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Abstract - Cohen's class of 'Time-Frequency 
Distributions (CTFDs), which includes the spectrogram 
and the Wigner-Ville dstribution, has significant 
potential for the analysis of non-stationnary signals. In 
order to efficiently compute long signals time-frequency 
representations, we propose fast algorithms using a 
recursive approach. First, we introduce a recarsive 
algorithm dedicated to the spectrogram computation. 
We show that rectangular, half-sine, Hamming, 
Hanning and Blackman functions can be used as 
running "short-time" windows. Then the previous 
algorithm is extended to specific CTFDs. We show that 
the windows mentioned above can also be used to 
compute recursively smoothed pseudo Wigner-'Ville 
distributions. Finally, we show that the constraints on 
candidate windows are not vcry restrictive : any 
function (assumed periodic) can be used in practice as 
long as it admits a "short enough" Fourier series 
decomposition. 

L INTRODUCTION 
Cohen's class of Time-Frequenq Distributions 

(CTFD), which includes as particular cases the 
spectrogram and the Wigner-Ville distribution, has 
been widely used to analyse non-stationary signals [l]. 
In order to efficiently compute long signals time- 
frequency distributions, several ideas to quicken 
computation time have been recently proposed. Martin 
and Flandrin [2], Boashash and Black [3] use symnnetry 
properties of distributions and Barry clever matrix 
manipulations [4]. For the evaluation of the Wigner 
Ville distribution, Cunningham and Williams propose a 
decimation algorithm which shifts the signal so that the 
resulting twiddle multiplication number is reducedi [ 5 ] .  
In 161, the same authors also define approximations to 
real-valued CTFDs using spectrograms that admit fast 
evaluation. Most of the time, these algorithms are 
relatively ineffective for reducing computation time 
when applied to long signals (complex systems 
monitoring, biomedical signal analysis, . . .). 

In this paper, we propose a new approach using a 
recursive method, where the representation at time n is 
used to compute the representation at time n+l. The 
paper is organized as follows : first, we present a 
recursive algorithm for the spectrogram computation 
and the associated windows which can be used. Next, 
we propose a method dedicated to specihc discrete 
Cohen's class hstributions. Our approach is lscussed 
in the last section. 

II. RECURSIVITY FOR THE SPECTROGRAM 

1. Presentatioa of the spectrogram recursive 
implementation 

The spectrogram appeared in the forties under the 
sonagram form [ 11 and is still extensively used although 
its time and frequency resolutions are bounded. Ths  
representation is defined as : 

N 

where Fxw (qui) = x x ( n + i )  w(i) e-'" (2) 
i=l  

In the above definition, x(k) is a discrete-time 
complex signal, w denotes the pulsation and w is an 
analysis window whch plays a central role in adjusting 
time and frequency resolutions. 

After a straightforward manipulation, eq. (2) can be 
written as : 

- x(n + 1) w (0) + x(n + N + 1) w(N) e-jwN 
If we consider now the case when w(i-1) = C w(i), 

where C is some complex constant, (this condition is 
analysed below), eq. (3) becomes : 
F," (n + 1, w) = IC Fx*(n,w) eJm 

(4) 
- Cx(n+l)~(l)+x(n+N+l)w(N)e-~" 

Let us analyse now the condition w(i-1) = C w(i) : 
w(i - 1) = C w(i) e w(i> = C-' W(O) 
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Therefore, the W family of solutions is defined by : 

We can notice that W is composed of exponential 
w = {w / w(i> = a CY, a complex} 

functions. 

2. Generalisation of the spectrogram recursive 
scheme 

Our purpose is now to extend the family of canddate 
windows, i.e. allowing a recursive computation of the 
spectrogram. This can be done by using the linearity of 
the Fourier transform, 

if w(i) = c w j ( i )  and w,(i--1) = Cj wj(i) (5 )  

eq. (4) can be modified accordmgly : 

I 

j=1 

J 

~p (n + 1,w) = C F,"' (n + 1, w) (6) 

(7) 

j=l  

FxvJ (n + I, o) = Cj FTJ (n, o) ejm 
- C, x(n + 1) wj (1) + x(n+ N + 1) wj (N) e-j" 

We can notice that the expression of FXWl (n + 1,w) 

makes a simple use of FxwJ (n, w) and of an additive 
correction term. The global representation is obtained 
by the summation of the J elementary spectrograms 
Fxw' (n,w). 

