(x), computed from the 

observation, to some preset threshold (23). As an example, when s is a known deterministic signal, and n 

some white Gaussian noise with a known variance s2, the following statistic obtained via the Neyman-

Pearson criterion has been shown to be the optimal solution of {14}: 

. [15] 

This detection structure, which is a linear transformation of the samples x(k), is called a matched 

filter. Note that {15} is often used when the statistical properties of the observations differ from those 

considered above, and can be obtained by maximizing the output signal to noise ratio of an imposed linear 

detector. 

ii) Linear detection in the time-frequency domain: In the perspective of a TF-based detection scheme in 

the Cohen's class, the binary hypothesis testing problem described above can be rewritten in time-

frequency terms (24). 
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, k Î {0, ..., K}, i Î {0, ..., 2 (M - 1)}. [16] 

The signal x is supposed to be known over the interval {0, ..., K}, and equal to zero elsewhere. The 

bidimensional function  denotes a discrete Cohen's class TF distribution. 

By analogy with the classical matched filter theory, one can consider the general class of linear TF-

based detectors (24): 

, [17] 

where g is a TF-based filter response to be determined using the a priori known characteristics of the 

signal s. Such a determination can be achieved by maximizing the Fisher criterion (12), or the signal to 

noise ratio between the two competing hypotheses (25), when a priori probabilities and probability 

densities of  (conditionally to H0 and H1) are unknown. In (15), an optimal approach is also proposed. 

The statistic {17} quantifies the similarity between a TF structure of reference g and the TF 

representation  of the received signal x, which can be considered from Eq. {3} as a filtered version of 

the Wigner-Ville distribution Wx. In an equivalent way, one can smooth the reference g rather than the 

observation Wx. This operation leads to the following dual definition of the statistic l Q (x): 

, [18] 

where , [19] 

and . [20] 

From these definitions, Flandrin has described two roles played by the distribution kernel F in the 

statistic l Q (x) (11). On the one hand, from Eq. {18}-{20}, the smoothing function F authorizes to handle a 

priori uncertainties on the reference g by broadening it on the TF plane. On the other hand, from Eq. 

{17}, it also plays the role of an a posteriori smoothing of the observation Wx, which is necessary if one 

wants to jointly estimate the TF structure of the signal x (11). This interpretation of the role of the 
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function F emphasizes one of the main interests of the TF-based approach to decision problems: by using 

the same tool, it permits to combine the analysis of signals, conveniently performed in the TF domain, 

and the decision stage (11). 

Finally, the TF-based detection structure defined above allows to generate very different well-known 

receivers from suitable choices of the reference v. Two examples are mentioned in Table I. This 

additional property over standard statistics justifies our interest for the unique formulation {18}. 

Nevertheless, it should be noticed that this test statistic necessarily yields to a sub-optimum solution of 

the detection problem {14}, when s is a known deterministic signal and n some white Gaussian noise of 

known variance s2, since Wx is a "pure" quadratic function of the observations (without linear terms). 

Note that an optimum statistic based on the cross Wigner-Ville distribution Wxs has been already 

proposed (26): it is obviously a linear function of x. 

3. Joint time and time-frequency based approach to decision problems 

i) Problem: The optimum solution of some detection problems combines linear and quadratic statistics l L 

and l Q. As an example, consider the following discrete-time binary hypothesis testing problem: 

, k Î {0, ..., K}, [21] 

where n0 (res. n1) is a zero-mean white Gaussian noise, with known covariance matrix S0 (res. S1). The 

deterministic signals s0 and s1 are supposed to be known. 

ii) Resolution and interpretation: It is straightforward to show that the optimal statistic corresponding to 

{21}, in the sense of the Neyman-Pearson criterion, is given by the following log-likelihood ratio (23): 

 [22] 

which must be compared to a threshold n 0. 

