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ABSTRACT

This paper investigates a learning model in which the train-
ing set contains prior information in the form of ellipsoidal
knowledge sets. We handle this problem in a minimax set-
ting, which consists of maximizing the worst-case – min-
imum – margin between the knowledge sets from the two
classes and the decision surface. The problem is solved us-
ing an alternating optimization scheme and an active learn-
ing strategy, i.e., the training set is created progressively ac-
cording to the prior information. Our approach is evaluated
on toy examples and on a usual benchmark database. It is
successfully compared to state-of-the-art techniques.

1. INTRODUCTION

Support Vector Machines (SVMs) are widely considered to
be among the best performing algorithms for supervised
classification. Their success is due to the following ideas:
Firstly, data are mapped into a high dimensional space where
the classes of data are more readily separable. Secondly,
margin – or distance – between the separating hyperplane
and the closest points of each class is maximized.

While it has been well established in the field of ma-
chine learning that incorporating prior knowledge helps a
classifier achieving more accurate generalization, littlework
has been done to incorporate prior into SVMs, see e.g. [1].
In this paper, we are interested in prior information in the
form of ellipsoidal knowledge sets. They consist of labelled
regions in the input space, and can thus be interpreted as
a generalization of the usual notion of training example.
In [2], the authors investigate a learning model in which the
observed inputx is corrupted by additive uniformly distrib-
uted noise. They incorporate this uncertainty in the form
of spheroidal knowledge sets, and develop a kernel-based
algorithm to solve it. This approach is called TSVC (To-
tal Support Vector Classification), by reference to the total
least-squares method to which it is related. However, in
TSVC, only the furthest points from the separating hyper-
plane are considered to determine the latter, leading to a

solution in the best-case framework. Spheroidal knowledge
sets are also considered in [3]. They result from a data re-
duction process, called Set Covering SVM (SC-SVM), used
to enhance the training process of SVMs when dealing with
large data sets. However, the authors reduce the problem
to that of the classification of the clusters centers with a
usual SVM. Finally, prior knowledge in the form of ellip-
soidal constraints is incorporated into a semidefinite linear
program in [4]. However, no kernel-based extension of this
work is proposed.

In this paper, we overcome all these limits by reformu-
lating the problem in a minimax setting. It consists of max-
imizing the worst-case – minimum – margin between the
knowledge sets from the two classes and the decision sur-
face. We also investigate a kernel-based extension of this
approach. The remainder of this paper is organized as fol-
lows. In Section 2, the minimax knowledge-based approach
for optimizing two-class SVMs is presented. An effective
means of resolving this problem is described in Section 3,
and tested experimentally in Section 4. Finally, concluding
remarks and some suggestions for further studies follow.

2. TRAINING SVM WITH ELLIPSOIDAL
KNOWLEDGE SETS

Before presenting the contributions of this paper, we give
a brief overview of SVM learning for classification. Let
An = {(xi, yi) ∈ (X × Y)}n

i=1 be an-sample training
set, withX the input space andY = {±1} the label set.
Training a L1-SVM is finding the hyperplane〈w,x〉+b = 0
that satisfies:1

minw,ξ,b
1
2‖w‖2 + C

∑

i ξi

subject to yi(〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0
(1)

for i = 1, . . . , n. In the above equations,ξi is thei-th slack
variable amongn, andC a positive parameter controlling
the trade-off between margin maximization and error min-

1All sums run from1 to n, unless otherwise noted.



imization. To solve this optimization problem, one intro-
duces its dual form:

minα
1
2

∑

i

∑

j αiαjyiyj〈xi,xj〉 −
∑

i αi

subject to
∑

i αiyi = 0

1≤i≤n 0 ≤ αi ≤ C.
(2)

The solutionw can be expressed asw =
∑

i αiyixi, and
the decision function isd(x) = sgn(

∑

i αiyi〈xi,x〉 + b).
In this paper, we consider the problem of incorporat-

ing prior knowledge into SVM training in the form of ellip-
soidal knowledge sets. That is, we assume that the training
set consists ofn labelled ellipsoids(Ei, yi) defined as2

Ei = {x ∈ X | 〈Σ−1
i (x − xi), (x − xi)〉 ≤ 1}, (3)

wherexi is the center of thei-th ellipsoid andΣi is a sym-
metric positive (semi)-definite matrix. Henceforth, we shall
denote byAn the training set{(x, yi) : x ∈ Ei}

n
i=1.

