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Institut des Sciences et Technologies de l’Information de Troyes (ISTIT-M2S, FRE CNRS 2732)
Universit́e de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex - France

jeanbaptiste.pothin@utt.fr cedric.richard@utt.fr

ABSTRACT

Kernel-target alignment has recently been proposed as a criterion
for measuring the degree of agreement between a reproducing ker-
nel and a learning task. It makes possible to find a powerful kernel
for a given classification problem without designing any classifier. In
this paper, we present an alternating optimization strategy, based on
a greedy algorithm for maximizing the alignment over linear com-
binations of kernels, and a gradient descent to adjust the free para-
meters of each kernel. Experimental results show an improvement
in the classification performance of support vector machines, and a
drastic reduction in the training time.

1. INTRODUCTION

The last ten years have seen an explosion of research in ker-
nel methods; see [1] for a recent survey. These include sup-
port vector machines (SVM), which map data into a high di-
mensional space where the classes of data are more readily
separable, and maximize the margin – or distance – between
the separating hyperplane and the closest points of each class.
However, despite the success of kernel machines, the selec-
tion of an appropriate kernel is still critical for achieving good
generalization performance. A typical approach for kernel
selection involves the following steps: choose some kernels
before learning starts, estimate their performance from cross-
validation experiments, and pick the best one. This strategy
becomes intractable as the number of kernels increases.

Observing that all the information required by a kernel
machine is contained in the so-called Gram matrix, a recent
work has suggested to learn it from data [2]. Another inter-
esting solution was developed through the concept of kernel-
target alignment [3]. In this reference and in [4], the ap-
proaches for optimizing this criterion are limited to a trans-
ductive setting. The kernel matrices are of the form

K =
∑

i

µiviv
t
i, µi ≥ 0, (1)

where thevi’s are the eigenvectors of the full kernel matrix
constructed from training and test samples. An inductive pro-
cedure was also proposed in [4], based on the eigendecompo-
sition of the training kernel matrix. Unfortunately, thesesub-

space methods become extremely computationally expensive
when dealing with large kernel matrices. A more efficient
approximation strategy based on the Gram-Schmidt decom-
position and a quadratic programming method (QP) was pre-
sented in [5]. A semi-definite programming approach (SDP)
was also considered in [6]. The authors, however, concede
that the SDP applied to the kernel matrix (1) boils down to
the quadratic program described in [3]. In this paper, we pro-
pose an alternating optimization strategy, based on a greedy
algorithm for maximizing the alignment over linear combi-
nations of kernels, and combined with a gradient descent to
adjust the free parameters of each kernel.

The rest of this paper is organized as follows. In Section 2,
kernel-target alignment is introduced. Our fast algorithmfor
optimizing this criterion is presented in Sections 3 and 4. Its
effectiveness is confirmed through simulations in Section 5.
Finally, concluding remarks and suggestions follow.

2. KERNEL-TARGET ALIGNMENT

We start with a few basic definitions. LetX be a compact
space. A symmetric functionκ : X × X → IR verifying

n
∑

i=1

n
∑

j=1

aiajκ(xi,xj) ≥ 0

for all n ∈ IN, x1, . . . ,xn ∈ X anda1, . . . , an ∈ IR is said
to be aMercer kernel. An explicit way to describe it is via a
mappingφ fromX to a reproducing kernel Hilbert spaceH

κ(xi,xj) = 〈φ(xi), φ(xj)〉H.

The alignment criterion is a measure of similarity between
two kernels, or between a kernel and a target function [3].
Given an-sample data setSn, the alignment of kernelsκ1

andκ2 is defined as follows

A(K1,K2) =
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F
, (2)

where〈·,·〉F denotes the Frobenius inner product, andK1 and
K2 are the Gram matrices with respective entriesκ1(xi,xj)
andκ2(xi,xj), for all xi, xj ∈ Sn.



For binary classification, the decision statistic should sat-
isfy φ(xi) = yi, whereyi is the class label ofxi. By setting
yi = ±1, the ideal Gram matrix would be given by

K∗(i, j) = 〈φ(xi), φ(xj)〉 =

{

1 if yi = yj

−1 if yi 6= yj .
(3)

In [3], Cristianini et al. propose to maximize the alignment
with the targetK∗ = yyt in order to determine the most
relevant kernel for a given classification task.