The statistic l(x) consists in a linear combination of a "pure" quadratic function lQ(x) of the 

observations, and a linear one lL(x). Consequently, as it has been introduced in § (II.2), the detection 

problem {21} can be solved by joint linear filtering operations in the time and time-frequency domains: 
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. [23] 

As a conclusion, the approach proposed above permits to combine the analysis of signals, 

conveniently performed in the T-TF domain, and the decision stage of the problem {21}. In Section III, 

we propose a method to design the optimum linear T-TF-based detector {23}, i.e. which minimizes the 

error probability, via the optimization of the references g and h from training data. 

III. OPTIMUM DETECTOR DESIGN FROM TRAINING DATA 

1. Procedure for linear detectors design 

i) Problem formulation and resolution: Linear receivers are optimum, in the sense of the 

Neyman-Pearson criterion, for Gaussian distributions with equal covariance matrices, conditionally to the 

hypotheses H0 and H1. However, even if these assumptions on probability density functions are not 

reasonable in many applications, the simplicity and robustness of this approach often compensate the loss 

in performance. In this way, we discuss now how to design optimum linear detectors from training data, 

regardless of the signals distributions. This method has been introduced by Fukunaga to design linear 

discriminants in the context of pattern recognition (27), and used by Richard and Lengellé to 

automatically design optimum TF-based detectors from training data (15). 

Using the expression of the statistic introduced in Eq. {23}, the detection problem {21} can be 

rewritten as follows: 

, [24] 

where , 

 , 

 and n0 a threshold to be determined. 

Our design work consists in finding the optimum vector V and the optimum threshold value n0 in the 

sense of a pre-selected criterion, and for a given data set. Using a minimal a priori knowledge, the 

statistic l T-TF can be characterized by the following expected values and variances: 
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where  

Let  be any measure (depending only on these parameters) of H0 and H1 separability 

in the l T-TF - space. This criterion must be maximized so that the following derivatives of f, with respect to 

V and n0, are equated to zero: 

 [25] 

The resolution of {25} provides a particularly interesting analytical solution for the detector {23} 

design since Vopt satisfies: 

. [26] 

Thus, the optimum Vopt has the form {26} regardless of the selection of f: the criterion effect only 

appears in the parameter a (0 £ a £ 1). In our case, we choose the a value which minimizes an estimation 

of the error probability. This operation, which is described in § (III.2), can be carried out by using an 

iterative procedure. 

As a conclusion, this method allows to determine the optimal T-TF-based detector {23} (probability of 

error minimum) in the sense of the best criterion , without setting it up. Note that this 

procedure can also be used to design linear time or time-frequency based detectors directly from training 

data, as it is shown in (15). 

ii) Fisher linear discriminant sub-optimality: The Fisher linear discriminant is obtained by maximizing 

the following criterion (14): 

 [27] 

where Pi denotes the a priori probability of the hypothesis Hi. 
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The derivatives of with respect to  and  are: 

, i Î {0, 1}. 

Therefore,  and V Fisher satisfies: 

. [28] 

In this way, we show that the Fisher linear discriminant is a particular case of {26}, where a is equal to 

P0. Consequently, this criterion is not necessarily the one which minimizes the probability of error, among 

those which belong to the class . In (14), it is also stated that Fisher discriminants can be 

arbitrarily bad: there are distributions such as even though the two classes are linearly separable, the 

Fisher linear discriminant has a probability of error close to one. 

2. Algorithm 

Assuming that Ni samples are available from each hypothesis Hi, the iterative algorithm mentioned in 

§ (III.1.i) to design the optimum T-TF-based detector is as follows. 

i) Declaration of the variables used in the algorithm:  

 : jth observation, conditionally to the hypothesis Hi, j Î [1, ..., Ni], i Î {0, 1}. 

 : T-TF representation of  (cf. notation in § (III.1.i)). 

 : estimate of  expected value conditionally to the hypothesis Hi, i Î {0, 1}. 

 : estimate of  covariance matrix conditionally to the hypothesis Hi, i Î {0, 1}. 

