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ABSTRACT solution in the best-case framework. Spheroidal knowledge

. . . . , ) . sets are also considered in [3]. They result from a data re-
.Th's paper investigates a 'ea”_"”g_ model in which _the train- gction process, called Set Covering SVM (SC-SVM), used
ing set contains prior information in the form of ellipsoida , onhance the training process of SVMs when dealing with

knowledge sets. We handle this problem in a minimax set- large data sets. However, the authors reduce the problem

Fing, which co_nslists of mahxirrllizingl tZe worst-](c:ase Bmin- to that of the classification of the clusters centers with a
Imum — margin between the knowledge sets from the two ;g5 gy, Finally, prior knowledge in the form of ellip-

classes and the decision surface. The problem is solved usg; 5| constraints is incorporated into a semidefiniteaine

Ing an alterngtlngr:)ptlm_lz_atlon scheme agd an active learm-, oo am in [4]. However, no kernel-based extension of this
ing strategy, i.e., the training set s created progrebsa® |1 is proposed.

cording to the prior information. Our approach is evaluated In this paper, we overcome all these limits by reformu-

on toy examples and on a usual benchmark dgtabase. It I?ating the problem in a minimax setting. It consists of max-
successfully compared to state-of-the-art techniques. imizing the worst-case — minimum — margin between the

knowledge sets from the two classes and the decision sur-
1. INTRODUCTION face. We also investigate a kernel-based extension of this

approach. The remainder of this paper is organized as fol-
Support Vector Machines (SVMs) are widely considered to lows. In Section 2, the minimax knowledge-based approach
be among the best performing algorithms for supervised for optimizing two-class SVMs is presented. An effective
classification. Their success is due to the following ideas: means of resolving this problem is described in Section 3,
Firstly, data are mapped into a high dimensional space wheré&nd tested experimentally in Section 4. Finally, conclgdin
the classes of data are more readily separable. Secondlyiemarks and some suggestions for further studies follow.
margin — or distance — between the separating hyperplane
and the closest points of each class is maximized.

While it has been well established in the field of ma-
chine learning that incorporating prior knowledge helps a
classifier achieving more accurate generalization, litthek
has been done to incorporate prior into SVMs, see e.g. [1].
In this paper, we are interested in prior information in the
form of ellipsoidal knowledge sets. They consist of latkelle
regions in the input space, and can thus be interpreted a
a generalization of the usual notion of training example.

2. TRAINING SVM WITH ELLIPSOIDAL
KNOWLEDGE SETS

Before presenting the contributions of this paper, we give
a brief overview of SVM learning for classification. Let
A, = {(zi,y:) € (X x Y)}, be an-sample training
set, with X' the input space anyd = {£1} the label set.
SI'raining aly-SVM s finding the hyperplanéw, x)+b = 0

In [2], the authors investigate a learning model in which the that safisfies:
observed inpuk is corrupted by additive uniformly distrib- min Llw|2+C3. ¢

. . ) . . w0 i St (1)
uted noise. They incorporate this uncertainty in the form subjectto y;((w, xi) +b) 21,8 >0
of spheroidal knowledge sets, and develop a kernel-based R o T
algorithm to solve it. This approach is called TSVC (To- for; = 1,...,n. In the above equations, is thei-th slack

tal Support Vector Classification), by reference to theltota yariable among:, andC a positive parameter controlling

least-squares method to which it is related. However, in the trade-off between margin maximization and error min-
TSVC, only the furthest points from the separating hyper-

plane are considered to determine the latter, leading to a !All sums run froml to n, unless otherwise noted.




imization. To solve this optimization problem, one intro-
duces its dual form:
ming g >0, 25 iy (@ ) — 2,
subjectto . o;y; =0 2)
1<i<n 0<; <C.

The solutionw can be expressed as = ). o;y;x;, and
the decision function ig(x) = sgn> ", a;y; (x;, ) + b).

