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Abstract 

Cohen's class time-frequency distributions (CTFDs) have significant potential for the analysis of non-stationary 
signals, even if the poor readability of their representations makes visual interpretations difficult. To concentrate signal 
components, Auger and Flandrin recently generalized the reassignment method (first applied to the spectrogram in the 
1970s) to any bilinear representations. Unfortunately, this process is computationally expensive. In order to reduce 
computation time and to improve representations readability, we first introduce a new fast algorithm which allows the 
recursive evaluation of classical spectrograms and spectrograms modified by the reassignment method. In a second step, 
we show that rectangular, half-sine, Hamming, Hanning and Blackman functions can be used as running 'short-time' 
windows. Then the previous algorithm is extended to CTFDs. We show that the windows mentioned above can also be 
used to compute recursively reassigned smoothed pseudo-Wigner-Ville distributions. Finally, we show that the con- 
straints on candidate windows are not very restrictive: any function (assumed periodic) can be used in practice as long as 
it admits a 'short enough' Fourier series decomposition. © 1997 Elsevier Science B.V. 

Zusammenfassung 

Cohen's Klasse der Zeit-Frequenz-Verteilungen spielt eine entscheidende Rolle in der Analyse nicht-station~trer 
Signale, auch wenn die schlechte Lesbarkeit ihrer Darstellungen die visuelle Interpretation erschwert. Zur Konzentration 
yon Signalkomponenten entwickelten Auger und Flandrin kiirzlich die Riickzuteilungsmethode reassignment method 
(erstmals angewendet auf Spektrogramme in den Siebzigern) fiir einige bilineare Darstellungen. Ungliicklicherweise ist 
dieser Prozel3 numerisch aufwendig. Um Rechenzeit zu verringern und die Lesbarkeit der Darstellungen zu verbessern, 
schlagen wit einen neuen schnellen Algorithmus vor, welcher die rekursive Evaluierung klassischer Spektrogramme und 
yon Spektrogrammen, die dutch die reassignment method modifiziert wurden, erlaubt. In einem zweiten Schritt zeigen 
wir, dab Rechteck-, Halbsinus-, Hamming-, Harming- und Blackmanfenster als gleitende 'Kurzzeit-Fenster' eingesetzt 
werden k6nnen. Daran anschliel3end wird der zuvor beschriebene Algorithmus zur CTDF erweitert. Wit  zeigen 
weiterhin, dal3 die oben genannten Fenster zur Berechnung rekursiver reassigned, gegl~itteter Pseudo-Wigner-Ville 
Verteilungen benutzt werden k6nnen und dab letztendlich die Anforderungen an geeignete Fensterfunktionen nicht sehr 
hoch sind: jede beliebige Funktion (als periodisch vorausgesetzt) kann in der Praxis benutzt werden, sofern sic eine 
'hinreichend kurze' Fourier-Reihenzerlegung gestattet. © 1997 Elsevier Science B.V. 
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R~sum~ 

Les distributions de la classe de Cohen jouent un r61e primordial dans l'analyse temps-fr&luence des signaux 
non-stationnaires, m~me si la prrsence de termes d'interfrrences nuit ~ la lisibilit6 des reprrsentations obtenues. Afin 
d'amrliorer cette situation, Auger et Flandrin ont rrcemment 61argi l'emploi de la technique de r~allocation, d'abord 
propos6e pour le spectrogramme, h l'ensemble des reprrsentations bilinraires. Nranmoins, rutilisation de cette m&hode 
reste drlicate en raison de la lourdeur des calculs mis en oeuvre. Afin de rrduire le temps de calcul et d'amrliorer 
conjointement la lisibilit6 des repr6sentations, nous proposons dans un premier temps un algorithme rapide, bas6 sur une 
approche rrcursive, permettant l'rvaluation simultanre de spectrogrammes classiques et r6allours. Nous montrons que 
les fen~tres d'analyse rectangulaire, sinuso'idale, de Hamming, Hanning et Blackman vrrifient les contraintes imposres 
par l'implrmentation rrcursive. Cette approche est ensuite 6tendue ~i l'rvaluation rrcursive des distributions de pseudo- 
Wigner-Ville lissres classiques et rralloures. Nous vrrifions alors que les fonctions enum6rres ci-dessus peuvent jouer le 
r61e de fenrtres de lissage temporel. Finalement, l'accent est port6 sur le fair que les contraintes imposres aux fen~tres sont 
peu restrictives: toute fonction peut 6tre utilisre si toutefois elle admet une drcomposition en srrie de Fourier de faible 
dimension. © 1997 Elsevier Science B.V. 
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1. Introduction 

Cohen's class time-frequency distributions 
(CTFD), which includes the spectrogram and the 
Wigner-Ville distribution, have been widely used 
to analyze non-stationary signals [12]. Two major 
problems have been extensively addressed: the diffi- 
culty of adjusting readability and the large com- 
putational cost of these methods. 

Adjusting readability requires both a good 
concentration of the signal components on the 
time-frequency map and the absence of misleading 
interferences. To make visual interpretation easy, 
one can choose an appropriate CTFD and empiric- 
ally adjust its parameters, giving an advantage 
either to signal concentration or interferences eli- 
mination. However, several approaches allow to 
automatically improve the readability of time- 
frequency representations. To remove cross- 
components, Flandrin introduced various weighting 
functions in computing the Wigner-Ville distribu- 
tion (WVD) [111. Sun et al. [18] and Grall-Ma~s 
and Beauseroy [131 used appropriate image pro- 
cessing techniques. Jones and Baraniuk [5, 141 and 
Jones and Parks [15] proposed efficient adaptive 
methods, which are computationally expensive 
when applied to long signals. Finally, the reassign- 
ment method, first applied 18 years ago to the 
spectrogram by Kodera et al. can produce a good 
localization of the signal components [16]. This 

method increases readability by relocating the 
representation values away from their location, 
thus creating a reassigned CTFD. Recently, 
Auger and Flandrin generalized the reassignment 
process, applying it to any bilinear time-frequency 
and time-scale representations, and simplified its 
implementation by proposing a new formulation 
[41. 

