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ABSTRACT

Kernel-target alignment is commonly used to predict the behavior
of reproducing kernels in a classification context, without training
any kernel machine. In this paper, we show that a poor position
of training data in feature space can drastically reduce the value of
alignment. This implies that, in a kernel selection setting, the best
kernel of a given collection may be characterized by a low align-
ment. To overcome this situation, we present a gradient ascent algo-
rithm for maximizing the alignment by data translation in feature
space. The aim is to reduce the biais introduced by the transla-
tion non-invariance of this criterion. Experimental results on multi-
dimensional benchmarks show the effectiveness of our approach.

Index Terms— kernel alignment, data translation, SVM

1. INTRODUCTION

Kernel-based methods map a set of datax from the input
spaceX into some other (possibly infinite) feature spaceF
via a nonlinear mapφ, and then apply a linear procedure in
this space. Embedding is performed by substituting kernel
values for inner products, i.e.,κ(xi,xj) = 〈φ(xi), φ(xj)〉F .
This provides an elegant way of dealing with nonlinear al-
gorithms by reducing them to linear ones inF . A typical
example is Support Vector Machines (SVMs) [1], which map
data into a space where the classes of data are more readily
separable, and maximize the margin – or distance – between
the separating hyperplane and the closest points of each class.

Despite the success of kernel machines, the selection of
an appropriate kernel is still critical to achieve good gener-
alization performance. Recently, an interesting solutionhas
been developed through the concept of kernel-target align-
ment (KTA). The latter measures the degree of agreement be-
tween a reproducing kernel and a learning task [2]. Previous
works on KTA focused on its optimization by linear combi-
nation of kernels in a transductive or inductive settings [3, 4,
5, 6]. More recently, we proposed in [7] a gradient ascent al-
gorithm for maximizing KTA over a linear transform in input
space. In all these references, effects of translation in feature
space were not studied. While data translation inF does not
affect the resulting SVM in theory, it can greatly modify the
value of alignment. In a kernel selection setting, this transla-
tion non-invariance may lead to an unappropriate kernel. To

solve this problem, the standard data centering method should
be used [8]. While this method is very simple, it is not optimal
in a KTA sense. In [9], Meil̀a formulated the data centering
problem in the form of a criterionJ to be maximized by data
translation in feature space. The proposed algorithm is based
on gradient ascent in feature space. While this approach can
be theoretically justified, the author did not take into account
the particular form of the solution, namely, a linear combina-
tion of the training vectors. In this paper, we explicitly model
the translation in the form of a linear combination of training
vectors and propose a new algorithm based on gradient ascent
in parameter space.

The rest of this paper is organized as follows. In Sec-
tion 2, kernel-target alignment is introduced. Our gradient
ascent algorithm is presented in Section 3. In Section 4, we
apply this method in the KTA case, and show its effectiveness
through simulations in Section 5. Finally, concluding remarks
and suggestions follow.

2. KERNEL-TARGET ALIGNMENT

The alignment criterion is a measure of similarity between
two kernels, or between a kernel and a target function [2].
Given an-sample data setDn, the alignment of kernelsκ1

andκ2 is defined as follows

A(K1,K2) =
〈K1,K2〉F

√
〈K1,K1〉F 〈K2,K2〉F

, (1)

where〈·,·〉F denotes the Frobenius inner product, andK1 and
K2 are the Gram matrices with respective entriesκ1(xi,xj)
andκ2(xi,xj), for all xi, xj ∈ Dn.

For binary classification, the decision statistic should sat-
isfy φ(xi) = yi, whereyi is the class label ofxi. By setting
yi = ±1, the ideal Gram matrix would be given by

K∗(i, j) = 〈φ(xi), φ(xj)〉 =

{
1 if yi = yj

−1 if yi 6= yj .
(2)

In [2], Cristianiniet al. proposed to maximize the alignment,
with respect toK, betweenK and targetK∗ = yyt in order
to determine the most relevant kernel for a classification task.