In this paper, we consider the problem of incorporat- .
ing prior knowledge into SVM training in the form of ellip- (w, @) +b=-1
soidal knowledge sets. That is, we assume that the training
set consists of. labelled ellipsoidg&;, y;) defined a$

C (w, @) +b=+1

(w,z) +b=0

Fig. 1. Most critical points and slack variables.
& = {m € X| <Ei_1 (x—=),(x—=T)) < 1}, 3) The ellipsoidal knowledge s€} is correctly classified. The slack variables
of thea;'s in £; are zero. The most critical poiftz + 82 of &> is in the

wherex; is the center of thé-th ellipsoid and®; is a sym- margin. Its slack variable is the largest one, foragllc ;.
metric positive (semi)-definite matrix. Henceforth, welsha . o )
denote byAn the training Se{(:y’ yz) xc 57/}?:1 2.2. Soft-M argin E“|pg)|d M achine (SM EM)
_ o _ Consider now the case in which training data cannot be sep-
2.1. Hard-Margin Ellipsoid Machine (HMEM) arated without error. Following the standard practice ¢t) f

SVM, we relax the hard-margin constraints (4) with slack
variables, and we modify the objective function to penalize
the violation of these constraints. This leads to the soft-
margin problem

Let us consider the case where the training set is linearly
separable. Then there exist functiofige) = (w,z) + b
such thaty f(x) > 0 for all (x,y) in A,,. A special case is
obtained by scalingy andb such that training data closest to

the decision surface satisffitw, ) +b| = 1. This canonical ming p maxs,s L [wl?+CY, &
s i 2 1

form satisfie f(z) > 1 for all (z,y) in A,. Combining subjectto  y; ((w,&; + ;) +b) > 1-¢
the latter with (3) yields the conditions iz (5716,,6,) <1 (6)
Yi ((w,@ + 61) + b) > 1, with <E:1 52,61> <1, (4 & 2> 0.
fori = 1,...,n. Among the hyperplane@v,x) + b = 0 Resolution of this problem is discussed in the next section.

satisfying (4), we look for the one with the maximum dis- Of course, other penalization terms on the empirical error,
tance from the decision surface to the closest points fromsuch asy", ¢ for instance [5], should also be used.
the two classes. This distance, called the margin, is known
to be equal td /||w||. The optimal hyperplane then maxi- 3. ALTERNATING OPTIMIZATION FOR SMEM
mizes, overw andb, the minimum margin with respect to
d1,...,6, and subject to (4). Note that maximizing (resp., Suppose that the points associated with the largest slack
minimizing) 1/|lw|| is equivalent to minimizing (resp., max-  variables¢; > 0 are known, see Fig. 1. These are denoted
imizing) ||lw||*. Thus, we can solve the following problem by z¢ to make reference to the fact that they are the most
to determine the optimal hyperplane critical ones. In that case, problem (6) can be solved by re-
miny, , maxs,, [lwlf? placiqgwi with ¢ in the formglation (2.). The idea is then
subjectto v, ((w, @i +8;) +b) > 1 (5) to train a SMEM as_follows. First, we fix the paramet_ers
(27168,,8) < 1. andb of_the separating hyperplane in order to determine the
! most critical sampleg:§. Note that they can be computed
This minimax strategy consists of maximizing the worst- analytically, as shown below. Next, we find the separating
case —minimum —margin between the knowledge sets fromhyperplane by solving the standard SVM problem (2) with
the two classes. It contrasts with the TSVC method [2], the critical points as a training set. This two-step proiess
which reduces to soIving the standard SVM problem with repeated until convergence, see Table 1.
the furthest points in each spheroidal knowledge set from  To avoid situations where the location of the separating
the separating hyperplane. It also differs from the SC-SVM hyperplane changes in a cyclic fashion, we suggest to use
method [3], which incorporates knowledge sets into the prob hoth present and past critical sampig§sfor training. Since
lem formulation via their centers. The performances oféhes this strategy suffers from the disadvantage that the size of
approaches are experimentally compared in Section 4. the training set continuously increases, we suggest to use a
2A natural extension of our work is to consider hybrid tramiets of sparsification process to discard redundant data: angariti
ellipsoids and data samples. This is an easy exercice ldfeteader. point z¢ is included in the training set if, and only if, it