In order to efficiently compute long signals 
time-frequency distributions, several ideas to re- 
duce computation time have been recently pro- 
posed. Martin and Flandrin [17], Boashash and 
Black [8] used symmetry properties of distribu- 
tions and Barry clever matrix manipulations [6]. 
For the evaluation of the Wigner-Ville distribu- 
tion, Cunningham and Williams proposed a deci- 
mation algorithm which shifts the signal so that the 
resulting twiddle multiplication number is reduced 
[9]. In [101, the same authors also defined approxi- 
mations to real-valued CTFDs using spectrograms 
that admit fast evaluation. Finally, Amin introduc- 
ed recursivity in the implementation of time- 
frequency distributions: in [11, he proposed a class 
of kernels which allow the representation to be 
updated with a number of computations indepen- 
dent of the window extent. A family of kernels 
which permit the local autocorrelation function to 
be evaluated recursively is also considered in [2]. 
Among all these approaches, the use of recursive 
methods seems to be most efficient for reducing 
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computation time when applied to long signals 
(biomedical signal analysis, etc.). 

In this paper, we propose a new fast algorithm 
which allows the evaluation of classical CTFDs 
and CTFDs modified by the reassignment process. 
This algorithm uses a recursive approach and 
includes both the C TFD computation and the re- 
assignment stage. The paper is organized as fol- 
lows. In Section 2, we present a recursive algorithm 
for the spectrogram computation. Then, we discuss 
the associated running windows which can be used 
and we introduce a new on-line recursive algorithm 
dedicated to reassigned spectrograms. In Section 3, 
these results are extended to specific discrete reas- 
signed Cohen's class distributions. Our approach is 
discussed in Section 4. 

where C is a complex constant and D~ an additive 
correction term depending on the signal x, the 
angular frequency co and the current time instant. 
Our problem is now to establish a sufficient condi- 
tion on the running window w allowing the above 
recursive formulation. 

(ii) Presentation of the recursion. Introducing 
Eq. (2) into Eq. (3) and after a straightforward 
manipulation, we obtain 

bt 
x(n + k + 1)[w(k) - Cw(k + 1)]e -j'°k 

k = l  

---- Dx(n, co) + C[x(n + 1)w(1) 

- x(n + N + 1)w(N + 1)e-J'~N]. 

2. Reeursivity for the reassigned spectrogram 

2.1. Spectrogram recursive implementation 

(i) Problem formulation. The spectrogram ap- 
peared in the 1940s under the sonagram form [12] 
and is still extensively used although its time and 
frequency resolutions are bounded. For  a discrete 
complex signal x(k), this representation can be de- 
fined as follows: 

Sx n + ~ , c o  = IF~(n, co)l z, (1) 

where 

N 

FW(n, co) = ~ x(n + k)w(k)e -j~k. (2) 
k = l  

The above definition is chosen in order to sim- 
plify the recursive formulation introduced in the 
next sections. The variable co denotes the angular 
frequency (co = 2rtf), and w is an N-sample 'short- 
time' analysis window which plays a central role in 
adjusting time and frequency resolutions. 

Evaluating the spectrogram by the direct ap- 
plication of Eq. (2) requires the calculation of an 
N-sample F F T  at each time instant n, which can be 
computationally expensive. This justifies the search 
for a recursive F~(n, co) expression such as 

F~(n + 1, o9) = CF~(n, co)e j~ +D~(n, co), (3) 

This equation must be verified by any signal x(k). 
Then, an obvious sufficient condition is 

w(k - 1) = Cw(k) 

Dx(n, co) = C[x(n + N + 1)w(N + 1)e -j°'N 

- x ( n  + 1)w(1)]. 

Consequently, the recursive formulation of the 
spectrogram is given by 

F~(n + 1, co) = CF~'(n, co)e j~ -- Cx(n + 1)w(1) 

+ x(n + N + 1)w(N)e -j'°N. (4) 

Let us analyze now the functional equation 
w ( k - 1 )  = Cw(k) in order to define the corres- 
ponding family of candidate windows. 

w ( k -  1) = Cw(k) ,~, w(k)= C-kw(O). (5) 

Therefore, using the complex notation C = re ~°, 
the solution family W is defined as 

W = {w [w(k) = c~r-ke -j°k, ~ complex}. (6) 

We can notice that W is composed of exponen- 
tial functions. 

(iii) Generalization of the recursive scheme. Our 
purpose is now to extend the family of candidate 
windows which allow a recursive computation of 
the spectrogram. If the window w can be expanded 
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into exponential functions rmke -j°-k,  i.e., if w be- 
longs to W~xt defined as follows: 

Wext  = { w [w(k)  = m= ~mrmke-  J°'k' c~m c o m p l e x }  ' 

(7) 

we can show that the recursive strategy of the 
spectrogram can be generalized according to 

M 

F~(n + 1, co) = ~ F; ' (n  + 1, co), (8) 
m = l  

where win(k) = a,,rmke - j°'k, Cm = rme j°" 

and 

F~'(n + 1,co) = CmF~"(n, co)e j'° --  C m x ( n  -t- 1)Win(l) 

+ x(n + N + 1)Wm(N)e -j°'N. (9) 

Therefore, any window can be used in practice as 
long as it admits a 'short-enough' Fourier series 
decomposition. 

The following truncating windows, well-known in 
spectral analysis for their properties, can be advant- 
ageously used since they allow a recursive spectro- 
gram computation: rectangular (M = 1), half-sine 

(M = 2), Hanning (M = 3), Hamming (M = 3) and 
Blackman (M = 5). In Table 1, we introduce the 
way to implement these windows. 

(iv) Evaluation of the proposed algorithm. The 
gain in computational time will be directly related 
to the complexity of the recursive algorithm, which 
must be compared to the direct implementation of 
Eq. (2). Thus, we suggest to define the relative 
efficiency (RE) of the proposed algorithm as fol- 
lows: 

RE = (TNRM using the direct application of Eq. 
(2)) divided by (TNRM using our algorithm), 

where TNRM is the Total Number of Real Multi- 
plications required to compute the representation 
at time n. 

As an example, we estimate now the relative 
efficiency of the recursive algorithm when w is a rec- 
tangular window. The evaluation of F~(n, co) at the 
N frequency samples {27tk/N}k=O ..... N-1 results 
from an N-sample discrete Fourier transform. Con- 
sequently, the direct application of Eq. (2) requires 
(N/2) log2 (N/2) complex multiplications and 
N log2 N complex additions for each time step [7]. 
Evaluating the squared modulus (see Eq. (1)) re- 
quires 2N real multiplications and N additions. 