 : variable which belongs to the interval [0, 1] (cf. definition in Eq. {26}). 

 : variable  increment. 

ii) Iterative procedure to find a: 

1) Initializations: 

 · for each realization , evaluate the vector . 

 · compute  and , i Î {0, 1}. 
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 · set the variable  to 0. 

2) While (a £ 1) repeat: 

 · solve: . 

 · find the threshold  which minimizes the estimate of the error probability . 

 · change the variable  by: a ¬ a + Da. 

3) Select the detector  which minimizes . 

Finally, it should be reminded that in this process, no assumption is made on the distribution of the 

observations. The procedure is only based on our knowledge that Vopt must have the form of Eq. {26}, 

and depends on one parameter a. Then, an estimate of the error probability is used to select this 

parameter, and to adjust the threshold n 0. 

3. Experiment on simulated data 

The following application illustrates the proposed method. Consider the detection problem of a 

deterministic transient signal s(k) embedded in a zero-mean white Gaussian noise n(k): 

, k Î {0, ..., 14}, [29] 

where . Its representation is shown in Figure 1. The variance s2 of the noise 

n(k) is chosen in order that the signal to noise ratio (SNR) is equal to -3 dB. 

From Eq. {22}, it is straightforward to show that the Neyman-Pearson optimal statistic corresponding 

to the binary hypothesis testing problem {29} is given by the following log-likelihood ratio: 

, [30] 

which must be compared to a threshold n 0. By applying Moyal's relationship, one can also show that the 

previous statistic test is equivalent to the following joint linear filtering operations in the time and TF 

domains: 

. [31] 
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Using the notations introduced in Eq. {23}, note that the reference g(k,fi) is constant over the TF 

domain, and corresponds to the one of an energy detector (see Table 1). The reference h(k) is equal to the 

signal s(k) to be detected. 

In order to illustrate our approach, the following experiment of blind detector design from training 

data was conducted: the parameter r was set to 3 and 16,000 realizations of the hypotheses H0 and H1 

were generated. This data set was used to train the detector {23} as described in § (III.2.ii). The resulting 

references are shown in Figures 2 and 3: g is nearly constant and h closely resembles the signal s to be 

detected. This result conforms to theory and illustrates the ability of the proposed method to closely 

approach the optimal receiver configuration. This original approach is used, in the next section, to define 

a new detector of K-complexes from a training set of EEG events. 

IV. JOINT K-COMPLEXES DETECTION IN THE T-TF DOMAIN 

1. Problem formulation 

Automated detection of waveforms such as alpha, delta and K-complex waves in sleep EEG is an 

important component of sleep stage monitoring. The K-complex, which is characterized by a sharp 

upward wave followed by a downward one, is a key feature that contributes to sleep stages assessment. 

However, its automated detection is still difficult due to the stochastic nature of the EEG: the K-complex 

can have a large variety of shapes, and is not always distinctly different from the EEG background 

activity. Some examples of K-complexes and delta waves are respectively shown in Figures 4 and 5. 

If we consider that the EEG background activity can be modified when a K-complex occurs, the 

detection problem can be intuitively posed as follows: 

 , k Î {0, ..., K}, [32] 

where n1 (res. n0) represents the EEG activity in the presence (res. in the absence) of the K-complex s to 

be detected. By analogy with the problem {21}, the T-TF-based approach proposed in § (II.3.i) is now 

used to solve {32}. 

2. Experiments on a set of EEG events 
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i) Description of the EEG recordings: The EEG signals used for the K-complexes detector {23} design 

were stored from three channels (Fz, Cz, and Pz) but data from Cz was only used in the present study. 

