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ABSTRACT 
The information conveyed by the discrete Wigner-Ville 
representations of real, complex or analytic signals is highly 
redundant, each time-frequency location being related to others 
via non-obvious relationships. In this paper, we demonstrate that 
there also exists a large amount of linear relationships between 
time-frequency sample!;. This implies that a whole discrete 
Wigner-Ville representation can be detennined from linear 
combinations of some selected time-frequency locations. A 
simple example illustrates this property. Next, we design a linear 
detector that only exploits the information provided by these 
locations and that yields the same performancl: as linear receivers 
performing in the whole time-frequency dornain. Finally, some 
potential implications of this property are briefly presented. 

1. INTRODUCTION 
The discrete Wigner-Ville (DWV) distribution is of great 
interest for non-statilonary signal analysis, synthesis and 
processing due to the numerous properties it satisfies [l-31. 
However, it encodes the information in a redundant 
fashion since it maps a N-sample signal into a N by N 
representation. This increased amount of data often 
prohibits the use of the DWV distribution in applications 
like signal detection and classification. 

In this paper, we denionstrate that it exists a large amount 
of linear relationships between TF samples. This means 
that the whole DWV representation of al real, complex or 
analytic signal can ba evaluated from linear combinations 
of some selected locations. The use of this property may 
result in efficient algorithms as an example, since it 
appears that the number of these remark.able TF locations 
is about the quarter of the representation size for analytic 
signals. To illustrate this property, the design of a linear 
detector that only exploit the information available in such 
TF area is presented. Its performance is the same as 
classical linear receivers performing in the whole TF 
domain. 

This paper is organized as follows. First, we briefly 
describe the problem. Next, we discuss the issue of 
obtaining linearly-independent locations in the DWV 

representations when signals are real, complex, or analytic. 
Then, this property is illustrated with the design of linear 
detectors performing in such area of the TF domain. 
Finally, we present some conclusions regarding other 
potential implications of this property. 

2. DESCRIPTION OF THE PROBLEM 
Let X=[XO , . . . ,x~.~]* be a N-sample signal taken from a 
given linear signal space E. The DWV of x is a real valued 
distribution defined as follows: 

where (m,n) E 10, ..., N-11’. 
From the above definition, we get the following sequence 
of maps: 

x+R, = [...xntk ...]’, (n+ k , n -  k) E [0 ,..., N - 11’ (2) 

R, +~,=[...~,(n,m)...]~,(n,m)~[~ ,..., ~ - 1 1 ’  (3) 
The number NR of components of R, is as follows, if the 
length N of the signal x is even: 
N, = card{(n+ k , n -  k) E [0, ..., N - 

Let F and G be the following sets: 

N2/2, 

F = { R , E ~ ~ ~ I ~ : X E E } ,  

G = {  W, E.%” : X E  E}. 

One of the objectives of this paper is to determine the 
number of linear relationships between the components of 
the vectors W, of G. Here, this set is referred to as the 
range space of the DWV transform. 

It is noteworthy that F and G are not linear spaces (e.g. the 
sum of two DWV transforms is not a valid DWV 
transform). However, we define the dimension of the set F 
(resp. G), denoted dim(F) (resp. dim(G)), as the number of 
linearly-independent vectors that can generate the elements 
of F (resp. G) via linear combinations. Note that dim(G) is 
equal to the number of linearly-independent TF locations 
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available in the DWV representations. 

Since Eq. (1) matches the form of a discrete Fourier 
transform, F and G are isomorphic according to Eq. (3). 
This implies that the dimension of G is equal to the 
dimension of F. In Section 3, dim(F) is evaluated in the 
case of real complex and analytic signals. 

3. DIMENSION OF THE DWV RANGE SPACE 

3.1. Real signals (sketch) 
Let x=[xo ,..., ~ N . 1 1 ~  be a N-sample real signal. N is 
supposed to be even. It can be shown that the only linear 
relationships that exist between the components of R, are 

implies that 
dim ( F )  = card((n+ k , n  - k )  E [O,.. . , N - 112 : k IO} 

those between Xfl+kXn.k, k<O,  and X,,+kX,,-k, k > O .  This 

(4) 
= N2/4+ N/2. 

