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ABSTRACT
Kernel-target alignment is commonly used to predict the behavior

of any given reproducing kernel in a classification context, without

training any kernel machine. In this paper, we present a gradient

ascent algorithm for maximizing the alignment over linear transform

of the input space. Our method is compared to the minimization of

the radius-margin bound. Experimental results on multi-dimensional

benchmarks show the effectiveness of our approach.

Index Terms— pattern classification, alignment, SVM

1. INTRODUCTION

Kernel-based methods map a set of data x from the input

space X into some other (possibly infinite) feature space F
via a nonlinear map φ, and then apply a linear procedure inF .

The embedding is performed by substituting kernel values for

the inner products, i.e., κ(xi,xj) = 〈φ(xi), φ(xj)〉F . This

provides an elegant way of dealing with nonlinear algorithms

by reducing them to linear ones in F . A typical example is

Support Vector Machines (SVMs) [1], which map data into

a high dimensional space where the classes of data are more

readily separable, and maximize the margin – or distance –

between the separating hyperplane and the closest points of

each class.

Despite the success of kernel machines, the selection of an

appropriate kernel is still critical for achieving good general-

ization performance. A recent development is on formulating

the kernel design stage as the problem of optimizing distance

metric. The basic idea is to determine a suitable linear trans-

form S in F which minimizes the discrepancy between dis-

tances in the feature space and idealized distances based on

weak label information [2]. To deal with the so-called curse

of dimensionality, most of the existing techniques attempt to

select S such that SSt remains close to an unweighted Eu-

clidean metric under the constraints that similar points get

closer and/or dissimilar points move away [3, 4, 5]. One ad-

vantage of this approach is that the solution can be expressed

in terms of kind of support vectors only, as in SVMs. How-

ever, this leads to computationally expensive kernels when

similarity information is abundant, making them impractical

for real-time and large-scale applications.

In this paper, we consider a suitable linear transform in

Euclidean input spaceX rather than in feature spaceF . In [6],

a similar strategy was employed to measure the relevance of

input features specially for SVMs. However, the authors only

consider adaptive scaling, that is, diagonal metric in input

space. In [7], an extension to the full metric is proposed. In

both references, the algorithms are based on alternating opti-

mization of a standard nonlinear SVM and a gradient descent

of the radius-margin bound (RMB). We suggest to replace the

use of RMB criterion by kernel-target alignment (KTA). The

latter measures the degree of agreement between a reproduc-

ing kernel and a learning task [8]. Previous works focused on

its optimization by linear combination of kernels in a trans-

ductive or inductive settings, see [9] for a recent state of the

art. The aim of this paper is a gradient step algorithm to

optimize KTA over a linear transform in input space. Un-

like [6, 7], our algorithm does not require the design of any

classifier at each iteration.

The rest of this paper is organized as follows. In Sec-

tion 2, kernel-target alignment is introduced. Our gradient

ascent algorithm for optimizing this criterion is presented in

Section 3. Its effectiveness is confirmed through simulations

in Section 4. Finally, concluding remarks and suggestions

follow.

2. KERNEL-TARGET ALIGNMENT

The alignment criterion is a measure of similarity between

two kernels, or between a kernel and a target function [8].

Given a n-sample data set Dn, the alignment of kernels κ1

and κ2 is defined as follows

A(K1,K2) =
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

, (1)

where 〈·,·〉F denotes the Frobenius inner product, and K1 and

K2 are the Gram matrices with respective entries κ1(xi,xj)
and κ2(xi,xj), for all xi, xj ∈ Dn.

For binary classification, the decision statistic should sat-

isfy φ(xi) = yi, where yi is the class label of xi. By setting
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yi = ±1, the ideal Gram matrix would be given by

K∗(i, j) = 〈φ(xi), φ(xj)〉 =
{

1 if yi = yj

−1 if yi �= yj.
(2)

In [8], Cristianini et al. propose to maximize the alignment

with respect to K for the target K∗ = yyt in order to deter-

mine the most relevant kernel for a given classification task.

A(K,K∗) =
〈K,yyt〉F√〈K,K〉F 〈yyt,yyt〉F

=
ytKy

n ‖K‖F
. (3)

The ease with which this criterion can be estimated using only

training data, prior to any computationally intensive training,

makes it an interesting tool for kernel selection. It has been

shown that the alignment is concentrated, i.e., the probabil-

ity of the empirical estimator (3) deviating from its mean can

be bounded by an exponentially decaying function of this de-

viation [8]. This means that if one optimizes the alignment

over a training set, one can expect it to remain high on a

validation set. It has also been demonstrated that h(x) =
sgn(IEx′,y′ [y′κ(x′,x)]) has good generalization performance

when the alignment is high. Finally, a close relationship be-

tween the well-known Fisher criterion for measuring the lin-

ear separability of classes and the kernel-target alignment was

shown in [10].