1<i<n




Initializations: A = {&i,yi}ie1, k=0

Repeat
Use a SVM algorithm withA} to get(w, b)
Determinex with (11), for every ellipsoid;—1,...,n
ConstructA¥ Y by inserting into A%, thez¢'s that satisfy

the novelty conditioni|z§ — z;|| > ¢, Va; € AL
until AFT = AP
Return(w, b) and the support vectors

Table 1. SMEM algorithm in the linear kernel case

satisfieg|x{ — ;|| > eforall =; in the current training set.

define a straight line witkx; in the middle,x{ — Z; being
related to the so-called discriminative direction [6]. Blot
that the authors of the TSVC method formulate the problem
of classifying hyperspheres as a standard SVM problem [2].
This leads them to treat each hypersphere as its least criti-
cal point since the margin reaches its maximum value in this
case. A consequence of this is that the TSVC approach does
not necessarily result in a zero-error separating hypeepla
when the data is linearly separable, whereas our algorithm
perfectly separates both classes. Due to lack of space, this
result cannot be proved here.

3.2. Most critical pointsin the nonlinear case

By using a kernel functiom(z, z') = (é(z), o(x')), the
data is implicitly mapped to a reproducing kernel Hilbert

We established that this condition guarantees the finitenes spaceF, called the feature space. This operation, which
of the training set. Due to lack of space, this result will be transforms the regu|ar manifo[ﬂi of X into an unknown

presented in a companion paper.

3.1. Most critical pointsin thelinear case

According to the constraints in (6), for fixed separating hy-

perplangw, x) +b = 0, the pointz of & which minimizes

y:((w, x) + b) is associated with the largest slack variable.

Thus, to find the most critical point &, we have to solvé

d; = argrr%in yi((w, (&; +9)) +b) @)

subject to(X; ! §,§) < 1. By omitting constant terms, the

functional to be minimized becomgs(w, d). Since the in-

equality constraint is active at the optimum, the Lagrangia

of (7) can be expressed as:
L(8,A) = yi(w,8) + A((£776,8) —=1).  (8)
The optimality conditions of (8) being

AL(8,\) _ ] —1s _
TL%S,)\) =0 = W‘ij 20%;7°0=0 ©)
=0 = (X¥;46,6)=1,
by combining (9.a) and (9.b) we get:
b=yl (10)
VAZw, w)
The most critical point is thus:
;=T — yzilziw (11)
<2iwa ’U)>

If our task was to find the least critical point, we would have
In that case, the so-

to maximisey; ({(w, (z; + 8)) + b).
lution is of the same form as (11) with the sign &f re-

versed. Geometrically, the most and the least criticaltgoin

SEven when the ellipsoid; is correctly classified, i.e& = 0, mini-

mizing y; ((w, &) + b) leads to the nearest point from the separating hy-

perplane. This agrees with the notion of criticality.

one¢(&;) of F, makes our algorithm inapplicable. To over-
come this difficulty, note that every critical point should
minimize the following function oved, see (7):

subject to(X;'§,8) < 1. A curve line analysis in the
input space locates the most critical points on the surféce o
the ellipsoids [7], meaning thds; ' §,8) = 1 is likely to

be true. Therefore, by using the dual expansioavpfthe
problem can be written as:

8; = argméin Ui Z a;yik(Z; + 6, ;) (13)
J

subject to(X; ' §, ) = 1. If we now assume the differen-
tiability of x, the first order Taylor expansion

K(&; +96,) ~ k(&) + (Var(z,)|s=z,,0) (14)

leads to the optimization problem

9; = argmin y; Z%%(Vm%(%%)h:@ﬁ& (15)
J

subject to(3; ' §,8) = 1. The LagrangiarL(é, \) is

L(8,2) = yi ) ay;(Var(@, ;) a—z,, 6)
J (16)

+A(Z;16,68) —1).
By combining the optimality conditions fat(d, ), we get

_ v,
T =T — Yi——, 17
i — Yi <EiUi,Ui> (17)
with v; = Zj a;y; Vak(, ;) |z=z,. Finally, our kernel-
based SMEM algorithm is obtained by replacing (11) with
equation (17) in Table 1, and by using the kernelized novelty
condition: \/k(x§, ¢) + k(x;, x;) — 2k(x¢, ;) > €.
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SC-SVM TSVC SMEM
Fig. 2. Toy example solved with the linear kernel: the biggestutac knowledge set vs. the three others. The samples
produced by the algorithms to compute the separating higoezp are represented by squares and triangles.

