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ABSTRACT used to assess the impact of kernel basis functions on the per
Kernel methods are well known standard tools for solving functionforrnance of the model. It is based on the coherence criterion
approximation and pattern classification problems. In this paper, w¥/hich was shown to be a fundamental parameter to charac-
consider online learning in a reproducing kernel Hilbert space. Wéerize dictionaries of functions in sparse approximatiosbp
develop a simple and computationally efficient algorithm for sparséems, see [10] for a complete description. It was introduced
solutions. The approach is based on sequential projection learniras a quantity of heuristic interest for Matching Pursuitlifh]f
and the coherence criterion, which is a fundamental parameter ®he first theoretical developments were described in [1#], a
characterize dictionaries of functions in sparse approximation probenriched for Basis Pursuit in [13], [14].
lems. Experimental results show the effectiveness of our approach.  The rest of this paper is organized as follows. In Section 2,
we briefly review sequential projection learning in RKHS.
1. INTRODUCTION Our sparsity control mechanism based on the coherence cri-
terion is presented in Section 3. Its effectiveness is oo
Kernel methods have been successfully applied to a large clathrough simulations in Section 4.
of problems; see [1] for a recent survey. The attractiveness
of such algorithms stem from their elegant treatment of non-
linear problems and their connection with statistical héag 2. SEQUENTIAL PROJECTION LEARNING
theory [2]. However, a notable limitation of kernel methods . . ] ] )
is their computational complexity since the amount of com-n this paper, we consider sparse online learning with Kerne
puter memory and training time typically increase superlin The goal is to approximate a mappifig : X — IR based on
early with the number of observations. By noting that this Séquence of input-output paits;, y;) € & x IR that be-
challenge is closely related to theparsity of the solution, €ome available one by one. The output of the learning algo-

several authors have proposed learning algorithms inofudi fithm is commonly Calledhypothesisanq the set _of all possi-
sparsity control mechanisms [3, 4, 5]. ble hypotheses is de_noted By Assumm_g that{ is a RKHS
Recently a theoretical foundation for online function es-Mmeans that there exists a kernel function X' x & — R
timation in reproducing kernel Hilbert spaces (RKHS) was2nd @ dot product:, -)3; such that(i) » has the reproducing
proposed [6], leading to a highly efficient method known asPToPerty(f, x(z,-))» = f(=), V& € X, (ii) H is the clo-
sequential projection learning (SPL). This approach istias Sure of the span of the(z, -)'s. In this context, any function
on stochastic gradient descent (SGD) and orthogonal projed € H can be expressed as a linear combinations of kernel
tions. Kernel basis functions that do not contribute signifi functions [15]. Starting from an initial arbitrary hypotis
cantly to the performance of the model are discarded to profo € H. itis desired that the learning algorithm produces a
duce a sparse solution, via incremental and decremengas. ste SEQUENCEs, ..., f; wheref, is the hypothesis learnt from data
This strategy is similar to that employed in the sparse enlin "€ceived up to time, namely,
Gaussian process framework described in [7]. Itis alsdadla "
to the kernel recursive Ieast—sguares.(KRLS) algorlthm [8] £.() = Zai“(‘iiv ), 1)
although no decremental step is required here. Experihenta |
results demonstrate that SPL performs well on synthetic and
real data [9]. However, the decremental step is partioularlwherea; € IR andz; € X. Note the difference in notation
computational expensive since it requires as many matrix inbetween the samplés;, ordered as they are inserted into the
versions as there are kernel basis functions in the model. lexpansion, and the sampleg available at each time Also
this paper, we propose an alternative online function estim note that the model order ts, and nott, as we will subse-
tion strategy that differs from SPL by the novelty condition quently introduce a sparsity control mechanism.



2.1. Stochastic Gradient Descent in RKHS which do not contribute significantly to the performance of
the model. This stage consists of removing each of the kernel
basis functions in turn and comparing the reduced models to
the initial one. This is the most expensive part of the algo-
rithm since@ must be calculated for each reduced model.