3. OPTIMIZATION OF KTA BY LINEAR
TRANSFORM OF THE INPUT SPACE

Let x̃ be the linear transformation of input point x ∈ IRp with

the matrix S ∈ IRp×p, namely:

x̃ = Stx. (4)

After transformation, distance in input space becomes:

dS(x,x′) =
√

(x− x′)tSSt(x− x′). (5)

The case of a diagonal matrix with positive scaling factors is

also referred as feature weighting but, more generally, S can

be any real-valued matrix. In that case, SSt is semi-positive

definite and dS(x,x′) is a valid pseudo-metric, i.e., it satisfies

non-negativity and the triangle inequality.

We propose in this section a gradient ascent algorithm to

optimize the matrix transformation S so that the kernel-target

alignment is maximized. In other word, we search for:

S∗ = arg max
S
A(K̃,K∗), (6)

where K̃ is the Gram matrix with entries κ(x̃i, x̃j) for all xi,

xj ∈ Dn. Note that we attempt to optimize a criterion mea-

sured in a feature space by applying a linear transform over

the input space. One can justify this approach, in particular,

for the class of monotonic isotropic kernels such as the Gaus-

sian or Laplacian kernels.

Let Δ = xi − xj , Δ̃ = x̃i − x̃j , Δφ = φ(xi)− φ(xj)
and Δ̃φ = φ(x̃i) − φ(x̃j). For a monotonic isotropic kernel

κ(x,x′) = ψ(‖x− x′‖), we have

‖Δ̃‖ < ‖Δ‖ ⇒ ψ(‖Δ̃‖) > ψ(‖Δ‖),

that is, the kernel value of close points is higher than the ker-

nel value of distant points. Noting that

‖φ(x)− φ(x′)‖2 = κ(x,x) + κ(x′,x′)− 2κ(x,x′)
= 2(ψ(0)− ψ(‖x− x′‖)),

it follows that ‖Δ̃‖ < ‖Δ‖ implies ‖Δ̃φ‖ < ‖Δφ‖. Thus,

reducing the distance between points of the same class in in-

put space leads to a reduction of their distance in induced fea-

ture space. This implies that, with these kernels, improving

the separability of classes in input space improves the sepa-

rability of the classes in the feature space as well.

3.1. Case of full matrix S

Let us consider the case where the kernel κ can be differen-

tiated with respect to the parameter S. In this context, we

have

∂〈K̃,K∗〉F
∂S

=
∑
i,j

yi yj
∂κ(x̃i, x̃j)

∂S
(7)

� 〈∂K̃,K∗〉F (8)

and

∂‖K̃‖F

∂S
=

⎡
⎣∑

i,j

∂κ(x̃i, x̃j)
∂S

κ(x̃i, x̃j)

⎤
⎦

⎡
⎣∑

i,j

κ(x̃i, x̃j)2

⎤
⎦
− 1

2
(9)

= 〈∂K̃, K̃〉F /‖K̃‖F . (10)

We can then express the derivative of the alignment with re-

spect to S as follows

∂A(K̃,K∗)
∂S

=
〈∂K̃,K∗〉F
‖K∗‖F ‖K̃‖F

− 〈K̃,K∗〉F 〈∂K̃, K̃〉F
‖K∗‖F ‖K̃‖

3

F

.

(11)

To pursue calculations, we restrict ourselves to the Gaussian

kernel κ(xi,xj) = exp(−‖xi − xj‖22/2σ2). Without loss of

generality, we change notation as follows: S ← S/2σ2. This

leads to:

κ(x̃i, x̃j) = e−(xt
iSStxi−2xt

iSStxj+xt
jSStxj). (12)
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The derivative can be written as:

∂κ(x̃i, x̃j)
∂S

=
∂κ(Stxi,S

txj)
∂S

= fij
∂gij

∂S
, (13)

where fij and gij are defined as:

fij = κ(Stxi,S
txj)

gij = −(xt
iSStxi − 2xt

iSStxj + xt
jSStxj).

(14)

The expression (13) is the derivative of a scalar function with

respect to a matrix. As such, the derivative is a matrix where

each element is the derivative with respect to each element

of matrix S. Since ∂xt
iSStxj/∂S = (xix

t
j + xjx

t
i)S, we

have

∂gij

∂S
= −2(xix

t
i − xix

t
j − xjx

t
i + xjx

t
j)S. (15)

Thus:

〈∂K̃,K∗〉F =
∑
i,j

yiyjfijAijS, (16)

where the matrix Aij = −2(xix
t
i − xix

t
j − xjx

t
i + xjx

t
j).