Table  1 
Usua l  t runca t ing  windows  recursive imp lemen ta t ion  

W i n d o w  Express ion  M w,. C,~ 

Rec tangula r  J" 1 for 1 ~< k ~< N, 1 wl (k) = 1 C1 = 1 
w(k) 

0 elsewhere. 

Half-sine f s in (nk /N + 1) for 1 ~< k ~< N, 2 wl(k) = (1/2j)e j~k/'N+ 1) C1 = e -j~/'N+I) 
w(k) 

elsewhere, w2(k) = ( -  1/2j)e -j~k/~N + 1) C2 = e j~/(N+ 1) 

Hann ing (c~=0 .5 )  + ( c ~ - l ) c o s  ~ for l<<.k<~N C 2 = e  j2n/(N+l) 
H a m m i n g  w(k) = w2 (k) = ½ (a - 1) e j2~k/¢¢ + 11 
(e = 0.54) elsewhere, w3(k ) = ½(c~ - 1)e -j2nk/(N+ 1) C3 = eJ2Tt/(N+ 1) 

B lackman  

w(k) = 
I 0 ' 4 2 -  0"5 c°s  (N2--~kl) + 0"08c°s(\N4gk+ 1 ]  "~ 

| for l<~k<~N 
~0  elsewhere. 

wl(k) = 0.42 C1 = 1 

w2(k ) = ( _  0.5/2)eJ2~k/(N÷ 1) C2 = e-J2,/(N+ 1) 

w3(k) = ( -  0.5/2)e -j2~k/cN+l) C3 = e j2~/(N+I) 

w,~(k) = (0.08/2)e j4~k/fN+ 1) Ca = e -j4~/~s+ 1) 

w5 (k) = (0.08/2) e -j4~k/~N + 1) C~ = e j4È/~N + 1) 
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Table 2 
Efficiency of the recursive spectrogram algorithm, in real operations numbers 

167 

Real additions number (AR) 
(per time-step) 

Direct method Recursive method 

Real multiplications number (MR) 
(per time-step) 

Direct method Recursive method 

Condition 
on N for 

RE>_- 1 

Rectangular 3N log2 N 5N + 2 2N log 2 N 
Half-sine 3N log 2 N + 2N 11N + 12 2N log 2 N + 4N 

Hamming 3Nlog2 N + 2N 17N + 16 2N log2 N + 4N 
Hanning 

6N 8 
10N + 16 13 

14N + 20 39 

3 . . . . . . . . .  I - -  - -  ~ . . . . . . . . . . . .  7 . . . . . . . .  , 

- i  . . . .  T - I  . . . . . . . . .  

o l  i , : , I 
2 32 128 

window length N (samples) 

Fig. 1. Relative efficiency (RE) of the spectrogram recursive 
algorithm. 

Then the total numbers of real additions (AR) and 
multiplications (MR) are 

AR = 3N log2(N), MR = 2N log2(N). 

Using the recursion given by Eqs. (3) and 
(4), the same computation requires N complex 
multiplications to evaluate the product of 
F~(n, 2nk/N)k= 1 ..... N by e j°'. (N + 1) complex addi- 
tions are needed to compte D~(n, ~o) and add it to 
the previous result. Then, the number of real opera- 
tions can be decomposed as 

AR = 5N + 2, MR = 6N. 

In Table 2, we compare the total numbers of real 
operations required to compute the spectrogram 
when using the recursion or the Eq. (2) direct imple- 
mentation. Fig. I represents the recursive algorithm 
relative efficiency (RE) for several usual windows as 
a function of their respective length. These results 

clearly show that our recursive approach allows to 
reduce computation time. 

2.2. Recursion in the spectrogram reassignment 
stage 

(i) Problem formation. To improve the spectro- 
gram readability by concentrating the signal com- 
ponents on the time-frequency map, Kodera et al. 
proposed to relocate the representation values 
away from their computation location [16]. The 
following spectrogram definition, which uses the 
Rihaczek distribution, is the starting point of their 
idea: 

c o '  

where Rix(n, co) = x(n)X*(co)e -j"°'. 
The above definition shows that, at any location 

(n, ~o), the spectrogram can be considered as the 
average of the weighted Rihaczek distribution 
values at the neighboring points ( n -  n', ~o-  co'). 
Because this smoothing leads to broadening of the 
signal components, the authors suggested to 
change the attribution point of the average, assign- 
ing it to the center of gravity (fix,&x) of the 
weighted distribution. This process yields a reassig- 
ned spectrogram (RSx) whose value at any location 
is the sum of all representation values relocated 
to this point. Recently, Auger and Flandrin [-4] 
simplified the reassignment algorithm by pro- 
posing new expressions to compute the relocation 
positions as a function of the time-frequency 
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coordinates (n, 09). It should be noted that these 
expressions presented below are equivalent to the 
original one introduced in [16]: 

. x (n, 09)F~(n, 09)* 
nx(n, 09) = n - ~ + Re ( [VW(n, 09) 12 j ,  

(10) 

(11) 
Dw w } 

o3x(n, 09) = co -- Im ( [F~(n, e))l 2 ' 

where 
N 

Tw F~ (n, 09) = ~ x(n + i)iw(i)e -j'°i (12) 
i = 1  

and 
N 

Dw F, (n, 09) = ~ x(n + i)w'(i)e -1'°I. (13) 
i = 1  

In the above expression, w'(i) is the derivative of the 
continuous-time function w, evaluated at time i. 

FW(n, 09) is recursively evaluated during the spec- 
trogram computation and is also used in the reas- 
signment process. 

(ii) Recursivity of the reassignment operators. In 
order to introduce a fast algorithm dedicated to 
the reassignment stage computation, we want now 
to establish recursive expressions for Eqs. (12) 
and (13). 

After a straightforward manipulation, Eq. (12) 
can be written as 

F~W(n + 1, 09) 

= [  ,=,~ [ k - 1 ] x ( n  + k ) w ( k - 1 ) e - J ~ ' k J e  j~' 

+ Nx(n + N + 1)w(N)e -j'°N. (14) 

When w verifies w(k - 1) = C w(k), Eq. (14) be- 
comes 

FfW(n + 1, 09) -- C[FfW(n, 09) - FW(n, 09)1e ~'° 

+ Nx(n + N + 1)w(N)e -j'~N. 