A(K,K∗) =
〈K,yyt〉F

√
〈K,K〉F 〈yyt,yyt〉F

=
ytKy

n ‖K‖F
. (3)



The ease with which KTA can be estimated using only train-
ing data makes it an interesting tool for kernel selection. How-
ever, a poor position of the data in the feature space can dras-
tically affect this criterion. For instance, suppose the origin is
far away from the convex hull of training data. In that case,
the elements of the kernel matrix have almost the same value,
sayz. Using (3), it is easy to show:

A(K)→

∑

ij yjyiz

n
√∑

ij z2

=
(n+ − n−)2

n2
=

(k − 1)2

(k + 1)2
, (4)

wheren+(n−) denote the number of data points with+1(−1)
labels andk = n+/n−. From (4), it follows that KTA may
depend on the ratiok only. This strongly recommend recen-
tering of data prior to any kernel selection based on KTA.

3. DATA TRANSLATION IN FEATURE SPACE

The aim of this section is to optimize any criterionJ depend-
ing on the elements of the Gram matrixKa defined as

[Ka]i,j=1,··· ,n = κa(xi,xj),

whereκa denotes the inner product of shifted data in feature
space, namely,

κa(xi,xj) , 〈φ(xi)− a, φ(xj)− a〉 (5)

with a ∈ F . In the rest of this paper, we assume thata is a
linear combination of training data, that is,

a =

n∑

i=1

αiφ(xi). (6)

The standard data centering method (see, e.g, [8]) moves the
origin to the center of gravity of the data by settingαi = 1/n
for all i. In a binary classification context, it is suggested
in [9] to seta as follows:

αi =

{
1/(2n+) if yi = 1,
1/(2n−) if yi = −1.

(7)

By applying the so-called kernel trick on the above definitions
for κa(x,x′) anda, we obtain

κa(x,x′) = κ(x,x′) +
∑

i

∑

j αiαjκ(xi,xj)

−
∑

i αi[κ(xi,x) + κ(xi,x
′)].

(8)

Thus, the resulting Gram matrix is given by

Ka = K − Γ
t
αK −KΓα + Γ

t
αKΓα, (9)

whereΓα = (α, · · · ,α) andα = (α1, · · · , αn)t.

3.1. Data translation by gradient step inα-space

Consider the following centering problem

max
α

J(Ka). (10)

Assuming that the gradient ofJ with respect toα exists, we
have:

∇αJ(Ka) =

n∑

i=1

n∑

j=1

∂J

∂κa(xi,xj)
︸ ︷︷ ︸

gij

×∇ακa(xi,xj), (11)

where

∇ακa(xi,xj) =





∂κa(xi,xj)/∂α1

· · ·
∂κa(xi,xj)/∂αn



 . (12)

From equation (8), we obtain

∂κa(xi,xj)

∂αl

= −[κ(xl,xi)+κ(xl,xj)]+2
∑

i′

αi′κ(xl,xi′).

Sinceκa(xi,xj) is symmetric,gij = gji. This yields
∑

i

∑

j gij κ(xl,xi) =
∑

i κ(xl,xi)
∑

j gji

=
∑

i κ(xl,xi) gt
ie

= kt
lGe,

(13)

wheree is the column vector of 1’s,gi = (g1i, · · · , gni)
t,

G = (g1, · · · , gn)t, kl = (κ(x1,xl), · · · , κ(xn,xl)
t. Simi-

larly, we show that
∑

i

∑

j gij κ(xl,xj) = kt
lGe. Thus, the

gradient vector (11) can be computed as

∇αJ = 2K(λα−Ge), (14)

whereλ =
∑

i

∑

j gij . Using the steepest direction∇αJ
with step size parameterη yields

α← α + 2ηK(λα−Ge) , α + ∆α. (15)

With some abuse of notations, we denote byKa+∆α the up-
dated Gram matrix associated with the parameter vector (15).
From (9), it follows:

Ka+∆α

= K − Γ
t
α+∆αK −KΓα+∆α + Γ

t
α+∆αKΓα+∆α,

= Ka − Γ
t
∆αK −KΓ∆α + Γ

t
∆αKΓ∆α + 2Γt

αKΓ∆α.