A(K,K∗) =
〈K,yyt〉F

√

〈K,K〉F 〈yyt,yyt〉F
=

ytKy

n ‖K‖F
. (4)

The ease with which this criterion can be estimated using only
training data, prior to any computationally intensive training,
makes it an interesting tool for kernel selection. It has been
shown that the probability of the empirical estimator (4) devi-
ating from its mean can be bounded by an exponentially de-
caying function of this deviation [3]. This means that if one
optimizes the alignment on a training set, one can expect it to
remain high on a validation set. It has also been demonstrated
thath(x) = sgn(IEx′,y′ [y′κ(x′,x)]) has good generalization
performance when the alignment is high.

3. OPTIMIZING THE LINEAR COMBINATION OF
KERNELS BY A GREEDY APPROACH

Any positive linear combination of Mercer kernels is a Mercer
kernel [7]. Given a collection ofm kernels, we then consider
the kernel expansion

κµ(x,x′) =
m
∑

i=1

µi κi(x,x′), µi ≥ 0, (5)

and study the problem of determining the parametersµi that
maximize the kernel-target alignment. For a classification
task, this problem can be written as [4]

maxµ −µt(H + λI)µ + f tµ

subject to µi ≥ 0, for all i = 1, . . . ,m
(6)

with I denoting the identity matrix,H(i, j) = 〈Ki,Kj〉F
andf(i) = 〈Ki,K

∗〉F . The parameterλ ≥ 0 arises from
a regularization constraint penalizing‖µ‖2. As for SVM op-
timization, large values ofm make the resolution of equa-
tion (6) time and memory consuming with standard QP meth-
ods. Our strategy to handle this problem is to divide it into
subproblems. When applied to (6) withm = 2, this leads to
the maximization of

W (µ1, µ2) =

−µ2
1(‖K1‖

2

F + λ)− µ2
2(‖K2‖

2

F + λ)
−2µ1 µ2〈K1,K2〉F + µ1 〈K1,K

∗〉F + µ2 〈K2,K
∗〉F

subject toµ1, µ2 ≥ 0. Optimality conditions∂W/∂µ1 = 0
and∂W/∂µ2 = 0 yields

(‖K1‖
2

F + λ)µ1 + 〈K1,K2〉F µ2 =
〈K1,K∗〉

F

2
,

〈K1,K2〉F µ1 + (‖K2‖F + λ)µ2 =
〈K2,K∗〉

F

2
.

Hence, the solution of the unconstrained problem is

µ∗
1 =
〈K1,K

∗〉F − 2〈K1,K2〉F µ∗
2

2 [‖K1‖
2

F + λ]

with

µ∗
2 =

(‖K1‖
2

F + λ)〈K2,K
∗〉F − 〈K1,K2〉F 〈K1,K

∗〉F
2 [(‖K1‖

2

F + λ)(‖K2‖
2

F + λ)− 〈K1,K2〉
2

F ]
.

If µ∗
1, µ∗

2 > 0, the latter is the optimal solution of the con-
strained problem since it lies in the feasible region. Consider
the caseµ∗

1, µ∗
2 ≤ 0. BecauseK1 andK2 are positive (semi)-

definite matrices, the alignment ofµ∗
1K1+µ∗

2K2 is negative.
This result cannot be optimal since(µ1, µ2) = (1, 0) leads to
a positive alignment. We then conclude that this case cannot
arise. Finally, suppose thatµ∗

1 > 0 andµ∗
2 < 0. Starting

from a feasible point, the feasible direction method [8] pro-
vides the constrained solutionµ+

1 > 0 andµ+
2 = 0. Note that

the alignment criterion is invariant under scale changes, that
is, A(µ+

1 K1, · ) = A(K1, · ). This implies thatµ+
1 can be

arbitrarily fixed to1. As a conclusion, the general solution to
problem (6) in them = 2 case is

(µ+
1 , µ+

2 ) =







(µ∗
1, µ

∗
2) if µ∗

1, µ
∗
2 > 0

(1, 0) if µ∗
2 ≤ 0

(0, 1) if µ∗
1 ≤ 0.