(15) 

Fr~W(n + 1, 09) is now easily determined by using 
Tw Fx (n, 09), F~(n, 09) and an additive correction 

term. 

Let us now simplify Eq. (13) when w belongs to 
the class W which has been defined in Eq. (6): 

w(k) = ar-ke -j°k ~ w'(k) = - ct(ln r + jO)r-ke -j°k 

= -- ln(C)w(k). 

Then F~W(n + 1, 09) computation requires only one 
complex multiplication when using FW(n + 1,09) 
value: 

F~°W(n + 1, 09) = - ln(C)F~(n + 1, 09). (16) 

It can also be shown that windows which belong 
to Woxt allow a recursive implementation of the 
reassignment operators. This can be done by using 
the linearity of the Fourier transform. 

If 

w ( k )  = 

M 
~, w,,(k) and wm(k - 1) = Cmwm(k), 

m=l 

Eqs. (15) and (16) can be modified accordingly: 

M 

F~(n + 1, 09) = ~ FI '(n + 1, 09), (17) 
m = l  

where Z symbolizes Dw and Tw (see definitions (12) 
and (13)). Using the same notation, the Fx z- 
(m = 1 . . . .  , M) functions are recursively evaluated 
using Eqs. (15) and (16) expressions. 

(iii) On-line recursive algorithm. Our purpose is 
now to introduce a fast algorithm which allows the 
evaluation of classical (Sx) and reassigned spectro- 
grams (RSx). This algorithm is shown in Fig. 2. 

In this algorithm, the two representations S~ and 
RSx are evaluated using the recursive expressions 
established in Section 2. The results are stored in 
two matrices initially set to zero. At each time-step, 
the reassignment stage is executed if and only if the 
current (n, 09) spectrogram value exceeds an arbit- 
rarily fixed threshold e. This criterion guarantees 
the existence of Eqs. (10) and (11) and avoids the 
useless reassignment of representation values close 
to zero [-4]. 

(iv) Evaluation of the proposed algorithm. To esti- 
mate the gain in computation time of the recursive 
approach, we use the same strategy as in Section 2.1 
(iv). The total numbers of real operations required 
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MAIN FUNCTION 

At each time instant (n + N) do 

Acquisition of the sample x(n + N) 

For each pulsation co = {27tk/N}k=0 ' ....~-, 

i ' " " F" Recurs ve evalualaon ofF~ (n,¢0) using x (n - l, co) 

see eq. (8) and (9) 

Evaluation of the spectrogram : S~ (n + N/2, co) =[F~" (n, co~2 

w 2 Ielr" (n,~) I >E 

I REASSIGNMENTFUNCTION computation 

End if  

End for 

End do 

REASSIGNMENT FUNCTION 

Recursive evaluation of F ~  (n, co) using F ~  ( n -  1,co) 

and Fx" (n - 1, 0~) 

see eq. (15) and (17) 

Evaluation of F ~  (n,o)  using F~ (n, ~0) 

v--r see eq. (16) and (17) 

Evaluation of fi ~ (n,co) and ~ x (n,co) 

v--> see eq. (10) and (11) 

Evaluation of the reassigned spectrogram : 
^ ^ w 2 

RSx(fi,,rox) = RSx(fix,ro,)+lF: (n,o~ 

Fig. 2. Recursive reassigned spectrogram algorithm. 

to compute the reassigned spectrogram are recap- 
itulated in Table 3. Fig. 3 represents our procedure 
relative efficiency (RE) for several usual windows as 
a function of their respective length. These theore- 
tical results clearly show the computational effi- 
ciency of this recursive strategy. 

2.5 

2 

'~ 1.5 

0.5 

I 
. . . . . . . . . . . . . . . . . . . .  _ _  

! 
1 

8 32 

f 

2 128 
window length N (samples) 

- -  r~-mguiar 
window w 

half-sine 
window w 

- -  Hanning 
window w 

Fig. 3. Relative efficiency (RE) of the ressigned spectrogram 
recursive algorithm. 

In order to evaluate its performance in practical 
applications, we apply our algorithm to a 1024- 
sample computer-generated signal. This signal is 
composed of a sine wave and a chirp components. 
It also includes two signals with constant ampli- 
tudes and instantaneous frequencies describing, 
respectively, a parabola and two sine periods. 
Fig. 4 represents the instantaneous frequency laws 
of the four signal components, giving a reference to 
appreciate the time-frequency representations. 

We now apply our recursive procedure. The 
chosen analysis window is a 128-sample half-sine 
function. We simultaneously obtain the two repres- 
entations given by Fig. 5. It should be noticed that 
these contour plots use the same levels correspond- 
ing to one-fifth, one-tenth and one-fifteenth of the 
distribution maximum value. 

Fig. 5 clearly demonstrates that a great improve- 
ment is achieved by the use of the reassignment 

Table 3 
Efficiency of the recursive reassigned spectrogram algorithm, in real operations numbers 

Real additions number  (AR) 
(per time-step) 

Direct method Recursive method 

Real multiplications number  (MR) 
(per time-step) 

Direct method Recursive method 

Condition 
on N for 

RE~>I  

Rectangular 6N log2 N + 4N 16N + 2 
Half-sine 9N log2 N + 9N 32N + 16 

Hamming 9Nlog2 N + 9N 46N + 20 
Hanning 

4N log2 + 6N 16N + 2 
6Nlog2 N + 16N 28N + 24 

6Nlog2 N + 16N 36N + 30 

6 

7 

13 
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(a)  

(b) 

o>, 0-4/i- ' ' ' 

3 
,~0.2 

O r i i ~ I 

0 100 200 300 

2 i i 

_ i 

0 1 00 200 300 

i i i i i = i 

400 530 600 700 800 900 1 000 

400 500 600 700 800 900 1 000 

Fig. 4. (a) Instantaneous frequency laws of the four signal components. (b) Computer-generated signal. 