3. Examples of suitable windows 
The following windows (i.e. verlfylng eq. (5) )  can be 

used for the computation of a recursive spectrogram : 
rectangular (J=l), half-sine (J=2), Hanning (J=3), 
Hamming (J=3) and Blackman (J=5). In Table 1, we 
introduce the way to implement rectangular and half- 
sine windows. 

window I rectangular I half-sine 
I I 

I I 
T I  1 I 9 I 

Table 1 : implementation of the recursion 
One can easily deduce from Table 1 the 

{w,, C,}j=l, ,.., J decomposition of Hamming, Hanning 
and Blackman windows, whch are defined as follows : 

Hanning (a=0.50) and Hamming (a=0.54) windows : 

10 elsewhere 

Blackman window : 

10 elsewhere 

4. Evaluation of the proposed algorithm 
The purpose of ths section is to illustrate the 

computational efficiency of the proposed algorithm for 
several running windows. Thus we define an 
elementary operation (EO) as a real multiplication 
followed by a real addition [7 ] .  We also consider that 
the total number of EO ( W O )  can be approximated 
by : m a  {total number of real addtions, total number 
of real multiplications). As a consequence, the relative 
efficiency (RE) of the proposed algorithm is defined as : 

RE = (TNEO required to compute the representation at 
time n by the direct application of eq. (2)) divided by 
(mQ required to compute the representation at time n 
using our algorithm) 

Figure 1 represents the relative efficiency for several 
windows as a function of their length. 
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Figure 1 : relative efficiency for several windows 

E L  EXTENSION TO THE COHEN'S CLASS TFDs 

1. Definition 
The Cohen's class Time-Frequency Distributions 

(CTFD), which have been extensively studed in recent 
years, are defined as follows [ 11 [2] : 

N-1 L 

cm;(n,o) = C C v ( p , m )  ~ . ( n + p , m )  e-1" 
m=l-N p=-L 

If the kernel y verifies y(p,-m) = y*@,m), it can be 
written after straightforward manipulations of the 
previous definition : 
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N-1 L 

whereFJ(n,o) =c c w ( p , m )  R , ( n t  p,m) e-"" (9) 

The last definition will be used for the remainder of 
section 111. 

m=o p=-L 

2. Presentation of our CTFD recursive 
implementation 

We apply a similar strategy as in 5 (11.1) in order to 
propose a recursive implementation of CTFDs. After a 
straightforward manipulation of eq. (9), the CTFDl can 
be written : 

FJ(n+l,w) =c cy(p- l ,m)R,(n+p,m)  e-'"" (10) 

Using the same assumption as in 4 (11. l:), 
if W(P -Lm> = c v(p,m> (1 1) 
where C is independent of m, eq. (10) becomes : 

FJ(n+ l,w) = C FT(n,w) + (p(n,m) e-''"" (12) 

q(n,m) = y(L, m) R, (n + L + 1, m) 

N-1 L + l  

m=O p=-L+l 

N-1 

*=0 

In the above expression, q(n, m) is given by : 

(13) 

Therefore, F,W (n + 1, w) is determined using the 
previous result and an additive correction term, easily 
evaluated by a simple FFT. 

- C y(-L,m) Rx(n-L,m) 

3. Definition of the candidate windows family 
In order to define the family G of windows which 

allow a recursive implementation of CTFDs, we must 
solve the particular functional equation (1 1) : 
V(P - 1, m) = c WP, m) 

Therefore, the family of solutions is defined by : 
G = {V / ~ ( p ,  m) = C-p f(@, c complex, f : z -3 contplex ] 

We can notice that G is composed of functions with 
separable (1,m) variables. 

4. Generalisation of the CTFD recursive scheme 

transform to extend the family of candidate windows: 

W(P, m) = crp W O ,  m) 

As in 8 (11.2), we use the linearity of the Fourier 

(14) 

where yfj(p-l,m) =cj  Vj(P,m) (15) 
eq. (12) becomes : 

J 

FJ (n+ 1, w) = FxvJ (n+ 1, w) 
j=1 

where 

Fxvl(n+l,w) = C ,  FxvJ(n,w)+~cp,(n,m) e-'"" (17) 

Therefore, each elementary CTFD is computed at 
time n+l using its value at time n and an additive 
correction term. The global representation is obtained 
by the summation of the J elementary spectrums. 

N-l  

m=0 

5. Examples of candidate windows 
As for the recursive implementation of the 

spectrogram, the following windows can be used : 
rectangular (.[=l), half-sine (J=2), Hanning (J=3), 
Hamming (J=3) and Blackman (J=5) windows, 
considered now as functions of the variable p and post 
multiplied by the function f(m). One can see Table 1 to 
use the windows mentioned above in the CTFDs 
recursion. 

6. Evaluation of the proposed algorithm 
Figure 2 represents the relative efficiency (RE) of our 

algorithm, where RJ3 is defined as in 5 (11.4). In this 
example, we chose to evaluate the dstribution on 128 
autocorrelation values at each time-instant. 
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Figure 2 : relative efficiency for several windows 

IV. DISCUSSION 
In both TFD cases (spectrogram and CTFD), the 

windows used must verrfy an exponential decay in order 
to permit our recursive implementation. Consequently, 
if this limitation is not very restrictive in the case of the 
spectrogram, it only authorizes the evaluation of 
Cohen's class smoothed pseudo Wigner-Ville 
distribution. Moreover, the relative efficiency strongly 
depends on the number J of elementary functions used 
in eq. (5 )  and (14) (see Figure 1 and 2). Any window 
(assumed periodic) could thus be used as long as it 
admits a "shoat enough" Fourier series decomposition. 
However, the examples provided here demonstrate that 
the W and G window families are sufficiently rich. 

We plan now to apply recursive schemes (7) and (17) 
to implement some reassignment methods [8] [9]. 
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