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ABSTRACT

Kernel methods are well known standard tools for solving function
approximation and pattern classification problems. In this paper, we
consider online learning in a reproducing kernel Hilbert space. We
develop a simple and computationally efficient algorithm for sparse
solutions. The approach is based on sequential projection learning
and the coherence criterion, which is a fundamental parameter to
characterize dictionaries of functions in sparse approximation prob-
lems. Experimental results show the effectiveness of our approach.

1. INTRODUCTION

Kernel methods have been successfully applied to a large class
of problems; see [1] for a recent survey. The attractiveness
of such algorithms stem from their elegant treatment of non-
linear problems and their connection with statistical learning
theory [2]. However, a notable limitation of kernel methods
is their computational complexity since the amount of com-
puter memory and training time typically increase superlin-
early with the number of observations. By noting that this
challenge is closely related to thesparsityof the solution,
several authors have proposed learning algorithms including
sparsity control mechanisms [3, 4, 5].

Recently a theoretical foundation for online function es-
timation in reproducing kernel Hilbert spaces (RKHS) was
proposed [6], leading to a highly efficient method known as
sequential projection learning (SPL). This approach is based
on stochastic gradient descent (SGD) and orthogonal projec-
tions. Kernel basis functions that do not contribute signifi-
cantly to the performance of the model are discarded to pro-
duce a sparse solution, via incremental and decremental steps.
This strategy is similar to that employed in the sparse online
Gaussian process framework described in [7]. It is also related
to the kernel recursive least-squares (KRLS) algorithm [8],
although no decremental step is required here. Experimental
results demonstrate that SPL performs well on synthetic and
real data [9]. However, the decremental step is particularly
computational expensive since it requires as many matrix in-
versions as there are kernel basis functions in the model. In
this paper, we propose an alternative online function estima-
tion strategy that differs from SPL by the novelty condition

used to assess the impact of kernel basis functions on the per-
formance of the model. It is based on the coherence criterion,
which was shown to be a fundamental parameter to charac-
terize dictionaries of functions in sparse approximation prob-
lems, see [10] for a complete description. It was introduced
as a quantity of heuristic interest for Matching Pursuit in [11].
The first theoretical developments were described in [12], and
enriched for Basis Pursuit in [13], [14].

The rest of this paper is organized as follows. In Section 2,
we briefly review sequential projection learning in RKHS.
Our sparsity control mechanism based on the coherence cri-
terion is presented in Section 3. Its effectiveness is confirmed
through simulations in Section 4.

2. SEQUENTIAL PROJECTION LEARNING

In this paper, we consider sparse online learning with kernels.
The goal is to approximate a mappingf∗ : X → IR based on
a sequence of input-output pairs(xt, yt) ∈ X × IR that be-
come available one by one. The output of the learning algo-
rithm is commonly calledhypothesisand the set of all possi-
ble hypotheses is denoted byH. Assuming thatH is a RKHS
means that there exists a kernel functionκ : X × X → IR
and a dot product〈·, ·〉H such that(i) κ has the reproducing
property〈f, κ(x, ·)〉H = f(x), ∀x ∈ X , (ii) H is the clo-
sure of the span of theκ(x, ·)’s. In this context, any function
f ∈ H can be expressed as a linear combinations of kernel
functions [15]. Starting from an initial arbitrary hypothesis
f0 ∈ H, it is desired that the learning algorithm produces a
sequencef1, ..., ft whereft is the hypothesis learnt from data
received up to timet, namely,

ft(·) =

m
∑

i=1

αiκ(x̃i, ·), (1)

whereαi ∈ IR andx̃i ∈ X . Note the difference in notation
between the samples̃xi, ordered as they are inserted into the
expansion, and the samplesxt available at each timet. Also
note that the model order ism, and nott, as we will subse-
quently introduce a sparsity control mechanism.



2.1. Stochastic Gradient Descent in RKHS

A natural measure of quality forft is the instantaneous risk
defined by

gt+1(ft) ,
1

2
(ft(xt+1)− yt+1)

2, (2)

that is, the squared error between the model outputft at time
instantt + 1 and the desired output. The SGD update rule is
given by

ft+1 = ft − ηt∇fgt+1(ft), (3)

whereηt > 0 is the learning rate and∇f is the gradient with
respect tof . We have

ft+1 = ft − ηt(ft(xt+1)− yt+1)κ(xt+1, ·). (4)

In the stationary case, it has been shown that‖f∗ − ft‖ → 0
provided that the following simple condition on the learning
rateηt is satisfied [16]:

0 < ηt <
2

κ(xt+1,xt+1)
∀t. (5)

Starting fromf0 = 0, i.e.,α0 = ∅, the update rule (4) can be
summarized as

αt+1 ←

(

αt

ηtet

)

(6)

with et = yt+1− ft(xt+1), andx̃t+1 = xt+1. The computa-
tional complexity of this naive algorithm then grows as more
data points become available, which is a significant problem
for online applications.