(7)

Let J(k) = maxµ≥0A
(
∑

i∈Ik
µiKi,K

∗
)

. It can be shown
that

I1 ⊂ I2 ⊂ . . .⇒ J(1) ≤ J(2) . . .

This property means that the alignment of the linear combina-
tion of a subset of kernels should not be better than any larger
set containing the subset. This suggests the use of a greedy
strategy to combine more than two kernels. It starts from the
best available kernel in the sense of (4). Next it determines
the coefficients(µ+

1j∗ , µ
+
2j∗) that maximize the kernel-target

alignment of

K̂(j) = µ+
1j

(

∑

i∈I

µiKi

)

+ µ+
2j Kj , j 6∈ I, (8)

whereI ⊂ {1, . . . ,m} contains the indexes of the kernels
selected previously. This process is repeated until the align-
ment cannot be improved by more thanǫ ≥ 0, see Table 1.
This strategy is obviously suboptimal. However, the update
rule (8) is not subject to ill-conditioned Hessian since theso-
lutions are calculated analytically. As can be seen in Sec-
tion 5, it leads to solutions as good as, and sometimes better
than those obtained by solving (6) with standard QP methods.



Choosej∗ = arg maxj A(Kj , K
∗)

SetK̂ = 0, µ = (0 0 ... 0)t, µ+

1j∗ = 0 andµ+

2j∗ = 1.

Do

Add j∗ to the set of indexesI: I = I ∪ {j∗}

UpdateK̂ andµ as follows:

K̂ = µ
+

1j∗K̂ + µ
+

2j∗Kj∗

µ = µ
+

1j∗µ, µj∗ = µ
+

2j∗

For all j 6∈ I

MaximizeA(µ1jK̂ + µ2jKj , K
∗) using (7)

Choosej∗ = arg maxj 6∈I A(µ+

1jK̂ + µ+

2jKj , K
∗)

While A(µ+

1j∗K̂ + µ+

2jKj , K
∗) −A(K̂ , K∗) > ǫ

ReturnK̂ and/orµ

Table 1. The greedy algorithm

4. OPTIMIZING THE KERNEL PARAMETERS BY A
GRADIENT STEP

Previously, we have supposed that the parameters of the ker-
nels were available from previous calculations. Here, we re-
lax this assumption by iteratively adjusting them during the
calculation of the solution (8). Let us rewrite the model (5)as

κµ(x,x′;Θ) =

m
∑

i=1

µi κi(x,x′;θi) (9)

with Θ = (θ1, . . . ,θm), andθi the parameters ofκi. Ideally,
the model parameters should be obtained by maximizing the
kernel-target alignment

Θ
∗ = arg max

Θ

A(KΘ,K∗) = arg max
Θ

〈KΘ,K∗〉F
‖KΘ‖F

,

whereKΘ is the Gram matrix of the kernel (9). Let us restrict
ourselves to the case where this kernel can be differentiated
with respect toΘ. We have

∂〈KΘ,K∗〉F
∂θk

=
∑

i,j

yi yj

∂κµ(xi,xj ;Θ)

∂θk

, 〈∂kKΘ,K∗〉F

and

∂‖KΘ‖F
∂θk

=





∑

i,j

∂κµ(xi,xj ;Θ)

∂θk

κµ(xi,xj ;Θ)









∑

i,j

κµ(xi,xj ;Θ)2





− 1

2

(10)

= 〈∂kKΘ,KΘ〉F /‖KΘ‖F . (11)

We can then express the derivative of the alignment with re-
spect toθk as follows

∂A(KΘ,K∗)

∂θk

=
〈∂kKΘ,K∗〉F
‖K∗‖F ‖KΘ‖F

−
〈KΘ,K∗〉F 〈KΘ, ∂kKΘ〉F

‖K∗‖F ‖KΘ‖
3

F

.