Consequently, the whole TF representation of a real signal 
can be generated from N2/4+N/2 linearly-independent 
locations. 

3.2. Non analytic complex signals (sketch) 
Let x be a N-sample complex signal. N is supposed to be 
even. One can show that all the components of R, can be 
generated from the real and imaginary parts of the cross 
products &+k&-k*, k 5 0, that are linearly-independent. This 
implies that F is generated by the following number of 
linearly-independent vectors: 

(5)  
dim ( F )  = 2 card { (n + k ,  n - k )  E [O,. . . , N - 112 : k < O}+ N 

Note that the N cross-products x,,x,* are members of 9 2  
and that X,,+kX,,-t ,  k c O ,  are members of e. This justifies 
the factor of 2 in Eq. (5)  since e is isomorphic to g2. 
Consequently, the DWV representation of a non-analytic 
complex signal can be generated from N2/2  linearly- 
independent TF locations. 

= N '12 

3.3. Analytic signals (sketch) 
The case of analytic signals is the most interesting since 
the Hilbert transform makes the negative frequencies 
content of real signals vanish, which yields a severe 
decrease of the number of interference terms [2]. 

k t  X=[XO ,..., xN.1IT be a N-sample analytic signal. N is 
supposed to be even. Let y =  bo, ..., y ~ n ,  0, ..., 0IT be the 
Fourier transform of x and H the following set: 

H={R,  =[ ..., yny: ,... ] ' : ( n , m ) ~ [ O  ,..., Nl2I2}, 

It can be shown that the components of R, can be 
generated from the real and imaginary parts of the cross 

products ynym*, m n, that are linearly-independent. This 
implies that the dimension of the set H is as follows: 
dim ( H )  = 2 card {(m, n )  E [O,. . . , N/2I2 - (0, N/2) : 

01 m 1  N/2, n > m}+ (N/2 + 1) + 1 (6) 

= N2/4+ N. 
In Eq. (6), the additive coefficients Nl2+1 and 1 
respectively correspond to the cross-products y,,,ym*, 
0 I m S Nl2, and Y O Y N ~ *  that are real. Note that yo and yNn 
are real because x is analytic. 

Let It, the vector made up of the non-zero real and 
imaginary parts of the linear1 y-independent cross-products 
yflym*, msn.  From Eq. (6), & is a member of .92NZ'4+N. 
The vector R, can be evaluated from & as follows: 
R, = Ag, ,  where A is N2/2 by N214+N complex matrix, 
since we have: 

(7) 
where ( n + k , n - k ) E [ O ,  ..., N-l ]* .  

It can be shown that it only exists one linear relationship 
between the columns of A: the two columns respectively 
corresponding to p=q=O and p=q=Nl2  are equals, 
which can be verified from Eq. (7). 

Since A is a N2/4+N-1 rank matrix and H is isomorphic to 
, the DWV representation of an analytic signal 

can be generated from N 2/4+N-1 linearly-independent TF 
locations. 

9 N 2 / 4 + N  

3.4. Example 
A set of linearly-independent TF locations is represented 
in Figs. (1) and (2) for 16-sample analytic signals. It was 
experimentally determined as follows. A 2000 by 256 
matrix M whose rows are the line-wise DWV 
representations of 2000 realizations of a white noise was 
generated. A set of d independent TF locations was found 
by successively analyzing the rank of nested sub-matrices 
made up of a part of the columns of M. The obtained basis 
obviously depends on the sequence of sub-matrices used to 
study the linear dependencies between the columns of M. 
Next, the linear relationships that allow to generate the 
whole DWV representation from the d independent TF 
locations were identified by solving NZ- d least squares 
problems (the errors were obviously zero). For the 
remainder of this paper, these relationships will be denoted 
by the matrix B which is defined as follows, after some 
permutations of the components of W,: 

W,(i) = k B  (i, j )  W,( j ) ,  Vi E {d  + 1,. . . , N'} ,  (8) 

The parameter d, that denotes the number of linearly- 
J = 1  
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Fig.1: Linearby-independant TF locations 
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Fig.2: Synthesized DWV representation 
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The information conveyed by the set of linearly-independent TF locations (Fig. 1) is used to synthesized the whole 
DWV representation (Fig. 2). The signal is given by x(k) = (16-k)xexp[-O.45x(16-k)-2j~x(16-k)/4], k E { 1, ..., 16). 

independent locations im the DWV representation, is equal 
to N2/4+N-1 in Figs (1 ) and (2) since x is analytic. 

