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ABSTRACT solve this problem, the standard data centering methodahou

Kernel-target alignment is commonly used to predict the behalvio_Pe used [8]. While this method is very simple, itis not Opt'_mal
of reproducing kernels in a classification context, without trainingi" & KTA sense. In [9], Me& formulated the data centering
any kernel machine. In this paper, we show that a poor positiofroblem in the form of a criteriod to be maximized by data

of training data in feature space can drastically reduce the value dfanslation in feature space. The proposed algorithm isbas
alignment. This implies that, in a kernel selection setting, the besbn gradient ascent in feature space. While this approach can
kernel of a given collection may be characterized by a low align-be theoretically justified, the author did not take into agto
ment. To overcome this situation, we present a gradient ascent algghe particular form of the solution, namely, a linear conabin
rithm for maximizing the alignment by data translation in featuretign of the training vectors. In this paper, we explicitly ded
space. The aim is to reduce the biais introduced by the translgye transiation in the form of a linear combination of traipi

tlpn norlanarlance of this criterion. Experlmental results on multi- vectors and propose a new algorithm based on gradient ascent
dimensional benchmarks show the effectiveness of our approach. .
in parameter space.

Index Terms— kernel alignment, data translation, SVM The rest of this paper is organized as follows. In Sec-
tion 2, kernel-target alignment is introduced. Our gratien
1. INTRODUCTION ascent algorithm is presented in Section 3. In Section 4, we

apply this method in the KTA case, and show its effectiveness

Kernel-based methods map a set of datérom the input through simulations in Section 5. Finally, concluding reksa
spaceX’ into some other (possibly infinite) feature spaEe and suggestions follow.
via a nonlinear map, and then apply a linear procedure in
this space. Embedding is performed by substituting kernel 2. KERNEL-TARGET ALIGNMENT
values for inner products, i.e:(x;, z;) = (¢(x;), ¢(x;)) r.
This provides an elegant way of dealing with nonlinear al-The alignment criterion is a measure of similarity between
gorithms by reducing them to linear ones/in A typical two kernels, or between a kernel and a target function [2].
example is Support Vector Machines (SVMs) [1], which mapGiven an-sample data seb,,, the alignment of kernels;
data into a space where the classes of data are more readilpdx, is defined as follows
separable, and maximize the margin — or distance — between (K1, K>)
the separating hyperplane and the closest points of eagt cla A(K1, Ks) = L )

Despite the success of kernel machines, the selection of V(KL K p (Ko, Ko p
an appropriate kernel is still critical to achieve good gene where(-,-) . denotes the Frobenius inner product, &dand
alization performance. Recently, an interesting solutias K are the Gram matrices with respective entrgge;, x ;)
been developed through the concept of kernel-target aligrandsa(x;, x;), for all x;, z; € D,,.
ment (KTA). The latter measures the degree of agreement be- For binary classification, the decision statistic should sa
tween a reproducing kernel and a learning task [2]. Previouisfy ¢(x;) = y;, wherey; is the class label of;. By setting
works on KTA focused on its optimization by linear combi- y; = %1, the ideal Gram matrix would be given by
nation of kernels in a transductive or inductive settings4]3 o 1 if yi=y;
5, 6]. More recently, we proposed in [7] a gradient ascent al- K" (i,j) = (d(z:), ¢(z;)) = { 1 yl, 2 S )
gorithm for maximizing KTA over a linear transform in input o o I .
space. In all these references, effects of translationdtufe N [2], Cristianiniet al. proposed to maximize the alignment,
space were not studied. While data translatiofFidoes not ~ With respect tak’, betweenk and targeti™ = yy'" in order
affect the resulting SVM in theory, it can greatly modify the to determine the most relevant kernel for a classificatish.ta
value of alignment. In a kernel selection setting, this$tan AK,K*) = (K,yy") p _ Y'Ky 3)
tion norrinvariance may lead to an unappropriate kernel. To ’ \/<K, K) . (yyl,yyl), n 1K || F

1)




The ease with which KTA can be estimated using only train3.1. Data translation by gradient step ina-space
ing data makes it an interesting tool for kernel selectioowH
ever, a poor position of the data in the feature space can dr
tically affect this criterion. For instance, suppose thigiaris max J(K,). (10)
far away from the convex hull of training data. In that case, *

the elements of the kernel matrix have almost the same valu@ssuming that the gradient of with respect tax exists, we

agonsider the following centering problem

sayz. Using (3), it is easy to show: have:
Sz (nt—nm)? (k- 1)? Vol (Ka) =3 Trmnay) ~Varal@n ), (1)
A(K) — = 2 = 5 4) i=1j=1__%\"""J
Y S (k1) NI
K gij
where

wheren™ (n ™) denote the number of data points with (—1)