A natural measure of quality fof; is theinstantaneous risk
defined by

1
gre1(fe) £ 5(ft($t+1) — Y1),
that is, the squared error between the model oufpat time 3. SPARSITY CONTROL USING COHERENCE
instantt + 1 and the desired output. The SGD update rule i

: Soherence is a fundamental parameter to characterize-dicti
given by

B v 3) naries of functions in sparse approximation problems, 5&f [
frer = fe = mVsgei1(fr), for an extensive description. It is defined as the maximum ab-
wheren; > 0 is the learning rate anWl ; is the gradient with ~ solute inner product between two unit-norm functions amive

respect tof. We have dictionary D,,,. It reflects the most extreme correlations in
the dictionary and, consequently, it is equal to zero forgve
frer = fo = me(fe(®e11) — yer1)R(@es1,)). (4)  orthonormal basis. In our kernel-based context, dictipnar

unit-norm functions are given by(;, -)/||x(&;, -)|| and the
coherence parameter is defined as

< Iﬁ(.’ii, ) H(QNJ]‘, )
2 (@i, )7 k(@)
O<m < —"—— Vi (5)

H(mt+17 mH_l) Wherepij = lﬁ)(ii, :i‘j)/\//ﬁl(:i“ ﬁli)/ﬁl(ij, .’f}J) Note that,u
Starting fromf, = 0, i.e.,ao = @, the update rule (4) can be €an be easily determined from the Gram maik,, ,,,. In

In the stationary case, it has been shown ffydt— fi|| — 0
provided that the following simple condition on the leagnin
raten; is satisfied [16]:

H = max
i#]

= VAR 9
>H‘ lglgflpj\ 9)

summarized as particular, in the case of a unit-norm kernelit is the largest
o oy (6) absolute value of the off-diagonal entriesi§t,, ,,,. Without
X+t neet loss of generality, we will assume in what follows thais a

. . unit-norm kernel in order to simplify expressions.
with e; = y141 — ft(@41), andEs1 = @11. The computa- plify exp

tional complexity of this naive algorithm then grows as more
data points become available, which is a significant problen?-1- Incremental step

for online applications. Let ;1 be the kernel functior(z; 1, -). We suggest insert-
ing itinto D,,, = {&1,...,%m} provided that the coherence
2.2. Sparseprojection learning of D,,+1 remains below a threshojd, € [0, 1], namely,

To avoid inserting a kernel function into the expansion (1)
at each time instant, sparsification methods based on govelt
criteria have been proposed. For instance, Detdal. extend
the modelf; with x(x;.1, -) if, and only if, [6]

miaX|<95v:780t+1>H| = lpr11llo0 < Ho0s (10)

wherep, . , is the column vector of dimension whosei™
component i9; ;41 = [{(@i, i+1)x|. The parameteg, de-

m termines both the level of sparsity and the maximum coher-
min || fry1 — Zﬁm(ii, Il > eo, (7)  ence ofD,,. We have established that this condition guaran-
P i=1 tees the finiteness of the dictionary. In addition, under ld mi

technical condition, we have derived an analytic relathgms
‘betweerx, in (7) andyg in (10). Due to lack of space, these
results will be presented in a companion paper. Consider the
case when condition (10) does not hold §gr. ;. From (8), it
follows that the best approximation ¢f,; onto the span of

oy ) f+ is parameterized by [6]

whereg is a positive threshold determining the sparsity level
Let K, ; be thea-by-b Gram matrixK , ;(i, j) = k(&;, ;)
with 1 < ¢ < aandl < i < b. Provided thatk,',, is
invertible, it can be shown that [6]

B =K. nKunm ( e ®

-1 (677
If condition (7) is satisfiedf,; is updated according to the o1 = Koo [ Ko pt“]( neet ) D
rule (6). Otherwisef;, ; is obtained as followsq; 1 «— 3, = oy + e, (12)
without additional computational effort. This is known ast

incrementalstep. Upon adding new kernels, there is the poswith v = K;}mptﬂ. Consider now the case when condi-
sibility for existing kernels to become redundant. The basition (10) holds fore;,;. The latter is then incorporated into
decrementaktep determines kernel basis functior(&;,-)  the dictionary, namelD,,+1 = D,, U {11}, andayy; is



updated according to the rule (6). As for basic SPL, the ma- 4. EXPERIMENTS
trix inversion process can be performed efficiently by use of
arank one update. L& ,,, 1 ,+1 be the Gram matrix of the We consider first as a benchmark problem the nonlinear time

dictionaryD,,,+1. We have series described by the following difference equation
Koiimi1 = < I;}nm Pt1+1 ) (13) yr = (0.8 — 0.5 exp(—y7_1))ye—1
_ v — (0.3 +0.9exp(—yZ_1))y—2 + 0.1sin(my,_1).
The inverse off<,,,+1,,+1 can be computed as follows
_ The kernel function was chosen to be of the form
_ 1 )\Kmlm +wT —v
Km%kl,m+1 = )\( )_VT 1 ’ (14)

k(i x;) = exp(—/|la; — ;) (21)
whereX = 1 — p/, ;. Note that the novelty condition (10) "

is anO(m) operation. Ifip,,; is retained, the main compu- Wherez; = (yi—1, yi-2)”. We then generated 300 data
tational effort is the rank one update, i@{m?). Otherwise, ~Points from the initial point(0.1,0.1). The first 200 data
itis the projection (12), which i (m?). Therefore, the pro- Points were used as a training set while the last 100 dataspoin

posed incremental step is &{m?) operation. were used to estimate the prediction error :