2.2. Sparse projection learning

To avoid inserting a kernel function into the expansion (1)
at each time instant, sparsification methods based on novelty
criteria have been proposed. For instance, Doddet al. extend
the modelft with κ(xt+1, ·) if, and only if, [6]

min
β
‖ft+1 −

m
∑

i=1

βiκ(x̃i, ·)‖H > ǫ0, (7)

whereǫ0 is a positive threshold determining the sparsity level.
Let Ka,b be thea-by-b Gram matrixKa,b(i, j) = κ(x̃i, x̃j)
with 1 ≤ i ≤ a and1 ≤ i ≤ b. Provided thatK−1

m,m is
invertible, it can be shown that [6]

β = K−1
m,mKm,m+1

(

αt

ηtet

)

. (8)

If condition (7) is satisfied,ft+1 is updated according to the
rule (6). Otherwise,ft+1 is obtained as follows,αt+1 ← β,
without additional computational effort. This is known as the
incrementalstep. Upon adding new kernels, there is the pos-
sibility for existing kernels to become redundant. The basic
decrementalstep determines kernel basis functionsκ(x̃i, ·)

which do not contribute significantly to the performance of
the model. This stage consists of removing each of the kernel
basis functions in turn and comparing the reduced models to
the initial one. This is the most expensive part of the algo-
rithm sinceβ must be calculated for each reduced model.

3. SPARSITY CONTROL USING COHERENCE

Coherence is a fundamental parameter to characterize dictio-
naries of functions in sparse approximation problems, see [10]
for an extensive description. It is defined as the maximum ab-
solute inner product between two unit-norm functions a given
dictionaryDm. It reflects the most extreme correlations in
the dictionary and, consequently, it is equal to zero for every
orthonormal basis. In our kernel-based context, dictionary
unit-norm functions are given byκ(x̃i, ·)/‖κ(x̃i, ·)‖ and the
coherence parameter is defined as

µ = max
i6=j

∣

∣

∣

∣

〈

κ(x̃i, ·)

‖κ(x̃i, ·)‖
,

κ(x̃j , ·)

‖κ(x̃j , ·)‖

〉

H

∣

∣

∣

∣

= max
i6=j
|ρij |, (9)

whereρij = κ(x̃i, x̃j)/
√

κ(x̃i, x̃i)κ(x̃j , x̃j). Note thatµ
can be easily determined from the Gram matrixKm,m. In
particular, in the case of a unit-norm kernelκ, it is the largest
absolute value of the off-diagonal entries ofKm,m. Without
loss of generality, we will assume in what follows thatκ is a
unit-norm kernel in order to simplify expressions.

3.1. Incremental step

Letϕt+1 be the kernel functionκ(xt+1, ·). We suggest insert-
ing it into Dm = {ϕ̃1, . . . , ϕ̃m} provided that the coherence
of Dm+1 remains below a thresholdµ0 ∈ [0, 1[, namely,

max
i
|〈ϕ̃i, ϕt+1〉H| = ‖ρt+1‖∞ < µ0, (10)

whereρt+1 is the column vector of dimensionm whoseith

component isρi,t+1 = |〈ϕ̃i, ϕt+1〉H|. The parameterµ0 de-
termines both the level of sparsity and the maximum coher-
ence ofDm. We have established that this condition guaran-
tees the finiteness of the dictionary. In addition, under a mild
technical condition, we have derived an analytic relationship
betweenǫ0 in (7) andµ0 in (10). Due to lack of space, these
results will be presented in a companion paper. Consider the
case when condition (10) does not hold forϕt+1. From (8), it
follows that the best approximation offt+1 onto the span of
ft is parameterized by [6]

αt+1 = K−1
m,m[Km,m ρt+1]

(

αt

ηtet

)

(11)

= αt + ηtetν, (12)

with ν = K−1
m,mρt+1. Consider now the case when condi-

tion (10) holds forϕt+1. The latter is then incorporated into
the dictionary, namely,Dm+1 = Dm ∪ {ϕt+1}, andαt+1 is



updated according to the rule (6). As for basic SPL, the ma-
trix inversion process can be performed efficiently by use of
a rank one update. LetKm+1,m+1 be the Gram matrix of the
dictionaryDm+1. We have

Km+1,m+1 =

(

Km,m ρt+1

ρT
t+1 1

)

. (13)

The inverse ofKm+1,m+1 can be computed as follows

K−1

m+1,m+1 =
1

λ

(

λK−1
m,m + ννT −ν

−νT 1

)

, (14)

whereλ = 1 − ρT
t+1ν. Note that the novelty condition (10)

is anO(m) operation. Ifϕt+1 is retained, the main compu-
tational effort is the rank one update, i.e,O(m2). Otherwise,
it is the projection (12), which isO(m2). Therefore, the pro-
posed incremental step is anO(m2) operation.