labels andk = n*/n~. From (4), it follows that KTA may Oka (i, ;) /00

depend on the ratié only. This strongly recommend recen- Vaka(@i, ;) = B (. 0 )/B (12)
tering of data prior to any kernel selection based on KTA. Ka(Ti, ;) /0o
From equation (8), we obtain
Okq (i, )
3. DATA TRANSLATION IN FEATURE SPACE T = i, @)+ e, x5)]+2 Z i k(@ ).
The aim of this section is to optimize any criteridrdepend- . Y e T
ing on the elements of the Gram matifik, defined as Sinceria(x;, ;) is symmetricg;; = g;q. This yields
22 9 (@, i) = 3 k@, i) X0 gji
(Kalij=1,n = Ka(i, ), = > k(m,x)gle (13)
= EkiGe,
wherex, denotes the inner product of shifted data in feature . , .
s wheree is the column vector of 1'sg, = (914, , gni)"s
pace, namely, . g PR
G= (917 U 7gn) ' kl = (K(mlv :Bl)7 o >K(tmna ml)l' Simi-
Ka(i, ;) 2 (6(25) — a, d(x;) — a) 5) Iarly,_we show thad _; >, gi; (xi, x;) = k;Ge. Thus, the
gradient vector (11) can be computed as
with a € F. In the rest of this paper, we assume thas a Vol =2K(Aa — Ge), (14)

linear combination of training data, that is, . —
g whereA = 37, > g;j. Using the steepest directiovia.J

n with step size parameteryields
@= z_:l (). ©6) a—a+2nK(Aa — Ge) = a+ Aa. (15)

With some abuse of notations, we denoteky o, the up-

The standard data centering method (see, e.g, [8]) moves thigted Gram matrix associated with the parameter vector (15)
origin to the center of gravity of the data by settimg=1/n From (9), it follows:

for all <. In a binary classification context, it is suggested

in [9] to seta as follows: Kiina . t
=K - FaJrAOéK - KFQ+AQ + Fa+AaKFa+Aav
{ 1/(2n*) ify; =1, @ =K,-Th,K—KIlaq + T4 KT o + 2T KT A,.
Q; = _ .
1/(@2n7) ify, =-1 Hence, the recursive update fAr, can be written as:

By applying the so-called kernel trick on the above definiio K, — K, —-ve' —ev' + (2a + Aa)v x E, (16)

for ko (x, ") anda, we obtain wherev = KA« andE = eet. Finally, our gradient ascent

algorithm can be summarized as follow:
Ko(z ') = K(m,2) + 32,30, ciajk(z;, @)

=3, aulw(@n @) + K@i, ). (8) 1. Choose the initial solutionx < av;
2. Compute the Gram matrik;
Thus, the resulting Gram matrix is given by )
3. Compute the matri}G|;; = 0J/0k,(x;, x;);
K,=K-T,K - KT, + T, KT,, 9) 4. UpdateK , with (16), ande with (15);
wherel'y, = (a,--- ,a) anda = (ay, - -+, ay)h. 5. Go to step 3 until convergence.



3.2. Data translation by gradient step inF-space From the above definitions fgr; andG, we have

In [9], Meila considered the general problemx,c  J (K ) . yi(nt —n7)  AK,) .,
and suggested to solve it by gradient ascent. The proposed g,e = [ Ka - 1K ||2 a;® (22)
updating rule was o allF
a—a+nVaJ(K,), a7 and
here the step, = nV,J(K,) was shown to be t—n- K,
w step, = nVqJ(K,) was show Ge— =N y_A( 2)Kae_ (23)
n nKallp ™ K}
8o =70+ Yid(a) (18)
i=1 Therefore, rule (15) can be expressed as:
with y = =37,y andy; = =203 ", 0J/0ka(xi, x;). nt — - AK.)
Although all the coefficients above can be computed using « «+ a + 2nK (/\a Y + a2 Kae>, (24)
only kernel evaluation, it is clear that, in the general cise [ Kall Kol %

computation of (17) requires to know the coordinates afi
feature space-. Observing that, is expressed as a linear
combination ofa and the training vectors, Mailsuggested to (nt—n7)?  A(K,)

choosea, = 0 as the initial condition in order to stay in the =~ A = Ky K> Zzﬁa(wi’wj)' (29)
span of the training vectors at each step. Now we study the B

connection of this approach with our own algorithm.

where

Let a be the linear combination (6). Note that initializ- 5. EXPERIMENTS
ing a = ag = 0 can be done easily with; = 0 for all 4. ) _
Combining (17) and (18), we find To validate our algorithm, we used the Waveform benchmark.

n This set, available at http://www.ics.uci.edu/"mleacohtains
a+nVel(Ka) =(1+7)a+3 " vid(m), (19) 400 training samples of 21 variables each, and 4600 valida-