The raw EEG data was digitized with a 8 bit A/D converter at a sampling frequency of 128 Hz, and 

segmented as follows. Two-second intervals, either containing K-complexes, and paroxysmal delta bursts 

bearing some resemblance to K-complexes were selected. The K-complexes had been selected by three 

EEGer at least, among the five experienced neurophysiologists who had individually scored the proposed 

whole nights records. Then, each segment was cropped by placing the x-axis intersection, present 

between the upward and downward peaks, in the middle of the interval. Each segment was also decimated 

by a factor of 4, and transformed into an analytic signal using Eq. {9}: the resulting sampling frequency 

of 32 Hz was adequate since the main energy of the K-complex remains below 6 Hz, as shown in Figure 

4. Thus, a set including 609 K-complexes and 1196 waves bearing some resemblance to genuine K-

complexes was used to train and test the detector {23}. As shown in Table 2, this data base was obtained 

from the EEG of three subjects. 

ii) Reduction of the problem dimensionality: In the present study, most of the difficulty in designing the 

optimal T-TF-based detector came from the estimation of covariance matrices, since we were confronted 

with high-dimensional data whereas few training samples were available: 

4096 variables from the (64´64)-dimensional TF representation, 

+ 64 variables from the representation of the signal in the time domain, 

= 4160 variables for 609 K-complexes and 1196 other waves. 

In order to remove this difficulty, the number of variables coming from the TF representation was 

reduced as follows. First, only the informations Wx (k, fi) from the frequency band [0 - 8Hz] were 

extracted since the K-complex energy remains below 6 Hz. Secondly, these informations were 

compressed by applying the following singular transformation: 

. [33] 
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In this way, the resolution of each TF representation was arbitrarily set to {Dt = 0.125 s ; Df = 1 Hz}, 

as shown in Figure 6. It should be noticed that this operation is also equivalent to impose the unknown 

reference g(k , fi), introduced in Eq. {23}, to be constant over (0.125 s ´ 1 Hz) regions in the TF domain. 

Thus, each 4160-dimensional sample Y j was transformed in a 192-dimensional sample Y j
compressed , 

losing some of the discriminant information. This allowed us to accurately approximate the data base 

covariance matrices. We also noticed that the detector obtained after the data transformation {33} was 

quite insensitive to K-complex shape variations, which justifies our choice. However, this operation 

should be replaced by a selection of the efficient T-TF regions for detection in a subsequent study. 

3. Results and discussion 

We performed the T-TF-based detector {23} design on a training set containing 450 K-complexes and 

850 delta waves. We used a distinct set (159 K-complexes, 346 delta waves) to test the obtained receiver, 

and to estimate its ROC curve. This experiment was repeated 500 times, using different random 

constitutions for the training and test sets each time. The mean ROC curve is shown in Figures 7(a) and 

7(b) (solid). In Figure 8, the contribution of the time (lL) and time-frequency (lQ) statistics to the optimal 

T-TF-based detector is illustrated by the projection of a random data test set considered above onto the T-

TF map. This example explicitly demonstrates the advantage offered by the combination of linear 

operations in the time and time-frequency domains. 

The efficiency of our method was evaluated by comparing the T-TF-based detector performances to 

those of the matched filter {15}. The design of this receiver was repeated 500 times, using the same sets 

as those introduced before. Its mean ROC curve, shown in Figures 7(a) and 7(b) (dashed), clearly 

indicates the loss in performances due to the use of a linear statistic to solve the detection problem {32}, 

and emphasized the validity of our approach. 

The best performances obtained by a K-complex detector were reported in (6): a morphological 

feature-based detector using an artificial neural network provided 90% true positives with 8.1% false 

positives while our approach yielded 9.2% false positives at the same sensitivity level. However, 

Bankman et al.'s training and test sets were containing non-K-complexes which were not necessarily 
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similar to K-complexes. In our study, we did not include such waveforms because it advantageously 

affects the false positives rate. In addition, the authors justifiably stated that their detector was not "the 

universal solution" for the K-complex detection problem because of two reasons: 

a) Their feature-based receiver provided good agreement with the visual recognition of the single EEGer 

who had scored the EEG records when the morphological criteria differ across experts (28). In our study, 

the K-complexes we used had been selected by three EEGers at least, among the five experienced 

neurophysiologists who had individually scored the whole nights records. 

b) The wide variety of EEG waveforms cannot be represented in a finite data set. In order to reduce the 

effect of a finite number of samples, we used a larger data base (see Table 2) than the one described 

in (6). The latter was containing 251 K-complexes, and 249 non-K-complexes. 