(12)

In the spirit of [9], we propose an algorithm that alternates
the optimisation of a linear combination of kernels, see Ta-
ble 1, with a gradient step in the direction of the gradient of
A(KΘ,K∗) in the parameterΘ space, see (12). This can be
achieved by the following iterative procedure:

1. InitializeΘ to some value;

2. Using our greedy algorithm, findµ∗ for Θ fixed;

3. For all µi > 0, updateθi such thatA(KΘ,K∗) is
maximized. This can be achieved by a gradient descent

θi ← θi + η∇θi
A(KΘ,K∗)

until a given stopping criterion is met;

4. Go to step 2. or stop when the maximum ofA(KΘ,K∗)
is reached.

In step 3, convergence can be improved with the use of New-
ton’s method. Some constraints onΘ can also be imposed.

5. EXPERIMENTS

To compare our greedy algorithm with a standard QP strat-
egy, experiments were conducted on a Pentium 4, 3.4 GHz,
2GB RAM with the benchmark1 breast cancer Wisconsin. It
was randomly divided into a training set of466 instances and
a test set of233 instances. Six kernels(m = 6) were se-
lected from the family of polynomial kernels:(1+γ〈x,x′〉)q

with q = 1, . . . , 4, gaussian kernels:exp (−‖x− x′‖2/2σ2)
and exponential kernels:exp (−‖x− x′‖/2σ2). The thresh-
old ǫ controlling the sparsity of the solution, see Table 1,
was set to10−3. This resulted in solutions with3 nonzero
µi’s for QP, and only2 for our algorithm. In both cases, the
gaussian kernel was combined with the3rd degree polyno-
mial kernel. The4rd degree polynomial kernel was also in-
volved in the QP solution, with a very small weight – about
10−14. On Table 2, one can notice that the alignment ob-
tained with our algorithm led to a substantial improvement
compared to QP, which partly failed to converge due to ill-
conditioned Hessian. In both cases, the alignment of the com-
posite kernels remained high on the validation set. Figure 1
compares the computation time as a function of the numberm
of candidate kernels. We observe that our algorithm is much
less time-consuming than the QP strategy for largem.

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/



training test # of kernels
alignment (QP) 0.5667 0.5012 3

alignment (greedy) 0.2198 0.2168 1
” 0.6375 0.6039 2

Table 2. Alignment of the composite kernelκµ. The per-
formance of the kernel that was first selected by the greedy
algorithm is also mentioned.

alignment error
ℓ1-SVM usingκopt 0.2313 5.14%
ℓ1-SVM usingκµ (QP) 0.5667 3.58%
ℓ1-SVM usingκµ (greedy) 0.6396 3.37%
ℓ2-SVM usingκopt 0.2411 3.58%
ℓ2-SVM usingκµ (QP) 0.5667 2.93%
ℓ2-SVM usingκµ (greedy) 0.6396 2.79%

Table 3. Alignment and error rate of SVM withκopt andκµ.

Our greedy approach was next coupled with a gradient de-
scent to jointly adjust the free parameters of the6 candidate
kernels. The gradient stepη was set to0.5, and the gradient
descent was stopped when the improvement of the alignment
was less than10−5. Figure 2 shows the evolution of the align-
ment during the gradient descent. Note that the alignment
estimated from the test set increases in the same manner as
the alignment optimized on the training set. The final values
of the alignment were0.6396 and0.6093 on these two sets,
respectively. Finally, the composite kernels were used with
ℓ1-SVM andℓ2-SVM classifiers. They were trained withC
in {1, 10, 100}, and tested using 5-fold cross validation. Each
kernel of the set of candidate kernels was also tested individ-
ually to determine the best one, denoted byκopt. The perfor-
mances of the kernelsκµ andκopt are reported in Table 3.
These results show that the composite kernels outperformed
the kernelκopt, and give an advantage to our gradient-based
greedy algorithm over the QP approach. We observed that the
computation time required to exhibitκopt, including the train-
ing and the cross-validation stages, was about6 times longer.

6. CONCLUSION

We presented a method for automatically optimizing the align-
ment of a linear combination of kernels while adjusting their
free parameters in a data-dependent way. This led to an im-
provement of the performance of SVM in a binary classifica-
tion context, and a drastic reduction of the time usually spent
to pick a good kernel. Direct extensions of this work include
multi-class and regression applications.
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Fig. 1. Computation time, in seconds, as a function of the
numberm of candidate kernels.
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Fig. 2. Evolution of the alignment during gradient descent.
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