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.4 bstract - Cohen's class Time-Frequency Distributions 
(CTFDs) have significant potential for the analysis of non- 
stationary signals, even if the poor readability of their 
representations makes visual interpretations difficult. To 
concentrate signal components, Auger and Flandrin generalized 
the reassignment method (first applied to the spectrogram) to 
any bilinear representations. Unfortunately, this process is 
computationally expensive. In order to quicken computation 
time and to improve representations readability, we first 
introduce a new fast algorithm which allows the recursive 
evaluation of classical spectrograms and spectrograms modified 
by the reassignment method. We show that rectangular, half- 
sine, Hamming, Hanning and Blackman functions can be used 
as running windows. Then the previous algorithm is extended 
to CTFDs. We show that the windows mentioned above can 
also be used to compute recursively reassigned smoothed 
pseudo Wigner-Ville distributions. Finally, we show that the 
constraints on candidate windows are not very restrictive : any 
function (assumed periodic) can be used in practice as long as 
it admits a "short enough" Fourier series decomposition. 

I. INTRODUCTION 
Cohen's class Time-Frequency Distributions (CTFD), 

which includes as particular cases the spectrogram and 
the Wigner-Ville distribution, have been widely used to 
analyze non-stationary signals [ 11. Two major problems 
have been already extensively addressed ' the difficulty of 
adjusting readability and their large computational cost. 

Adjusting readability requires both a good 
concentration of the signal components on the time- 
frequency map and the absence of misleading 
interferences. To make visual interpretation easy, one can 
choose an appropriate CTFD and empirically adjust its 
parameters, giving an advantage either to signal 
concentration or interferences elimination. However, 
several approaches allow to automatically improve the 
readability of time-frequency representations. To remove 
cross-components, Flandrin introduces various weighting 
functions in computing the Wigner-Ville distribution 
(WVD) [2]. Sun, Li et al. use appropriate image 
processing techniques [3]. Jones and Baraniuk [4][5], 
Jones and Parks [6] propose efficient adaptive methods, 

which are computationally expensive when applied to 
long signals. Finally, the reassignment method, first 
applied 18 years ago to the spectrogram by Kodera, 
Gendrin and de Villedary, can produce a good 
localization of the signal components [7]. This method 
increases readability by relocating the representation 
values away from their location, thus creating a 
reassigned CTFD. Recently, Auger and Flandnn 
generalized the reassignment process, applying it to any 
bilinear time-frequency and time-scale representations, 
and simpllfied its implementation by proposing a new 
formulation [SI. Unfortunately, this method is still 
computationally expensive and consequently cannot be 
easily used in a real-time context. 

In this paper, we propose a new fast algorithm which 
allows the evaluation of classical CTFDs and CTFDs 
modified by the reassignment process. This algorithm 
uses a recursive approach to compute both the CTFD and 
the reassignment stage. The paper is organized as 
follows : first, we present a recursive algorithm for the 
reassigned spectrogram computation and the associated 
windows which can be used. Next, we propose a method 
dedicated to specific hscrete reassigned Cohen's class 
distributions. Our approach is discussed in the last 
section. 

11. RECURSIVITY FOR THE REASSIGNED 
SPECTROGRAM 

1. Spectrogram recursive implementation 
The spectrogram appeared in the forties under the 

sonagram form [ 1 J and is still extensively used although 
its time and frequency resolutions are bounded. Ths  
representation is defined as : 

N 

where Fxw (n, o) = x( n + i) w(i) e-'" (2) 
,=I 

In the above definition, x(k) is a dmrete-time complex 
signal, o denotes the pulsation and w is an analysis 
window which plays a central role in adjusting time and 
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frequency resolutions. 

After a some manipulations. eq. (2) can bc written as 
r ., 1 

Fr (n+ l ,w)=  x s ( n + i ) w ( i -  i ,:'I 
-s(n+ 1) w(0) + s (n+N + 1) w(N) e 

If we consider not\ the case when W(I-1) = C !\(I). 
where C is scme comples constant. (this condition is 
analysed below), eq ( 3 )  becomcs 
F:(n+ 1,w) = C F:(n,w) cJ6' 

(4) 
- Cs(n + l)w(l) + s(n + N + l)w(N)e la'' 

Let us analyse now the condition w(i-1) = C w(i) : 

Therefore, the W family of solutions is defined by ' 

w(i - 1) = C w(i) a w(i) = C-' w(0) 

w = {w / w(i) = a c-'. c1 complex) ( 5 )  
We can notice that W is composed of esponcntial 

functions 

2. Recursion in the spectrogram reassignment stage 
I )  Problem foriiiirlution ' To improve the spectrogram 
readability by conccntrating the signal components on 
thc time-frequency map. Kodera. Gendrin and de 
Villedary proposed to relocate the representation valucs 
away from their computation location [7]. The following 
Spectrogram definition. which uses the khaczek 
distribution. is the starling point of their idea 