Hence, the recursive update forKa can be written as:

Ka ←Ka − vet − evt + (2α + ∆α)tv ×E, (16)

wherev = K∆α andE = eet. Finally, our gradient ascent
algorithm can be summarized as follow:

1. Choose the initial solutionα← α0;

2. Compute the Gram matrixK;

3. Compute the matrix[G]ij = ∂J/∂κa(xi,xj);

4. UpdateKa with (16), andα with (15);

5. Go to step 3 until convergence.



3.2. Data translation by gradient step inF-space

In [9], Meilà considered the general problemmaxa∈F J(Ka)
and suggested to solve it by gradient ascent. The proposed
updating rule was

a← a + η∇aJ(Ka), (17)

where the stepδa = η∇aJ(Ka) was shown to be

δa = γa +

n∑

i=1

γiφ(xi) (18)

with γ = −
∑

i γi and γi = −2η
∑n

j=1
∂J/∂κa(xi,xj).

Although all the coefficientsγ above can be computed using
only kernel evaluation, it is clear that, in the general case, the
computation of (17) requires to know the coordinates ofa in
feature spaceF . Observing thatδa is expressed as a linear
combination ofa and the training vectors, Meilà suggested to
choosea0 = 0 as the initial condition in order to stay in the
span of the training vectors at each step. Now we study the
connection of this approach with our own algorithm.

Let a be the linear combination (6). Note that initializ-
ing a = a0 = 0 can be done easily withαi = 0 for all i.
Combining (17) and (18), we find

a + η∇aJ(Ka) = (1 + γ)a +
∑n

i=1
γiφ(xi),

=
∑n

i=1
[αi + γαi + γi]φ(xi).

(19)

It immediately follows that rule (17) does not need to be com-
puted explicitly. More formally, sinceγi = −2ηgt

ie and
γ = 2ηλ, one can updateα as follows

α← α + 2η(λα−Ge). (20)

Comparing (15) and (20), we see that our algorithm requires
the Gram matrixK at each step whereas Meila’s algorithm
does not. Intuitively, this matrix can be viewed as a coordinate
matrix projecting the stepδa onto the span of the training set.
As shown in Section 5, this improves the convergence rate of
the method.

4. OPTIMIZATION OF KTA BY DATA
TRANSLATION

We shall now consider data centering problem with criterion
J(Ka) = A(Ka) and the algorithm presented in Section 3.
We first need to compute the termsgij = ∂A/∂κa(xi,xj).
We directly obtain

gij =
1

n
×

∂

(

〈Ka,yyt〉F /‖Ka‖F

)

∂κa(xi,xj)

=
yiyj‖Ka‖F − κa(xi,xj)‖Ka‖

−1

F 〈Ka,yyt〉F
n‖Ka‖

2

F

=
yiyj

n‖Ka‖F
−
A(Ka)

‖Ka‖
2

F

κa(xi,xj).

(21)

From the above definitions forgi andG, we have

gt
ie =

yi (n+ − n−)

n‖Ka‖F
−
A(Ka)

‖Ka‖
2

F

kt
ai

e, (22)

and

Ge =
n+ − n−

n‖Ka‖F
y −

A(Ka)

‖Ka‖
2

F

Kae. (23)

Therefore, rule (15) can be expressed as:

α← α + 2ηK

(

λα−
n+ − n−

n‖Ka‖F
y +
A(Ka)

‖Ka‖
2

F

Kae

)

, (24)

where

λ =
(n+ − n−)2

n‖Ka‖F
−
A(Ka)

‖Ka‖
2

F

∑

i

∑

j

κa(xi,xj). (25)

5. EXPERIMENTS

To validate our algorithm, we used the Waveform benchmark.
This set, available at http://www.ics.uci.edu/˜mlearn/,contains
400 training samples of 21 variables each, and 4600 valida-
tion samples.