3.2. Decremental step

A common strategy which ensures that the model orderm
is bounded is to discard a kernel function from the expan-
sion wheneverm exceeds a predefined thresholdm0. Here
we suggest to discard the kernel functionϕ̃i0 which leads the
coherence of the dictionary to decrease, that is,1

i0 = arg max
i,i 6=j
|ρij |. (15)

Onceϕ̃i0 has been removed fromDm, the inverse of the ma-
trix Km−1,m−1 must be calculated in order to update the
modelft. Let us introduce the following notations

Km,m =

(

Km−1,m−1 ρi0

ρT
i0

1

)

, (16)

K−1
m,m =

(

Qm−1,m−1 q0

qT
0 qi0

)

, (17)

and

αt =

(

αt\{i0}

αi0

)

, (18)

where the initialith
0 column and row (resp. element) of the

matricesKm,m andK−1
m,m (resp. the vectorαt) are placed

in the last position. From the decomposition method [7], it
follows that

K−1

m−1,m−1 = Qm−1,m−1 −
q0q

T
0

qi0

. (19)

Finally, a similar calculation to (12) shows that the reduced
order modelft+1 is parameterized by

αt+1 = αt\{i0} + αi0K
−1

m−1,m−1ρi0
. (20)

Finding the indexi0 of the kernel function to be discarded,
updating the inverse matrix and calculatingαt+1 are proce-
dures of computational complexityO(m2). After a transient
period, the computational effort per time-step, includingthe
incremental stage, is thusO(m2

0).
1Note thatj0 = arg maxj,i6=j |ρij | could also be considered.

4. EXPERIMENTS

We consider first as a benchmark problem the nonlinear time
series described by the following difference equation

yt = (0.8− 0.5 exp(−y2
t−1))yt−1

− (0.3 + 0.9 exp(−y2
t−1))yt−2 + 0.1 sin(πyt−1).

The kernel function was chosen to be of the form

κ(xi,xj) = exp(−γ‖xi − xj‖
2) (21)

wherexi = (yi−1, yi−2)
T . We then generated 300 data

points from the initial point(0.1, 0.1). The first 200 data
points were used as a training set while the last 100 data points
were used to estimate the prediction error :

NRMSE=
1

σ2M

M
∑

i=1

(ŷt+i − yt+i)
2, (22)

whereM is the prediction horizon (M = 100), σ2 is the
variance of the true data and̂yt+i = ft(xt+i) is the pre-
dicted output made by the hypothesis learnt from the train-
ing data. We first applied basic SPL including incremental
and decremental steps based on novelty condition (7). The
hyperparameters of the algorithm were fixed as in [6], i.e.,
γ = 3.73 and ǫ0 = 0.01. This resulted in sparse solution
involving 24 kernels out of the possible 200 and the NRMSE
was found to be equal to7.07 · 10−4. Note that this is sig-
nificantly better than [6] where NRMSE= 6.1 · 10−3 with
47 kernels retained2. We then applied SPL with a sparsity
control mechanism based on ourµ0-coherent approach with
m0 = 24 andµ0 = 0.75. In that case, we obtained the small-
est prediction NRMSE= 6.02 · 10−4. In order to assess the
performance of our algorithm in a noisy case, the data were
corrupted with additive gaussian noiseN (0, 0.01) and each
algorithms were parameterized as above. On the one hand,
standard SPL led to NRMSE= 0.057 with 42 terms retained.
On the other hand, SPL with our sparsity control mechanism
gave NRMSE= 0.0598. This is larger than basic SPL. How-
ever, note that the order of the kernel expansion provided by
basic SPL was nearly two more times larger.

As a second benchmark, we consider the nonlinear time
series described by the following difference equation

yt = 0.5yt−1 + 0.3yt−1ut + 0.2ut + 0.05y2
t−1 + 0.6u2

t ,

with initial conditiony1 = 10. The observations were gener-
ated asxt = yt + ǫt with ut andǫt i.i.d zero-mean Gaussian
random variables with variances0.1 and0.05, respectively.
The Gaussian kernel (21) was used withγ = 5. The threshold
µ0 used to assess the novelty of the basis function in (10) was
made adaptive by settingµ0 = µt, whereµt is the coherence

2In [6], SPL is considered without decremental step.
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Fig. 1. Mean evolution of the coherence of the dictionary.
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Fig. 2. Predicted output error as a function of time.

of the dictionary at thetth iteration. This ensures the quasi-
incoherence of the dictionary over time, i.e., as more samples
become available, previous basis functions are replaced by
nearby orthogonal basis functions. Figure 1 shows the mean
evolution ofµt over 10 simulations withm0 = 20. We note
that the dictionary quickly becomes quasi-incoherent. In par-
ticular, µt was found to be about1.5 · 10−4 after 200 itera-
tions. Figure 2 shows that both basic SPL andµ0-SPL have
quite the same convergence behavior. However, the computa-
tional cost of our approach isO(m2) whereas the complexity
of basic SPL isO(m3).
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