In the same way, we have:

〈∂K̃,K〉F =
∑
i,j

f2
ijAijS. (17)

Reinjecting (16) and (17) into (11) leads to the following gra-

dient update rule for S:

S ← S + η

( ∑
i,j

[αyiyjfij − βf2
ij ]Aij

)
S, (18)

where α = 1/‖K̃‖F , β = 〈K̃,K∗〉F /‖K̃‖
3

F and η > 0 is

the gradient step. Finally, we compute S using the following

iterative procedure:

1. Initialize randomly the matrix S;

2. Update S with the rule in equation (18);

3. Return to step 2 or terminate if the alignment between

K̃ and K∗ remains the same at the precision ε

3.2. Case of diagonal matrix S

An efficient algorithm can be derived in the case where S is

diagonal. The idea is to perform the gradient step onto the

vector θ = (θ1, . . . , θp)t. From (15), one can show that:

∂gij

∂θk
=
∂gij

∂skk
= −2

(
x2

ik + x2
jk − 2xikxjk

)
θk, (19)

where xlk is the kth attribute of sample xl. Using the element-

wise product operator ∗, the gradient with respect to θ can be

written as:

∂g

∂θ
= −2

(
xi ∗ xi + xj ∗ xj − 2xi ∗ xj

)
∗ θ. (20)

Data set # variables # training data # test data

Ringnorm 20 400 7000

Thyroid 5 75 1500

Titanic 3 150 2051

Waveform 21 400 4600

Table 1. General information about the data sets. Other de-

tails can be found at http://www.ics.uci.edu/˜mlearn/

Denoting by aij the column vector in parentheses, a similar

calculation to (18) shows that the gradient update rule for θ
can be written as:

θ ← θ + η

( ∑
i,j

[αyiyjfij − βf2
ij ]aij

)
∗ θ. (21)

Note here that we do not require θk ≥ 0 because the terms in

the diagonal of the metric SSt are θ2k.

4. EXPERIMENTS

Experiments were conducted on a Pentium 4, 3.4Ghz, 2GB

RAM. Four data sets were used to test the algorithm. General

information about them is given in Table 1. For the above ex-

periments, the linear transform S was initialized to (1/2σ2)I ,

where I is the identity matrix. Our algorithm stopped when

the improvement of the alignment was less than 10−6.

Figure 1 shows the evolution of the alignment for the Ring-

norm data set and different values of standard deviation σ. We

note that this parameter has influence on the convergence rate

only, which was found, on this particular data set, to remain

roughly the same for σ ≥ 3. Transformed data were used

as inputs of a l2-SVM. We fixed the regularization parame-

ter C to 100 and σ to 1. Figure 2 shows the evolution of

the alignment/test error across iterations for Ringnorm data

set. Note the close connection between alignment maximiza-

tion and generalization error minimization. For each data

set, we compared our algorithm with an implementation of

Fortuna et al.’s algorithm based on the minimization of the

RMB [7]. To speed up the successive trainings of SVMs in

this algorithm, we followed the standard practice [11] con-

sisting of initializing them with the solutions of the preceding

round. Table 2 describes the performance with and without

the linear transform S. We see that our linear transform in-

creased the alignment as expected. It also reduced the number

of support vectors and improved the generalization perfor-

mance, except for Titanic where they remained unchanged.

However, Fortuna et al.’s algorithm gave smaller test errors.

This result confirms that RMB provides a good approxima-

tion of the leave-one-out error for l2-SVMs, as shown in [12].

However, note that solutions involved more support vectors,

in particular for Waveform data set. Finally, Table 3 gives the

computation time for both algorithms, average over 100 iter-

ations. Mainly due to the training of SVMs at each iteration,
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Fig. 1. Evolution of the alignment for different values of stan-

dard deviation σ and Ringnorm data set.
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Fig. 2. Ringnorm data set iterations for σ = 1.

the RMB-based update rule was found to be up to 10 times

slower than our KTA-based update rule.

5. CONCLUSION

We proposed a simple update rule for maximizing kernel-

target alignment over linear transform in input space. Ex-

perimental results on multi-dimensional benchmarks showed

its effectiveness. Compared to RMB-based update rule, our

algorithm gave slightly worse performance. However, solu-

tions were sparser and training was much less time consum-

ing. Extension of this work includes multi-class and regres-

sion applications. It may also be interested to compare per-

formance of our approach with distance metric learning in

feature space [5].
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