4. EXPERIMENTS

We shall now illustrate our approach using two toy exam-
ples. Figure 2 compares SC-SVM and TSVC methods with
our SMEM algorithm on a non-linearly separable problem:
the biggest circular knowledge set vs. the three others. The
linear kernek(x, ') = (x, ') was selected for this exper-
iment. We clearly observe that the SMEM-based classifier
outperforms the others. This result is confirmed by the error
rates, estimated to bel.66%, 11.68% and0.5% for SC-  Fig 3. Toy example solved with our algorithm and the
SVM, TSVC and SMEM, respectively. Figure 3 illustrates second-degree polynomial kernel.
the ability of our approach to separate two classes of ellip-
soidal knowledge sets with the second-degree polynomial
kernels(z, ') = (1 + (z,z'))%.

Let us turn now to a usual benchmark, the breast can-
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for novelty detection. Further work includes the potential
application of our approach to deal with uncertainty in the

cer Wisconsin database. It consistsi69 patterns, witho o_bser_vations of a_classification problem, that is, to de#i wi
numerical attributes per pattern. These data were centeredSituations where instead of labelled samples we may only
normalized, and randomly divided into a training set of 466 Nave distributions over them.

instances and a test set of 233 instances. Spheroidal knowl-

edge sets were created from the training set with the set cov- 6. REFERENCES

ering algorithm [3]. They were used to train a SMEM and
a TSVC classifier wite = 1 andC' = 1. The gaussian
kernel,x(x, ') = exp(||x — '||?/202), was selected. Its . . - L
bandwidghao vslas setp t((!’) The geéergl)ization performance [2] j.mB; iﬁi;&;ﬁf rlgi,rPSr(l;cp ngv\fncégg ?Laﬁgbiztll?gfgﬁa't?gnm
of each classifier was estimated using the test set, and aver- Processing Sys)t/(‘ar,ris. K. éaul, Y. Weiss, and L. Bottou, Eds.
aged oveb0 runs. Estimated error rates 866% + 0.01% Cambridge, MA: The MIT Press, 2004.

and5.68% =+ 0.07% were obtained for the SMEM and the

[1] D. Decoste and B. Sditkopf, “Training invariant support vec-
tor machines,Machine Learningvol. 46, pp. 161-190, 2002.

[3] J. Wang and C. Zhang, “Support vector machines based on

TSVC classifiers, respectively. This illustrates the sigper set covering,” inProc. of the 2nd International Conference on
ity of our approach. Information Technology for Applicatio2004, pp. 181-184.
[4] V.Jeyakumar, J. Ormerod, and R. S. Womersley, “Knowledge-
5. CONCLUSION based semidefinite linear programming classifieBgptimiza-

tion Methods and Software (to appear)
In this paper, we investigated a learning model in which [5] c. Cortes and V. Vapnik, “Support vector networkilachine
the training set contains prior information in the form of Learning vol. 20, no. 3, pp. 273-297, 1995.
e”|p$0|.d§| knowledge sets. We. addressed this problem by[s] p. Golland, “Discriminative direction for kernel classifiers,”
maximizing the minimum margin between the knowledge Neural Information Processing Systerusl. 13, pp. 745752,
sets from the competing classes. Our experiments using this  2001.
minimax strategy showed substantial performance improve-[7] s. Akaho, “Svm that maximizes the margin in the input
ments over the SC-SVM and the TSVC methods. A direct  space,’Systems and Computers in Japaal. 35, no. 14, pp.
extension of this work is given by the one-class SVM used 78-86, 2004.