(a)  

(b) 

(c) 

I ~  i i i 

n l  i i i u 

0 100 200 300 

> , 0 . 4 ~  ~ '  / / .= - ,x  
° I / \  oo'0.2 

0 W l  I I 

0 100 200 

2 i 

0 1 O0 200 

i 

300 

i 

I 

30O 

Fig. 5. (a) Recursive spectrogram windowed by a half-sine 
stage. (c) Computer-generated signal. 

400 500 600 700 800 900 1000 

, , . . . . \  / . 6 . \  
, , " . , . . . . " ,  , 

400 5 ~  600 7 ~  8 ~  ~ 0  1 ~ 0  

I i I I I l I 

400 500 600 700 800 300 1000 
t ime 

~nction(N=128).(b)Versionmodifiedbytherecursivereassignment 

method. The signal components are well concen- 
trated and perfectly localized on the time- 
frequency map, allowing an easy interpretation of 
the representation. Moreover, the measure of the 

computation time required to calculate this repres- 
entation by the direct and recursive methods (see 
Table 4) confirms the theoretical computational 
gain (RE) represented in Fig. 3. These results show 
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Table 4 
Computation times required to compute the representations 
given by Fig. 5 (using MATLAB on a DEC station 3000) 

Direct 
Computation Recursive application of 
time (s) approach the definitions Gain 

Spectrogram 1.47 2.91 1.98 
Computation 

Reassignment 3.93 8.16 2.07 
Stage 

Total 5.40 11.07 2.05 

that our algorithm allows to reduce computation 
time of spectrograms modified by the reassignment 
method. 

3. Extension to Cohen's class TFDs 

3.1. CTFDs recursive implementation 

(i) Problem formulation. The discrete Wigner- 
Ville distribution, which has been extensively 
studied in recent years, is defined as follows [9]: 

+ m  

WVx(n, co) = ~, R~(n,m)e -j2°'m, 
m ~ - - o o  

where Rx(n, m) = x(n + m) x*(n - m) is the instan- 
taneous autocorrelation function of the signal x. 

This distribution is well known for its high res- 
olution in the time-frequency plane and the large 
number of properties it satisfies [12]. Unfortunate- 
ly, its use in practical applications is limited due to 
the numerous non-negligible cross-components 
generated by its bilinear structure. However, to get 
around this difficulty, one can apply a bidimen- 
sional filter ~9 to the instantaneous autocorrelation 
function Rx. This operation leads to the following 
definition of Cohen's class time-frequency distribu- 
tions (CTFD) [4, 12, 17]: 

+Go + o o  

CTFD~(n, co) = ~ ~ ~k(p, m) 

x R~(n + p, m)e-J2°'m, 

where ~ is called the autocorrelation-domain ker- 
nel in [10]. 

We consider now that q/has a finite support S o 
defined as follows: 

Sq, = {(p,m)~Z: IPl ~ L, Iml ~< N - 1}, 

and satisfies 

~k(p , -m)=O*(p ,m)  forall(p,m)~S~. (18) 

This last hypothesis preserves the general aspect 
of our problem and ensures the distribution to be 
real-valued. Moreover, it allows a faster computa- 
tion of CTFDs, as it is shown by Eqs. (19) and (20) 
[8, 17]. As a consequence, ~ will be considered as 
conjugate-symmetric for the remainder of section 3. 

It can be written after some manipulations: 

CTFDx~(n, co) = 2 Re[TF~(n, 09)] 

L 

-- ~ ~, (p ,O)Rx(n + p, 0), (19) 
p =  - L  

where 

N - 1  L 

TF~(n, co) = ~ ~ if(p, m)Rx(n + p, m)e -j2°'m. 
m = 0  p =  - L  

(20) 

Evaluating CTFDs by the direct application of 
Eq. (20) requires the calculation of the smoothed 
autocorrelation function and an N-sample FFT at 
each time instant. This algorithm is computation- 
ally expensive and, consequently, cannot be easily 
used in a real-time context. Our purpose is now to 
introduce a fast method, based on a recursive ap- 
proach, dedicated to TFx ~ evaluation. 

(ii) Presentation of the recursion. A strategy 
equivalent to the one introduced in Section 2.1 (ii) 
is used to propose a recursive implementation of 
CTFDs. Eq. (20) can be written as 

TFx~(n + 1, 09) 

N - 1  L + I  

Y 
m = 0  p =  - L + I  

~b(p - 1, m)Rx(n  + p, m)e -j2~°m. 

(21) 

If the following condition is verified: 

~(p -- 1, m) = C~(p, m), (22) 
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where C is independent of m, Eq. (21) becomes 

TF~(n + 1, to) 

N - - 1  

= CTFx*(n, co) + ~ go(n, m)e -jz'°". (23) 
m = O  

In the above expression, go (n, m) is given by 

go(n, m) = ~(L, m)Rx(n + L + 1, m) 

- Ct~( -- L, m)R~(n - L, m). (24) 

Therefore, TF~(n + 1, to) is determined using its 
previous value and an additive correction term, 
easily evaluated by an N-sample FFT. 

In order to define the family of windows which 
allow recursion use in CTFDs evaluation, we have 
to solve the following functional equation: 

qJ(p - 1, m) = C~(p, m) ¢> ~O(p, m) = C-P~k(O, m) 
=r-Pe-J°Ph(m), using the complex notation 

C = re j°, 

are replacing ~,(0, m) by any function h of variable 
m .  

The family G of solutions can be defined as 

G = {OlO(P, m) -- g(p)h(m) 

where 9(P) -- r-Pe-J°P} • (25) 

We can notice that G is composed of functions 
with separable (p, m) variables. Then, our algorithm 
only authorizes the evaluation of smoothed pseudo- 
Wigner-Ville distributions (SPWVD). This con- 
straint on the distribution choice is not restrictive. 
With its separable kernel, the SPWVD allows the 
time and frequency smoothing to be adjusted inde- 
pendently, making this representation one of the 
most versatile of Cohen's class distributions. How- 
ever, it should be mentioned that this class of ker- 
nels does not allow a directional time-frequency 
smoothing, which is sometimes useful (when ana- 
lyzing multicomponent chirp signals for example). 