4. APPLICATI.ON TO TF DETECTORS 
DESIGN 

It is shown in [4] that linear TF-based detectors are 
optimal for a wide variety of composite hypothesis testing 
scenarios. However, are propose to illustrate the property 
described in this paper with the problem (9) because the 
scope of our approach can easily be extended as in [5]: 

(9) 1 else H,. 
V is a TF reference 110 be determined and x denotes an 
observation. 

The linear statistic h(\Y,) can be rewritten as follows: 

if A(WJ = VT Wx 2 y then H, 

jdt l  

N? 
A(W,) =rV(i) W,(i) 

i d  

d 
=~U(i)W,(i). 

i l  

U denotes the TF reference performing on the d linearly- 
independent locations, and associated with the reference V 
that exploits the infcirmation available in the whole TF 
domain. Reciprocally, V can be evaluated from U by 
solving the linear system given by: 

U(k)=V(k)+ CBN(k,i)V(i), k ~ ( 1 ,  ..., d},  (11) 

where V(i) = B (i, j )  V( j ) ,  i E {d + 1,. . . , N ’ }. ( 12) 

An experiment of blind detector design from training data 
was conducted in order to illustrate this approach. In the 
case of detecting the ]presence or absence of s(k) = (16-k)x 
exp[-0.45x( 16-k)]xexp[-2j.nx(( 16-k)/4+8)], k~ { 0, . .., 15 ) , 
in zero mean white Gaussian noise (RSB = -3 dB), with 

N2 

i d t i  

j=l  

phase 8 a uniform random variable, the optimal receiver is 
well known to correspond to the inner product of the DWV 
distribution W, of s (Fig. (3)) with that of the observation 
x. The design of the TF-based detector U was conducted as 
in [6,7] with loo00 analytic realizations of the hypotheses 
Ho and HI. The result is shown in Fig. (4). Next, we have 
applied Eq. (11) to evaluate V(k), kc{O,  ..., N-l}, (Fig. 
(5 ) )  and Eq. (12) to expand the result over the whole TF 
domain (Fig. (6)). This reference closely resembles the 
DWV representation of s. U obviously yields the same 
performance as V. 

5. CONCLUSION 
In this paper, we have shown that the whole DWV 
representation of a signal x can be determined from linear 
combinations of some selected locations. Obviously, the 
Ambiguity function and the other TF representations that 
can be obtained from the DWV by unitary transformations 
also satisfy this property. 

Taking this property into consideration may result in more 
efficient algorithms for TF-based analysis, processing, and 
synthesis. As an example, we have shown that it allows to 
efficiently compute TF-based detectors from training data, 
since the computation time of the training stage is nearly 
divided by 12 when signals are analytic. But it could also 
lead to new methods in various fields such as the removing 
of the interference terms in the DWV representation, the 
resolution of the signal synthesis problem, etc. However, 
further investigations are needed to characterize the linear 
relationships between the TF samples. 
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Fig. 3: DWV representation of the signal s Fig. 4: TF reference U obtained from the training algorithm 
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Fig. 5: TF reference V after Eq. ( l l )  resolution Fig. 6: Expension of V over the whole TF domain 
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Figs 3-6: Detection of the signal s(k) = (16-k)xexp[-0.45~(16-k)-2jnx((16-k)/4+@], k E [ l ,  ..., 161, with phase 8 a 
uniform random variable (Fig. 3), in a zero mean white Gaussian noise (RSB = -3 dB). The signals that are used are 
analytic. The detector represented in Fig. 4 only exploit the information available in a set of linearly-independent TF 
samples. The Fig. 6 represents the detector performing in the whole TF domain which is derived from the receiver given 
in Fig. 4. 
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