2.1. Hard-Margin Ellipsoid Machine (HMEM)

Let us consider the case where the training set is linearly
separable. Then there exist functionsf(x) = 〈w,x〉 + b
such thaty f(x) > 0 for all (x, y) in An. A special case is
obtained by scalingw andb such that training data closest to
the decision surface satisfy|〈w,x〉+b| = 1. This canonical
form satisfiesy f(x) ≥ 1 for all (x, y) in An. Combining
the latter with (3) yields the conditions

yi (〈w,xi + δi〉 + b) ≥ 1, with 〈Σ−1
i δi, δi〉 ≤ 1, (4)

for i = 1, . . . , n. Among the hyperplanes〈w,x〉 + b = 0
satisfying (4), we look for the one with the maximum dis-
tance from the decision surface to the closest points from
the two classes. This distance, called the margin, is known
to be equal to1/‖w‖. The optimal hyperplane then maxi-
mizes, overw andb, the minimum margin with respect to
δ1, . . . , δn and subject to (4). Note that maximizing (resp.,
minimizing)1/‖w‖ is equivalent to minimizing (resp., max-
imizing) ‖w‖2. Thus, we can solve the following problem
to determine the optimal hyperplane

minw,b maxδi’s
1
2‖w‖2

subject to yi (〈w,xi + δi〉 + b) ≥ 1

1≤i≤n 〈Σ−1
i δi, δi〉 ≤ 1.

(5)

This minimax strategy consists of maximizing the worst-
case – minimum – margin between the knowledge sets from
the two classes. It contrasts with the TSVC method [2],
which reduces to solving the standard SVM problem with
the furthest points in each spheroidal knowledge set from
the separating hyperplane. It also differs from the SC-SVM
method [3], which incorporates knowledge sets into the prob-
lem formulation via their centers. The performances of these
approaches are experimentally compared in Section 4.

2A natural extension of our work is to consider hybrid training sets of
ellipsoids and data samples. This is an easy exercice left to the reader.
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Fig. 1. Most critical points and slack variables.
The ellipsoidal knowledge setE1 is correctly classified. The slack variables
of thexi’s in E1 are zero. The most critical point̄x2 + δ2 of E2 is in the
margin. Its slack variable is the largest one, for allxi ∈ E2.

2.2. Soft-Margin Ellipsoid Machine (SMEM)

Consider now the case in which training data cannot be sep-
arated without error. Following the standard practice (1) for
SVM, we relax the hard-margin constraints (4) with slack
variables, and we modify the objective function to penalize
the violation of these constraints. This leads to the soft-
margin problem

minw,b maxδi ’s
1
2‖w‖2 + C

∑

i ξi

subject to yi (〈w, x̄i + δi〉 + b) ≥ 1 − ξi

1≤i≤n 〈Σ−1
i δi, δi〉 ≤ 1,

ξi ≥ 0.

(6)

Resolution of this problem is discussed in the next section.
Of course, other penalization terms on the empirical error,
such as

∑

i ξ2
i for instance [5], should also be used.

3. ALTERNATING OPTIMIZATION FOR SMEM

Suppose that the points associated with the largest slack
variablesξi > 0 are known, see Fig. 1. These are denoted
by xc

i to make reference to the fact that they are the most
critical ones. In that case, problem (6) can be solved by re-
placingxi with xc

i in the formulation (2). The idea is then
to train a SMEM as follows. First, we fix the parametersw

andb of the separating hyperplane in order to determine the
most critical samplesxc

i . Note that they can be computed
analytically, as shown below. Next, we find the separating
hyperplane by solving the standard SVM problem (2) with
the critical points as a training set. This two-step processis
repeated until convergence, see Table 1.