(iii) Generalization of the recursive scheme. As in 
Section 2.1(iii), we wish now to extend the candi- 
date windows family G. Thus, if Goxt is defined as 
follows: 

T 

Gext = {~'l 4'(P, m) = h(m) ~ 9t(P) 
t = l  

where gt(P) = rJe-J°'P}, 

it is straightforward to show that each Gext candi- 
date will permit a recursive implementation of the 
SPWVD: 

T 

TF~(n + 1, o9) = ~ TF~'(n + 1, to), 
t = l  

where 

~t(p,m) = h(m)rTPe -j°'p, Ct = rte j°' and 

TF~'(n + 1, to) 

N - 1  

= CtTF~'(n, co) + ~ g0t(n, m)e -jz'°z. 
m = 0  

In the above expression, got(n, m) is given by 

got(n, m) = [gt(L)Rx(n + L + 1, m) 

- -  Ctgt(-  L)Rx(n - L, m)]h(m). 

It can also be shown that usual truncating win- 
dows are elements of Gext: rectangular (T = 1), 
half-sine ( T = 2 ) ,  Hamming ( T = 3 ) ,  Hanning 
(T = 3) and Blackman (T = 5) windows, con- 
sidered now as functions of variable p and post 
multiplied by the function h(m). One can see Table 
1 to use these windows in the SPWVD recursion. 

(iv) Evaluation of the proposed algorithm. To 
evaluate the gain in computational time of the 
SPWVD recursive algorithm, we apply a similar 
strategy to the one introduced in the first section. 
The relative efficiency of our method is now defined 
a s  

RE = (TNRM required to compute the representa- 
tion at time n by the direct application of(19) 
and (20)) divided by (TNRM required to com- 
pute the representation at time n using our 
algorithm). 

As an example, we estimate now the relative 
efficiency of our approach when 9 is a rectangular 
window and h any complex-valued function. At 
each time-step, N instantaneous autocorrelation 
values must be evaluated, which requires N com- 
plex multiplications (Me = N). In the case of the 
direct application of Eq. (20), these instantaneous 
autocorrelations are summed for any m values. This 
computation requires 2NL complex additions 
(Ac = 2NL). Then, the result is windowed by the 
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Table 5 
Efficiency of the recursive SPWVD algorithm, in real operations numbers 

173 

Real additions number (AR) 
(per time-step) 

Direct method Recursive method 

Real multiplications number (Me.) 
(per time-step) 

Direct method Recursive method 

Condition on 
L for RE ~> l 

(N = 64) 

Rectangular 3N log2 N + 4(L + 1)N 3N log2 N + 7N 2N log2 N + 7N 
Half-sine 3N log2 N + 4(2L + 1)N 6 Nlog 2 N + 22N 2N log2 N + (8L + 7)N 

Hamming 3N log2 N + 4(2L + 1)N 9N log2 N + 27N 2N log2 N + (8L + 7)N 
Hanning 

2N log2 N + 7N 1 
4N log2 N + 25N 4 

6N log2 N + 27N 6 

complex function h (Mo = N) and transformed by 
means of an N-sample FFT. The SPWVD is ob- 
tained applying Eq. (19) (MR = N, AR = N). Thus, 
the total numbers of real additions (AR) and multi- 
plications (MR) are 

AR = 4(L + 1)N + 3N log2(N), 

MR = 7N + 2N log2 (N). 
Using the recursion given by Eq. (23) and since 

C = 1, the same computation requires N complex 
additions and 2N complex multiplications to evalu- 
ate q) (see Eq. (24)). Then, the F F T  of q) is deter- 
mined and the real part of the result is added to the 
real part of the previous TF~ value (AR = N). The 
SPWVD is obtained applying Eq. (19) (MR = N, 
AR = N). Then, the total number of real operations 
can be decomposed as 

AR = 7N + 3N log2(N), 

MR = 7N + 2N log2(N). 

We recapitulate in Table 5 the total numbers of 
real operations required to compute the SPWVD 
when using the recursive formulation or the Eq. 
(20) direct implementation. 

Fig. 6 represents the relative efficiency of our 
algorithm for several commonly used windows. In 
this example, we chose to evaluate the distribution 
on 127 autocorrelation values (N = 64) at each 
time step. One can notice that we have not studied 
the case when g is a rectangular window: direct 
and recursive approaches require the same number 
of real multiplications so that RE is always equal 
to one. However, computing the recursive algo- 
rithm needs less real additions, which makes it 
more efficient. 

12 ¸ 

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - - - - - ~ / Z ~  ~ half-sine 
8 window g 

6 . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 4 z n n i n t g  

.__ _.~___~_ window g 
4 .................. 

0 (N=64) 

8 16 32 64 

half-length L of the window g (samples) 

Fig. 6. Relative efficiency (RE) of the SPVWD recursive algo- 
rithm (N fixed to 64). 

3.5 

3 
~ half-sme 

2.5 window g 

Hanning 
window g 

1.5 

1 (L=16) 

16 32 64 128 256 512 
haft-length N of the window h (samples) 

Fig. 7. Relative efficiency (RE) of the SPVWD recursive algo- 
rithm (L fixed to 16). 

In Fig. 7, we present RE as a function of N when 
O is a 33-sample half-sine window (L = 16). 

These theoretical results clearly demonstrate that 
the recursive approach allows to greatly improve 
the usual computational performances. 



1 7 4  C. Richard, R. Lengellb / Signal Processing 60 H997) 163-179 

3.2. Reassignment stage recursive implementation 

(i) Problem formulation. The SPWVD is charac- 
terized by a separable kernel which allows the time 
and frequency smoothing to be adjusted indepen- 
dently. Unfortunately, smoothing also produces 
a less accurate localization of the signal auto- 
components in the time-frequency plane. In order 
to increase signal concentration, Auger and Flan- 
drin showed that the reassignment method can be 
advantageously applied to any CTFDs and parti- 
cularly to SPWVDs [4]. In that case, the following 
expressions are proposed to compute the relocation 
positions as a function of the time-frequency coor- 
dinates (n, co): 

SPWVDTgh(n, CO) 
~(n,  co) = n - SPWVD~h(n, co) , (26) 

SPWVDgDh(n, co) 
d)x(n, co) = co + j SPWVDgh(n, co) , (27) 

Using the same notations as in [4], the symbols 
gh, Tgh and gDh represent, respectively, the auto- 
correlation-domain kernels 9(P) h(m), pg(p)h(m) 
and 9(p)h'(m), so that 

SPWVDgh(n, co) 

N - 1  L 

= ~, ~ g(p)h(m)gx(n + p, m)e -j2c°m, 
m =  1 - N  p =  - - L  

(28) 

SPWVDgx°h(n, co) 

N - 1  L 

= ~ ~, 9(p)h'(m)Rx(n + p, m)e -J2°m, 
m = l - N  p = - L  

(29) 

SPWVDTgh(n, co) 

N - - 1  L 

= ~ Y' pg(p)h(m)Rx(n + p, m)e -J2'°'. 
m=l--N p = - L  

(30) 

At each time step, the reassignment method uses 
the current distribution value and requires the cal- 
culation of two additional SPWVDs. Let us find an 
algorithm to compute faster the reassignment oper- 
ators given by Eqs. (26) and (27). 