In the first experiment, we considered polynomial kernels
κ(xi,xj) = (〈xi,xj〉 + 1)d with d = 1, · · · , 4 and Radial
Basis Functions (RBF)κ(xi,xj) = exp(−‖xi − xj‖

2/2σ2),
with σ ∈ {.1, .5, 1, 5}. For each kernel, we trained al1-SVM
with the bestC ∈ {1, 5, 10, 50, 100, 500, 1000, 5000} found
by hold-out testing. Table 1 reports the generalization error
for each SVM. We see that the minimum 10.37% was reached
with the Gaussian kernel parameterized byσ = 5. Next, we
considered KTA and data centering. Both Meila’s and our
algorithm stopped when the improvement of the alignment
was less than10−6. The step sizeη in (15) and (20) was
obtained with trail-and-error search for each kernel and algo-
rithm. Table 2 reports the alignment for each candidate and
different centering methods. First note that moving the origin
to the center of gravity in feature space degraded the value
of the alignment, except forσ = 5. In comparaison, setting
the origin halfway between the centers of gravity of the two
classes was found to be a better heuristic. We also observe
that Meil̀a’s and our algorithm were very similar. They both
gave a great improvement in the KTA score, in particular for
the Gaussian kernel withσ = 1. From Table 3, note that
the alignment measured on the validation set also greatly in-
creased after data centering. Using KTA for kernel selection
without data centering, we would have selected the polyno-
mial kernel with degree 1, see Table 2. As shown in Table 1,
we would have obtained a generalization error of 13.61%,
which is not the best performance. The latter was reached
by centering data and applying KTA. Figure 1 shows the evo-
lution of alignment for RBF kernel withσ = 1. We note that
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Fig. 1. Evolution of the alignment forσ = 1 (RBF kernel).

having explicitly define the gradient ascent inα-space im-
proved the convergence rate of the general centering method
of Meilà. Similar results were founded with all the other ker-
nels. In Figure 2, we show the effect of the initial condition
α0 for RBF kernel withσ = 5. As noted previously, starting
from (7) seems to be a good heuristic since the convergence
rate is the best in that case.

6. CONCLUSION

In this paper, we considered data centering in feature space.
We defined the translation as a linear combination of training
vectors and proposed to optimize a given criterion by a gra-
dient ascent in the parameter space. We used this principle to
improve the kernel-target alignment (KTA) criterion. Exper-
imental results with a multi-dimensional benchmark showed
the effectiveness of our approach for this criterion. Further
works includes the optimization in a data-dependent way of
the step of the gradient ascent. We also plan to study the prob-
lem consisting in optimizing a linear combination of centered
kernels.
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d = 1 d = 2 d = 3 d = 4 σ = .1 σ = .2 σ = .5 σ = 1 σ = 2 σ = 5 σ = 10
error (%) 13.61 14.33 12.11 18.07 14.72 15.41 15.09 14.59 10.9110.37 10.52

Table 1. Generalization performance forl1-SVM based on the polynomial kernel of degreed or RBF with hyperparameterσ.

Centering method d = 1 d = 2 d = 3 d = 4 σ = .1 σ = .2 σ = .5 σ = 1 σ = 2 σ = 5 σ = 10
none .385 .112 .239 .089 .050 .050 .050 .052 .221 .219 .148
#1 .354 .079 .204 .059 .044 .044 .044 .046 .204 .351 .356
#2 .433 .100 .255 .075 .057 .056 .057 .059 .256 .431 .436

Meila’s algorithm .487 .249 .346 .214 .212 .213 .213 .215 .387 .498 .493
our’s algorithm .482 .250 .346 .215 .213 .213 .213 .216 .388 .499 .494

Table 2. Alignment for the training set and the polynomial kernels of degreed or the RBF with hyperparameterσ. The origin
in feature space was not changed (none), moved to the center of gravity of the data (#1), moved halfway between the centers of
gravity of the two classes (#2), optimized using Meilà’s or our algorithm.

Centering method d = 1 d = 2 d = 3 d = 4 σ = .1 σ = .2 σ = .5 σ = 1 σ = 2 σ = 5 σ = 10
none .316 .104 .175 .068 .015 .015 .147 .021 .240 .200 .142
#1 .283 .060 .136 .035 .034 .034 .034 .039 .229 .298 .289
#2 .365 .078 .185 .049 .036 .036 .036 .043 .288 .379 .372

Meilà’s algorithm .439 .223 .291 .179 .117 .117 .117 .120 .375 .458 .446
our algorithm .440 .225 .290 .178 .117 .117 .117 .120 .374 .459 .446

Table 3. Alignment for the validation set.