To avoid situations where the location of the separating
hyperplane changes in a cyclic fashion, we suggest to use
both present and past critical samplesxc

i for training. Since
this strategy suffers from the disadvantage that the size of
the training set continuously increases, we suggest to use a
sparsification process to discard redundant data: any critical
point xc

i is included in the training set if, and only if, it



Initializations:A(0)
n = {x̄i, yi}

n
i=1, k = 0

Repeat

Use a SVM algorithm withA(k)
n to get(w, b)

Determinexc
i with (11), for every ellipsoidEi=1,...,n

ConstructA(k+1)
n by inserting intoA(k)

n , thex
c
i ’s that satisfy

the novelty condition:‖xc
i − xj‖ > ǫ, ∀xj ∈ A

(k)
n

Until A(k+1)
n ≡ A

(k)
n

Return(w, b) and the support vectors

Table 1. SMEM algorithm in the linear kernel case

satisfies‖xc
i − xj‖ > ǫ for all xj in the current training set.

We established that this condition guarantees the finiteness
of the training set. Due to lack of space, this result will be
presented in a companion paper.

3.1. Most critical points in the linear case

According to the constraints in (6), for fixed separating hy-
perplane〈w,x〉+b = 0, the pointx of Ei which minimizes
yi(〈w,x〉 + b) is associated with the largest slack variable.
Thus, to find the most critical point ofEi, we have to solve3

δi = arg min
δ

yi(〈w, (x̄i + δ)〉 + b) (7)

subject to〈Σ−1
i δ, δ〉 ≤ 1. By omitting constant terms, the

functional to be minimized becomesyi〈w, δ〉. Since the in-
equality constraint is active at the optimum, the Lagrangian
of (7) can be expressed as:

L(δ, λ) = yi〈w, δ〉 + λ(〈Σ−1
i δ, δ〉 − 1). (8)

The optimality conditions of (8) being

∂L(δ,λ)
∂δ

= 0 ⇒ yiw + 2λΣ
−1
i δ = 0

∂L(δ,λ)
∂λ

= 0 ⇒ 〈Σ−1
i δ, δ〉 = 1,

(9)

by combining (9.a) and (9.b) we get:

δi = −yi

Σiw
√

〈Σiw,w〉
. (10)

The most critical point is thus:

x
c
i = x̄i − yi

Σiw
√

〈Σiw,w〉
. (11)

If our task was to find the least critical point, we would have
to maximiseyi(〈w, (x̄i + δ)〉 + b). In that case, the so-
lution is of the same form as (11) with the sign ofδi re-
versed. Geometrically, the most and the least critical points

3Even when the ellipsoidEi is correctly classified, i.e.,ξi = 0, mini-
mizing yi(〈w, x〉 + b) leads to the nearest point from the separating hy-
perplane. This agrees with the notion of criticality.

define a straight line with̄xi in the middle,xc
i − x̄i being

related to the so-called discriminative direction [6]. Note
that the authors of the TSVC method formulate the problem
of classifying hyperspheres as a standard SVM problem [2].
This leads them to treat each hypersphere as its least criti-
cal point since the margin reaches its maximum value in this
case. A consequence of this is that the TSVC approach does
not necessarily result in a zero-error separating hyperplane
when the data is linearly separable, whereas our algorithm
perfectly separates both classes. Due to lack of space, this
result cannot be proved here.