(ii) Recursivity of the reassignment operators. In 
Section 3.1(ii), we introduced a fast recursive ap- 
proach to implement Eq. (28) when the distribution 
kernel gh belongs to G. Our purpose is now to 
extend this method to Eqs. (29) and (30) evalu- 
ations. 

When the kernel gh(p, m) is conjugate-symmetric 
(see the notation above), i.e., satisfies gh(p, - m) = 
gh(p, m)*, it can be shown that 

[g(p)h'(- m)]* = - g(p)h'(m), 

i.e. gDh(p, - m)* = - gDh(p, m) 

and 

[p g(p)h(-  m)]* = p g(p)h(m), 

i.e. Tgh(p, - m)* = Tgh(p, m) 

Therefore, similar decompositions as the one in- 
troduced by Eqs. (19) and (20) (see also [8, 17]) can 
be applied to Eqs. (29) and (30). The following 
expressions allow a faster reassignment stage com- 
putation: 

SPWVD~Dh (n, co) 

= 2 Im[TF~Dh(n, ~o)] 

L 

-- ~', 9(p)h'(O)Rx(n + p, 0) (31) 
p =  - - L  

and 

SPWVD~gh(n, co) 

= 2 Re[TF/gh(n, co)] 

L 

- ~ pg(p)h(O)Rx(n +p,O), (32) 
p =  - - L  

where TF gob and T F [  gh are defined as 

TFgDh(n, 09) 

N - - 1  L 

= ~ ~ 9(p)h'(m)Rx(n + p,m)e -J2'°m (33) 
m = O  p = - - L  

and 

TFxTgh(n, co) 

N - - 1  L 

= ~ ~ pg(p)h(m)R.(n+p,m)e -J2'~". (34) 
m = 0  p =  - L  
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We use now the same approach as in Section 
3.1(ii) to propose a recursive formulation of Eq. 
(33). After a straightforward calculus, we can write 

TF~Dh(n + 1, co) 

N - 1  L+I  

= ~, Z g(p -- 1)h'(m) 
m=O p = - L + I  

x Rx(n + p, m)e -jz°'m. (35) 

Considering that gh belongs to the family G (g 
verifies g(p - 1) = Cg(p)), Eq. (35) becomes 

TFg°h(n + 1, 09) 

N--1 
= C TF~°h(n, co) + ~ ~/(n, m)e -~2'°". (36) 

m=0 

In the above recursion, r/(n, m) is given by 

n(n, m) = [g(L)Rx(n + L + 1, m) 

- C g ( -  L)R~(n - L, m)]h'(m). (37) 

Let us introduce now a recursive expression of 
TFx Tgh. After some manipulations, it can be shown 
that 

N - 1  L+I  
TVfgh(n + 1, co) = ~ ~ ( p -  1 )g (p -  1)h(m) 

m=O p= - L +  1 

x R ~ ( n + p , m ) e  -~z~''. (38) 

From the above equation and the relation 
g(p - 1) = C g(p), one can deduce that 

TFTgh(n + 1, co) = C[TFTgh(n, co) -- TF~h(n, co)] 

N - 1  
+ ~ /~(n, m)e -~2~m, (39) 

m=O 

where 

It(n, m) = [Lg(L)Rx(n + L + 1, m) 

+ C(L + 1)g(-- L)R~(n - L, m)]h(m). 

(40) 

The equations established previously are verified 
when the distribution kernel gh belongs to G. These 
expressions can be easily extended to Gex t family by 
using the same procedure as in the reassigned spec- 
trogram case. 

MAIN FUNCTION 

At each time instant (n + N + L - 1) do 

Acquisition offlae sample x(n + N + L - 1) 

For each pulsation to = {2/l:k/N}k.o ' ....s-I 

Recursive evaluation of TFf  (n, co) using Tiff (n - 1, to) 

~-~ see cq. (23) and (24) 

Evaluation of  SPWVD~ (n,o)) 

see eq. (19) 

If SPWVD~ (nJo) > 

[ REASSIGNMENTFUNCTION computation 

End if 

End for 

End do 

RFASS1GN]ffENT FUNCTION 

Recursive evaluation of  SPWVD~ (n, to) using T F ~  (n - 1, to) 

F-~ see eq. (31), (36) and (37) 

Recursive evaluation of SPWVD. r~ (n, co) using TF~ r~ (n - 1,to) 

and TI~ ( n  - 1, co) 

see eq. (32), (39) and (40) 

Evaluation of  fi~ (n,to) and ~ ~ (n, co) 

I-4 see eq. (26) and (27) 

Evaluation of  the reassigned SPWVD : 

RSPWVD ~ (fi~, ~ ) = RSPWVD~ ( f i~ ,~)  + SPWVD~ (n,to) 

Fig. 8. Recursive reassigned SPWVD algorithm. 

(iii) On-line recursive algorithm. In Fig. 8, we 
present a fast algorithm dedicated to classical and 
reassigned SPWVDs (RSPWVD) evaluations. 

The two representations SPWVD gh and 
RSPWVD~ h are evaluated using the recursive ex- 
pressions established in Section 3. As in the spectro- 
gram case, the reassignment stage is executed if and 
only if the current (n, 09) SPWVD value exceeds an 
arbitrary fixed threshold e. This criterion guaran- 
tees the existence of Eqs. (26) and (27) and avoids 
the useless reassignment of representation values 
close to zero [4]. 