1 S, (n. CO) =-Ex Ri'(n'. w':w')Ri(n- n'. w - 0': x) 
2x: "' U, 

where Ri(n. w :s) = s(n)X'(w)e-J"" 
The above definition shoikc that the spectrogram at 

any location (n, 0) can be considered as the avcrage of 
the weighted khaczek distribution values at the 
neighboring points (n - n', w - 61'). Because this 
smoothing leads to a signal components broadening. the 
authors suggested to change the attribution point of thc 
average, assigning it to center of gravity ( k k )  of thc 
weighted distribution. This process yields a reassigned 
spectrogram whose value at any location is therefore the 
sum of all representation values relocated to this point 
Recently, Auger and Flandrin [8] simplified the 
reassignment algorithm by proposing the following 
expressions to compute new locations as a function of the 
time-frequency coordinates (n, w) : 

L 

N 

nhcrc FT-" (n. w) = s( n + i) 1 w( I) c I"' 
I /  

Y 

and FTD" (n.w) = s(n + 1) 11 '(I) e J"' (9) 
1-1 

One can noticc that F," (n,w) recursively cvaluatcd 
during thc spcctrogram computation. is also uscd in thc 
rcassignmcnt proccss 

When 
using Augcr and Flandrin's formulation. thc 
rcassignmcnt proccss rcquircs the cvaluation of ti\o 
additional FFT at each time-instant n. which can bc 
computationally cspcnsivc This jUstifi~s thc scarch for 
rccursivc esprcssions of cq ( 8 )  and (9) 

Aftcr a straightlorward manipulation. cq (8) can be 
writtcn as ' 

1 1 )  Ikiw.si\?it,v of the renssignimwt operators 

+Ns(n+ N + 1)n (N) CJoN 
If wc considcr now the casc whcn w bclongs to the W 

family. eq (10) bccomcs . 
Fx-"(n+ 1.w) = C [F;"(n.w)- F:(n.w)]eJ"' 

(1 1) 
+Ns(n+N+ l)w(N)e-'""' 

Therefore. we can notice that FXT" (n + 1.w) is easily 
determined by using FxT"(n.w), F: (n .0 )  and an 
additiye correction term 

Lct us simplify now cq. (9) nhcn w bclongs to W : 

As a conscqucnce. FXDW (n + 1, w) computation requires 
w(i) = a C-' - w'(i) = - a (1nC) C ' 

only one complex multiplication : 
FTD"(n+l.w) =-(1nC) F:(n+l,w) (12) 
3. Generalization of the recursive scheme 

Our purpose is now to extend the family of candidate 
windows. i e. allowing a recursive computation of the 
reassigned spectrogram. This can be done by using the 
linearity of the Fourier transform, 

if w(i) = c w J ( i )  and w,(i- 1) = C, wJ(i) (13) 

eq. (4), (1 1) and (12) can be modified accordingly : 

J 

,=I 

F , X ( n + l , w ) = ~ F x x ' ( n + l , o )  
I= 1 

where x symbolizes the following running windows : w, 
Dw and Tw (see def. (2), (8) and (9)). Using the same 
notation, F,"] (i = 1, .. . J) are recursively evaluated 
according to eq. (4), (1 1)  and (12). 
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Therefore, the W familv can be extended as follows : 
J 

W = w / w(i) = a,  CJ' , a ,  complex i J - 1  

We can notice that w is a linear combination of 
complex exponential functions Consequently, the 
following uindows can be used for the recursive 
computation of a reassigned spectrogram rectangular 
(J=l), half-sine (J=2), Hanning (J=3). Hamming (J=3) 
and Blackman (J=j)  windows 

4. Evaluation of the proposed algorithm 
The purpose of this section is to illustrate the 

computational efficiency of the proposed algorithm for 
scleral running nindons Thus N C  define an elementar) 
operation (EO) as a real multiplication folloned by a real 
addition [9J We also consider that the total number of 
EO (TNEO) can bc approximated bq iiiax {total number 
of real additions. total number of real multiplications} 
As a consequence, the relative efficiency (RE) of the 
proposed algorithm is defined as 

RE = (TNEO required to compute the representation at 
time n by the direct application of eq (2). (8) and (9)) 
drvrded hv (TNEO required to compute the 
regresentation at time n using our algorithm) 

Figure 1 represents the recurs1.r e algorithm relative 
cffcienc! for sacral \\indons as a function of their 
length 

3.5 7 

2 8 32 128 
window length N (saniples) 

-- rectangular 
\~llldow 

- hall-sine 
window 

__ Hanning 
window 

Figure 1 : RE of the reassigned spectrogram algorithm 

111. EXTENSION TO THE REASSIGNED COHEN'S 
CLASS TFDs 

1. Definition 
The Cohen's class Time-Frequency Distributions, 

which have been extensively studied in recent years, arc 
defined as follows [ I ]  : 