= ZLJ% + oy + i) tion samples.
Itimmediately follows that rule (17) does not need to be com-  In the first experiment, we considered polynomial kernels
puted explicitly. More formally, since; = —2ngle and k(i z;) = ((z;,z;) + 1) withd = 1,--- ,4 and Radial
v = 2n), one can update as follows Basis Functions (RBF)(z;, ;) = exp(—||z; — z;[|*/20?),

with o € {.1,.5,1,5}. For each kernel, we trained aSVM
a—at2ia-Ge). (20) it the bestC' € {1.5, 10,50, 100, 500, 1000, 5000} found
Comparing (15) and (20), we see that our algorithm requirepy hold-out testing. Table 1 reports the generalizatioorerr
the Gram matrixK at each step whereas Meila’s algorithm for each SVM. We see that the minimum 10.37% was reached
does not. Intuitively, this matrix can be viewed as a coatin  with the Gaussian kernel parameterizeddby= 5. Next, we
matrix projecting the stef, onto the span of the training set. considered KTA and data centering. Both Meila’s and our
As shown in Section 5, this improves the convergence rate cflgorithm stopped when the improvement of the alignment

the method. was less thari0~6. The step size) in (15) and (20) was
obtained with trail-and-error search for each kernel agd-al

4. OPTIMIZATION OF KTA BY DATA rithm. Table 2 reports the alignment for each candidate and
TRANSLATION different centering methods. First note that moving thgiari

to the center of gravity in feature space degraded the value
We shall now consider data centering problem with criteriorof the alignment, except far = 5. In comparaison, setting
J(K,) = A(K,) and the algorithm presented in Section 3.the origin halfway between the centers of gravity of the two
We first need to compute the termg = 0.A4/0kq(x;, ;).  classes was found to be a better heuristic. We also observe

We directly obtain that Meild’s and our algorithm were very similar. They both
gave a great improvement in the KTA score, in particular for
) a(<Kaayyt>F/”Ka”F) the Gaussian kernel with = 1. From Table 3, note that
gij = — X 5 — the alignment measured on the validation set also greatly in
K Ka(Ti, ;) creased after data centering. Using KTA for kernel selactio
Yyl Kl — kel )| Kallp (Ko, yy') without data centering, we would have selected the polyno-
B nHKava mial kernel with degr(_ee 1, see Table. 2. As shown in Table 1,
iy A(K,) we would have obtained a generalization error of 13.61%,
4 % Kalxi, ;). which is not the best performance. The latter was reached

| Kallp || Kl by centering data and applying KTA. Figure 1 shows the evo-

(21)  ution of alignment for RBF kernel witlr = 1. We note that
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Fig. 1. Evolution of the alignment fosr = 1 (RBF kernel).

having explicitly define the gradient ascentdnispace im-

proved the convergence rate of the general centering metho

of Meila. Similar results were founded with all the other ker-
nels. In Figure 2, we show the effect of the initial condition
o for RBF kernel witho = 5. As noted previously, starting

from (7) seems to be a good heuristic since the convergencd5] G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, L. El

rate

In this paper, we considered data centering in feature spac

is the best in that case.

6. CONCLUSION

We defined the translation as a linear combination of trginin

vectors and proposed to optimize a given criterion by a gra-
dient ascent in the parameter space. We used this prinoiple t

improve the kernel-target alignment (KTA) criterion. Expe

imental results with a multi-dimensional benchmark showed

the effectiveness of our approach for this criterion. Ferth

works includes the optimization in a data-dependent way of
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Fig. 2. Evolution of the alignment for different initial solu-
tion, a) null vector, byy; = 1/n for all ¢, c) see eqn. (7)
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d=1 d=2 d=3 d=4 o0=.1 0c=2 o0=.5 oc=1 =2 o=5 oc=10
error (%) | 13.61 14.33 12.11 18.07 14.72 15.41 15.09 1459 10.9D.37 10.52

Table 1. Generalization performance frSVM based on the polynomial kernel of degreer RBF with hyperparameter.

Centeringmethod d=1 d=2 d=3 d=4 o=.1 0c6=.2 oc=.5 oc=1 0c=2 oc=5 oc=10
none 385 112 239  .089 .050 .050 .050 .052 221 219 148
#1 354 .079 .204 .059 .044 .044 .044 .046 .204 351 .356
#2 433 100 255  .075 .057 .056 .057 .059 .256 431 436
Meila’s algorithm | .487  .249  .346  .214 212 213 213 215 .387 .498 493
our's algorithm | .482 250 .346  .215 213 213 213 216 .388 .499 494

Table 2. Alignment for the training set and the polynomial kerndislegreed or the RBF with hyperparametet. The origin
in feature space was not changedrig, moved to the center of gravity of the data (#1), moved hayflwetween the centers of
gravity of the two classes (#2), optimized using M&lor our algorithm.

Centeringmethod d=1 d=2 d=3 d=4 o=.1 o0c=.2 o0=5 o=1 0c=2 o0c=5 oc=10
none .316 .104 175 .068 .015 .015 147 .021 .240 .200 142
#1 283 .060 .136 .035 .034 .034 .034 .039 .229 .298 .289
#2 365 .078 .185  .049 .036 .036 .036 .043 .288 379 372
Meila’s algorithm| .439  .223  .291  .179 A17 A17 17 120 375 .458 446
our algorithm 440 225 290 .178 A17 A17 A17 120 374 .459 446

Table 3. Alignment for the validation set.