(iv) Evaluation of  the proposed algorithm. To es- 
timate the computational efficiency of our algo- 
rithm, we use the same method as in Section 2.1(i). 
The total numbers of real operations required to 
compute reassigned SPWVDs are recapitulated in 
Table 6. These evaluations are done in the case of 
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Table 6 
Efficiency of the recursive reassigned SPWVD algorithm, in real operations numbers 

Real additions number (AD 
(per time-step) 

Direct method Recursive method 

Real multiplications number (MR) 
(per time-step) 

Direct method Recursive method 

Condition on 
L f o r  RE~> 1 

(N = 64) 

Rectangular 
Half-sine 

Hamming 
Hanning 

9 N I o g 2 N + ( 1 2 L +  l l ) N  9 N l o g 2 N +  19N 
9 N l o g 2 N + ( 1 6 L + 1 3 ) N  1 8 N l o g 2 N + 6 6 N  

9 N I o g 2 N + ( 1 6 L + 1 3 ) N  2 7 N I o g 2 N + 8 1 N  

6N log2 N + (8L + 15)N 6N log2 N + 19N 1 
6N log2 N + (16L + 19)N 12N log 2 N + 70N 6 

6Nlog2N+(16L+19)N 18Nlog2N+82N 9 

12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

10 

]8 
~6 

rectangular 
window g 

half-sine 
window g 

- -  Banning 
window g 

(N=~4) 
8 16 32 64 

half-length L of the window g (samples) 

Fig. 9. Relative efficiency (RE) of the reassigned SPVWD recur- 
sive algorithm (N fixed to 64). 
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window g 

(L=I6) 

Fig. 10. Relative efficiency (RE) of the reassigned SPVWD re- 
cursive algorithm (L fixed to 16). 

our recursive method and the direct application 
of Eqs. (19), (31) and (32). 

Fig. 9 represents the relative efficiency (RE) of 
our algorithm as a function of the half-length L 
of the window g. In this example, h(m) is a 
127-sample complex-valued window (N = 64). In 
Fig. 10, we present RE as a function of N when g is 
a 33-sample half-sine window (L = 16). These the- 
oretical results clearly show the recursive strategy 
computational efficiency. 

We now apply our algorithm to the 1024-sample 
computer-generated signal defined in Section 
2.2 (iv), in order to evaluate performances in practi- 
cal applications. In the following examples, g is 
a rectangular window and h a 127-sample Ham- 
ming window. The two representations given by 
Fig. 11 are obtained simultaneously. It should be 
noticed that Figs. 11 (a) and (b) use the same con- 
tour plots corresponding to one-fifth, one-tenth 

and one-fifteenth of the distribution maximum 
value. 

Fig. l l(a) shows the SPWVD of our signal of 
reference when 9 is a 9-point rectangular window 
(L = 4). The signal components are well localized 
but the presence of misleading interferences makes 
the visual interpretation difficult. In Fig. 11 (b), we 
can notice that the improvement given by the reas- 
signment method is obvious: the auto and cross- 
components become perfectly concentrated. Let 
us now use a longer time-smoothing rectangular 
window (L = 16) in order to reduce the numerous 
oscillating cross-terms. 

Fig. 12(a) shows that there are now less inter- 
ferences but the signal concentration is weaker. Fig. 
12(b) shows a great improvement in the readability 
when using the reassignment process. The signal 
auto-components are strongly localized and all 
cross-terms are removed, giving a nearly ideal 
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(b) 
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Fig. 11. (a) Recursive SPWVD when g is a rectangular window (L = 4) and h a Hamming window (N = 64). (b) Version modified by 
the recursive reassignment stage. (c) Computer-generated signal. 
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Fig. 12. (a) Recursive SPWVD when g is a rectangular window (L = 16) and h a Hamming window (N = 64). (b) Version modified by 
the recursive reassignment stage. (c) Computer-generated signal. 
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Table 7 
Computation times required to compute the representations 
given by Fig. 12 (using MATLAB on a DEC station 3000 

Direct 
Computation Recursive application of 
time (s) approach the definitions Gain 

SPWVD 1.8 6.24 3.42 
computation 

Reassignment 3.64 12.92 3.54 
stage 

Total 5.4 19.16 3.50 

representation of our computer-generated signal. 
Moreover, the measure of the computation time 
required to calculate this representation by the 
direct and the recursive methods (see Table 7) 
confirms the theoretical computational gain (RE) 
predicted in Fig. 9. 

These results clearly show that our algorithm 
allows to reduce computation time of SPWVDs 
modified by the reassignment method. It should be 
noticed that the reassignment process must be asso- 
ciated with a 'large-enough' time-smoothing win- 
dow g. It allows both to improve representations 
readability by removing interferences, and to in- 
crease the computational advantage of our recur- 
sive approach on usual methods. 

4. Conclusion 

In this paper, new fast algorithms which allow 
the evaluation of classical CTFDs and CTFDs 
modified by the reassignment method have been 
introduced. These algorithms use a recursive ap- 
proach to compute both the time-frequency repres- 
entation and the reassignment stage. In both TFD 
cases (spectrogram and CTFD), analysis windows 
must have a complex exponential structure in order 
to permit a recursive implementation. If this limita- 
tion is not restrictive in the case of the spectrogram, 
it only authorizes the evaluation of Cohen's class- 
smoothed pseudo-Wigner-Ville distributions. 
However, the families of candidate windows can be 
easily extended using the Fourier series expansion 

of the (assumed periodic) window over a family of 
exponential functions. Then, the recursive algo- 
rithms computational efficiency strongly depends 
on the number of decomposition terms, and any 
window can be chosen as long as it admits a 'short- 
enough' Fourier series decomposition. As an 
example, half-sine, Hamming, Hanning and Black- 
man functions, well-known in spectral analysis 
for their properties, can be advantageously used 
since they allow an efficient recursive implementa- 
tion. The examples mentioned above show that 
the families of candidate windows are sufficiently 
rich. Moreover, the theoretical and experimental 
results introduced in that paper clearly demon- 
strate the computational efficiency superiority 
of our recursive approach on usual algorithms. 
Finally, it should be noticed that these recur- 
sions can be extended to other representations 
such as the Margenau-Hill distribution (see defini- 
tion in [-3,4]) modified by the reassignment 
method. 
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