As far as we are concerned, our T-TF-based detector has great potential since it provides satisfactory 

performances whereas the experimental conditions we chose to design it were intentionally against us. 

Besides, this receiver can significantly be improved. In the first place, we have supposed that the 

transformation {33} preserves as much discriminant information as possible. This assumption is not 

reasonable, and we now need to evaluate the effectiveness of individual T-TF variables or their 

combinations for detection, and to only select the effective one. Branch and Bound procedures, which 

have been developed to obtain optimal solution to some combinatorial problems, may advantageously be 

used. In the second place, informations from the channel Cz were only used in the present study. The 

decision regarding the detection of K-complexes may need to be corroborated by their presence in other 

channels. 

V. CONCLUSION 

In this paper, we have introduced the new concept of joint time and time-frequency based detection. 

As for classical time-frequency approaches to decision problems, this method allows to combine the 

analysis of signals, conveniently performed in the time-frequency domain, and the decision stage. 

Unfortunately all these methods require substantial knowledge of signals, whereas phenomena are 

complex and poorly understood in many applications (detection in EEG signals, ...). To improve the 
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detector design phase in these situations, we have developed a method to determine the optimum detector, 

i.e., which minimizes the error probability, directly from labeled training data. The resulting detector 

theoretically offers better performances than the one obtained via the maximization of the Fisher criterion 

(13), as it has been shown in (15). 

Finally, our T-TF-based detection structure, designed by the method described in § (III.2), has been 

validated with the problem of K-complexes detection in sleep EEG. It results from the present study that 

the obtained receiver is potentially the best one which can be found in the literature. Besides, it can be 

improved by using for example a Branch and Bound procedure to select the efficient T-TF regions for 

detection. The decision regarding the detection of K-complexes may also need to be corroborated by their 

presence in other channels. Finally, it should be emphasized that the methodology we have introduced in 

this paper can advantageously be used to solve many other transient signals detection problems (sharp 

vertex waves, ...). 
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LIST OF TABLES 

  Type 

  Quadrature matched filter 

1  Energy detector 

Table 1: Quadratic detector configurations resulting from the choice of suitable TF references. 

 K-complexes Delta waves 

Subject 1 263 397 

Subject 2 162 399 

Subject 3 184 400 

Total 609 1196 

Table 2: Number of K-complexes and delta waves per subject used to train and test the detector. 
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FIGURES CAPTIONS 

Fig.1: Representation of the transient signal s to be detected from training data. 

Fig.2: Time reference h used by the T-TF-based receiver to detect the transient signal s represented in 

Figure 1. This reference has been obtained from training data by means of our algorithm. 

Fig.3: TF reference g used by the T-TF-based receiver to detect the transient signal s represented in 

Figure 1. This reference has been obtained from training data by means of our algorithm. 

Fig.4: Examples of K-complexes. 

Fig.5: Examples of delta waves. 

Fig.6: K-complexes detection: reduction of the problem dimensionality. 

Fig.7a: ROC curves respectively provided by the T-TF-based (solid) and the linear (dashed) detectors of 

K-complexes. 

Fig.7b: Zoom in on the ROC curves respectively provided by the T-TF-based (solid) and the linear 

(dashed) detectors of K-complexes. 

Fig.8: Projection onto the T-TF domain of the test set: K-complexes (²), delta waves (l). 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 7(a): 
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Figure 7(b): 

 

Title:	
  	
  figure7b.eps
Creator:	
  	
  MATLAB,	
  The	
  Mathworks,	
  Inc.
CreationDate:	
  	
  03/12/98	
  	
  18:24:27

 

 



 32 

Figure 8: 
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