3.2. Most critical points in the nonlinear case

By using a kernel functionκ(x,x′) = 〈φ(x), φ(x′)〉, the
data is implicitly mapped to a reproducing kernel Hilbert
spaceF , called the feature space. This operation, which
transforms the regular manifoldEi of X into an unknown
oneφ(Ei) of F , makes our algorithm inapplicable. To over-
come this difficulty, note that every critical point should
minimize the following function overδ, see (7):

yi〈w, φ(x̄i + δ)〉, (12)

subject to〈Σ−1
i δ, δ〉 ≤ 1. A curve line analysis in the

input space locates the most critical points on the surface of
the ellipsoids [7], meaning that〈Σ−1

i δ, δ〉 = 1 is likely to
be true. Therefore, by using the dual expansion ofw, the
problem can be written as:

δi = arg min
δ

yi

∑

j

αjyjκ(x̄i + δ,xj) (13)

subject to〈Σ−1
i δ, δ〉 = 1. If we now assume the differen-

tiability of κ, the first order Taylor expansion

κ(x̄i + δ, ·) ≃ κ(x̄i, ·) + 〈∇xκ(x, ·)|x=x̄i
, δ〉 (14)

leads to the optimization problem

δi = arg min
δ

yi

∑

j

αjyj〈∇xκ(x,xj)|x=x̄i
, δ〉 (15)

subject to〈Σ−1
i δ, δ〉 = 1. The LagrangianL(δ, λ) is

L(δ, λ) = yi

∑

j

αjyj〈∇xκ(x,xj)|x=x̄i
, δ〉

+λ(〈Σ−1
i δ, δ〉 − 1).

(16)

By combining the optimality conditions forL(δ, λ), we get

x
c
i = x̄i − yi

Σivi
√

〈Σivi,vi〉
, (17)

with vi =
∑

j αjyj∇xκ(x,xj)|x=x̄i
. Finally, our kernel-

based SMEM algorithm is obtained by replacing (11) with
equation (17) in Table 1, and by using the kernelized novelty
condition:

√

κ(xc
i ,x

c
i ) + κ(xj ,xj) − 2κ(xc

i ,xj) > ǫ.
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Fig. 2. Toy example solved with the linear kernel: the biggest circular knowledge set vs. the three others. The samples
produced by the algorithms to compute the separating hyperplanes are represented by squares and triangles.

4. EXPERIMENTS

We shall now illustrate our approach using two toy exam-
ples. Figure 2 compares SC-SVM and TSVC methods with
our SMEM algorithm on a non-linearly separable problem:
the biggest circular knowledge set vs. the three others. The
linear kernelκ(x,x′) = 〈x,x′〉 was selected for this exper-
iment. We clearly observe that the SMEM-based classifier
outperforms the others. This result is confirmed by the error
rates, estimated to be11.66%, 11.68% and0.5% for SC-
SVM, TSVC and SMEM, respectively. Figure 3 illustrates
the ability of our approach to separate two classes of ellip-
soidal knowledge sets with the second-degree polynomial
kernelκ(x,x′) = (1 + 〈x,x′〉)2.

Let us turn now to a usual benchmark, the breast can-
cer Wisconsin database. It consists of699 patterns, with9
numerical attributes per pattern. These data were centered,
normalized, and randomly divided into a training set of 466
instances and a test set of 233 instances. Spheroidal knowl-
edge sets were created from the training set with the set cov-
ering algorithm [3]. They were used to train a SMEM and
a TSVC classifier withǫ = 1 andC = 1. The gaussian
kernel,κ(x,x′) = exp(‖x − x′‖2/2σ2

0), was selected. Its
bandwidthσ0 was set to5. The generalization performance
of each classifier was estimated using the test set, and aver-
aged over50 runs. Estimated error rates of3.56% ± 0.01%
and5.68% ± 0.07% were obtained for the SMEM and the
TSVC classifiers, respectively. This illustrates the superior-
ity of our approach.

5. CONCLUSION

In this paper, we investigated a learning model in which
the training set contains prior information in the form of
ellipsoidal knowledge sets. We addressed this problem by
maximizing the minimum margin between the knowledge
sets from the competing classes. Our experiments using this
minimax strategy showed substantial performance improve-
ments over the SC-SVM and the TSVC methods. A direct
extension of this work is given by the one-class SVM used
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Fig. 3. Toy example solved with our algorithm and the
second-degree polynomial kernel.

for novelty detection. Further work includes the potential
application of our approach to deal with uncertainty in the
observations of a classification problem, that is, to deal with
situations where instead of labelled samples we may only
have distributions over them.
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