TFJ(n,w) = c i+f (p ,m)  R,(n+p,m) e-J'-""' (16) 

where R, represents the instantaneous autocorrelation 

N-I L 

m=l-N p=-L 

function of the studied signal and i+f the distribution 
smoothing kernel 

2. CTFD recursive implementation 
We apply a similar strategy as in 5 (I1 1) to propose a 

recursive implementation of CTFDs After a 
straightforward calculus, the CTFD can bc written as 

T:(n+l,w)= E Zv(p-l,m)R,(n+p,m)e "mm (17) 

Using the same assumption as in 5 (I1 l), 

where C is independent of m, eq (17) becomes 

N-I L t l  

m:l-Np--L+l 

If WP-1" = c V(P" (18) 

N 8  

n J ( n + l , o )  = ~ n : ( n , o ) +  C v ( n , m ) e  wm (1% 
m-I-N 

In the above expression. q(n. m) is given by 
q(n. m) = y( L. m) Rx (n + L + 1, m) 

- C v(-L,m) R,(n-L,m) (20) 

Therefore, TF; (n+ 1, w) is determined using its 
previous value and an additive correction term, easily 
evaluated by a (2N-l)-sample FFT 

Let us solve now the functional equation (IS)  . 
i+f(p - 1. m) = C i+f(p. m) 

Therefore. the family G of solutions is defined by . 
G = {i+f / y(p. m) = g(p) h( m) with s@) = C-' , C complex) 

We can notice that G is composed of functions with 
separable (p,m) variables Consequently, our algorithm 
only authorizes the evaluation of smoothed pseudo 
Wigner-Ville distributions (SPWVD) 

3. Reassignment stage recursive implementation 
I )  Problem forrimlation In [SI, Auger and Flaildrin 
showed that the reassignment method can be 
advantageously applied to any CTFD In the SPWVD 
case, it can be implemented as follows 

i+f(p, m) = C ~ ( 0 .  m) 

where gh (P, m) = g(p) h(m), 
N-I L 

TF,""'(n,w) = m=l-N c p=-L ~g(p)h'(m)R,(n+p,m)e-'2"m (23) 

and 

TFxT"(n,o) = c ~pg(p)h(m)R,(n+p,m)e-"""' (24) 
N-I L 

m=l-N p=-L 

One can notice that TFfh is recursively evaluated 
during the SPWVD computation (see eq. (19)). 
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11) Reassignment stage recursivity : Our purpose is now 
to propose an efficient recursive implementation of 
eq (23) and (24) We will consider for the remainder of 
this section that the kernel gh belongs to the family G 

After a straightforward manipulahon of eq. (23). n e  
can write : 

TF:Dh(n+ 1,w) = c TF:~~(II,w) + q(n.m) (25) 

In the above expression, q(n, m) is given by. 

-Cg(-L) Rx(n-L.m)]h‘(m) 

N 4 

U G - N  

(26) 
rl(nm) = [ g w  Rx tn+ L + 1,m) 

Using the same strategy as in eq (1 1). eq (24) can be 
written after some calculus 

where 
p(n,m) = [L g(L) R,(n+L + l m )  

(27) 
+C (L + 1) g(-L) Rx (n- L,m)] h(m) 

One can notice that TF;” and TFxTgh make a simple 
use of their previous values and of additwe correction 
terms evaluated by means of a F’FT. 

4. Generalization of the recursive scheme 
As In 

transform to extend the family of suitable windows 
(I1 3). we can use the linearity of the Fourier 

J 

W 1 ~ ( p .  m) = h(m) CiP. C, comples 
J = ’  

Consequently. the following n indon s allow a 
recursive implementation of SPWVD rectangular (J=l), 
half-sine (J=2), Hanning (J=3), Hamming (J=3) and 
Blackman (J=5), considered now as functions of the 
variable p and post multiplied by the function f(m) 

5. Evaluation of the proposed algorithm 
Figure 2 represents the relative efficiency (RE) of our 

algorithm, where RE is defined as in Q (I1 4) In this 
example, h (m) is a 128-sample window. 
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Figure 2 : relative efficiency for several windows 

IV. DISCUSSION 
In both reassigned TFD cases (spectrogram and 

CTFD), the windows used must verify an exponential 
decay in order to permit our recursive implementation 
Consequently. if this limitation is not very restrictive in 
the case of the spectrogram, it only authorizes the 
evaluation of Cohen’s class smoothed pseudo Wigner- 
Ville distribution Moreover, the relative efficiency 
strongly depends on the number J of elementary 
functions used in eq (15) and (28) Any window 
(assumed periodic) could thus be used as long as it 
admits an “short enough’‘ Fourier series decomposition 
However, the esamples provided here demonstrate that 
the W and G window families are sufficiently rich 
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