1 M
3.2, Decremental step NRMSE= —2 > (i — e, (22)
A common strategy which ensures that the model order =1

is bounded is to discard a kernel function from the expan
sion whenevern exceeds a predefined threshelg. Here
we suggest to discard the kernel functipy) which leads the
coherence of the dictionary to decrease, that is,

where M is the prediction horizon¥/ = 100), o2 is the
variance of the true data angd.; = f:(xy;) is the pre-
dicted output made by the hypothesis learnt from the train-
ing data. We first applied basic SPL including incremental
io = arg max |p;;|. (15) and decremental steps based on novelty condition (7). The
i hyperparameters of the algorithm were fixed as in [6], i.e.,
Onceg;, has been removed frof,,, the inverse of the ma- ~ = 3.73 andey = 0.01. This resulted in sparse solution
trix K,,—1,m—1 must be calculated in order to update theinvolving 24 kernels out of the possible 200 and the NRMSE
model f;. Let us introduce the following notations was found to be equal t8.07 - 10~%. Note that this is sig-
Ko im1 p: nificantly better than [6] where NRMSE- 6.1 - 102 with
Km= ( o 1 >7 (16) 47 kernels retainéd We then applied SPL with a sparsity
‘0 control mechanism based on quy-coherent approach with

K-l — < Quim-1 > a7 ™M= 24 andyuo = 0.75. In that case, we obtained the small-
o ab TGy )’ est prediction NRMSE= 6.02 - 10~*. In order to assess the
and performance of our algorithm in a noisy case, the data were
o = ( o fio} > (18) corrupted with additive gaussian noid&(0,0.01) and each
Qg ’ algorithms were parameterized as above. On the one hand,

where the initiaw(:)h column and row (resp. element) of the standard SPL led to NRMSE 0.057 with 42 terms retained.

matriceskK and K- (resp. the vector;) are placed On the other hand, SPL with our sparsity control mechanism
in the last position. From the decomposition method [7], it92ve NRMSE= 0.0598. This is larger than basic SPL. How-

follows that ever, note that the order of the kernel expansion provided by
T basic SPL was nearly two more times larger.
K;1_17m_1 = Q1 — 909 (19) As a second benchmark, we consider the nonlinear time
@0 series described by the following difference equation
Finally, a similar calculation to (12) shows that the rediice
order modelf; , , is parameterized by yr = 0.5y, 1 + 0.3y, _1uy + 0.2u; + 0.05y2 | + 0.6u?,
Q1 = O\ {ig} T OéioKfnl_Lm—lPio- (20)  with initial condition y1 = 10. The observations were gener-

Finding the indexi, of the kernel function to be discarded, ated ase; = y; + €; with u; ande, i.i.d zero-mean Gaussian
updating the inverse matrix and calculating, ; are proce- fandom va_nables with variancésl an_d 0.05, respectively.
dures of computational complexity(m?). After a transient The Gaussian kernel (21) was used witk- 5. The threshold
period, the computational effort per time-step, includihg /o Used to assess the novelty of the basis function in (10) was
incremental stage, is thu(m3). made adaptive by setting, = u:, wherey;, is the coherence

INote thatjo = arg max; ;; |ps;| could also be considered. 2In [6], SPL is considered without decremental step.
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Fig. 2. Predicted output error as a function of time.

of the dictionary at the™ iteration. This ensures the quasi-
incoherence of the dictionary over time, i.e., as more sampl

(1]
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[4]

(6]
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9]

(10]

(11]

(12]

become available, previous basis functions are replaced hys,
nearby orthogonal basis functions. Figure 1 shows the mean

evolution ofu; over 10 simulations withny = 20. We note
that the dictionary quickly becomes quasi-incoherent.dr p
ticular, u; was found to be about.5 - 10~ after 200 itera-
tions. Figure 2 shows that both basic SPL andSPL have

(14]

quite the same convergence behavior. However, the computa-

tional cost of our approach 8(m?) whereas the complexity
of basic SPL iO(m?).

(15]

(16]
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