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ABSTRACT space methods become extremely computationally expensive

Kernel-target alignment has recently been proposed as a criteriofhen dealing with large kernel matrices. A more efficient
for measuring the degree of agreement between a reproducing ké@pproximation strategy based on the Gram-Schmidt decom-
nel and a learning task. It makes possible to find a powerful kerngposition and a quadratic programming method (QP) was pre-
for a given classification problem without designing any classifier. Insented in [5]. A semi-definite programming approach (SDP)
this paper, we present an alternating optimization strategy, based gpas also considered in [6]. The authors, however, concede
a greedy algorithm for maximizing the alignment over linear com-that the SDP applied to the kernel matrix (1) boils down to
binations of kernels, and a gradient descent to adjust the free pargye quadratic program described in [3]. In this paper, we pro
meters of each kernel. Experimental results show an improvemerbtose an alternating optimization strategy, based on a greed
in the classification performance of support vector machines, and glgorithm for maximizing the alignment over linear combi-
drastic reduction in the training time. . . . .

nations of kernels, and combined with a gradient descent to

adjust the free parameters of each kernel.

1. INTRODUCTION The rest of this paper is organized as follows. In Section 2,
. . kernel-target alignment is introduced. Our fast algoritiom

The last ten years have seen an explosion of research in kefstimizing this criterion is presented in Sections 3 andtg. |
nel methods; see [1] for a recent survey. These include SUpe tiveness is confirmed through simulations in Section 5

port vector machines (SVM), which map data into a high di'FinaIIy, concluding remarks and suggestions follow.
mensional space where the classes of data are more readily

separable, and maximize the margin — or distance — between
the separating hyperplane and the closest points of eash cla
However, despite the success of kernel machines, the sel
tion of an appropriate kernel is still critical for achiegigood
generalization performance. A typical approach for kernel

2. KERNEL-TARGET ALIGNMENT

SXe start with a few basic definitions. Lét be a compact
pace. A symmetric function: X x X — IR verifying

selection involves the following steps: choose some kernel LI

before learning starts, estimate their performance fravassr Z Z aiajk(@;, ;) 2 0

validation experiments, and pick the best one. This styateg i=1j=1

becomes intractable as the number of kernels increases. foralln € IN, x1,...,z, € X andaq,...,a, € R is said

Observing that all the information required by a kernelto be aMercer kernel An explicit way to describe it is via a
machine is contained in the so-called Gram matrix, a recemhappingg from X to a reproducing kernel Hilbert spage
work has suggested to learn it from data [2]. Another inter-
esting solution was developed through the concept of kernel (xi, ;) = (d(xi), d(x;)) 1
target alignment [3]. In this reference and in [4], the ap-The alignment criterion is a measure of similarity between
proaches for optimizing this criterion are limited to a 8an two kernels, or between a kernel and a target function [3].
ductive setting. The kernel matrices are of the form Given an-sample data sef,,, the alignment of kernels;

andk, is defined as follows
K = Zuivivﬁ, pi = 0, 1)
i <K17 K2>F

where thev;’s are the eigenvectors of the full kernel matrix VKL K p (Ko, Ko p
constructed from training and test samples. An inductive pr where(-,-) . denotes the Frobenius inner product, &gdand
cedure was also proposed in [4], based on the eigendecomph-; are the Gram matrices with respective entrgege;, = ;)
sition of the training kernel matrix. Unfortunately, theseéb-  andrq(x;, z;), forallz;, x; € S,,.

AK 1, Kj) = (2




For binary classification, the decision statistic should sa subject tou;, ps > 0. Optimality conditionsdW/0u, = 0
isfy ¢(x;) = y;, wherey; is the class label of;. By setting anddW/0u, = 0 yields
y; = %1, the ideal Gram matrix would be given by .

(I 115 + Mg + (K1, Ko) iy = 25500
(oo 1 if yi=y; K, K K )iy =
KGd) = o) ={ | fUSY @ B Kot + (1 Kalle + Mnz
ity # ;-

2 )
<K27K*>F
3 .

. . i Hence, the solution of the unconstrained problem is
In [3], Cristianini et al. propose to maximize the alignment

with the targetK™* = yy' in order to determine the most = (K1, K*)p — 2(Ky, K) 15
s

relevant kernel for a given classification task. 2 [||K1||fm + A
K, yy tK with
AK K*) = { ,yy>f _ yKy. @) . ) )
VK K)p(yy'yy')p  nllKlF y = (Kl & (K, K7 — (K, Ko) (B K p
5=

2 2 2
The ease with which this criterion can be estimated using onl {1l + A (2 + A) = (K, Ko)g]
training data, prior to any computationally intensivetiag,  If u}, 5 > 0, the latter is the optimal solution of the con-
makes it an interesting tool for kernel selection. It hasnbeestrained problem since it lies in the feasible region. Caersi
shown that the probability of the empirical estimator (4Jide the case:}, u5 < 0. Becausek'; and K are positive (semi)-
ating from its mean can be bounded by an exponentially dedefinite matrices, the alignment pf K| + u3 K 5 is negative.
caying function of this deviation [3]. This means that if one This result cannot be optimal sing;, 12) = (1,0) leads to
optimizes the alignment on a training set, one can expeat it ta positive alignment. We then conclude that this case cannot
remain high on a validation set. It has also been demondtratarise. Finally, suppose thatf > 0 andu} < 0. Starting
thath(x) = sgnIE, . [v'k(x’, )]) has good generalization from a feasible point, the feasible direction method [8]-pro
performance when the alignment is high. vides the constrained solutigrf” > 0 andu; = 0. Note that
the alignment criterion is invariant under scale chandes, t
is, A(uf K1,-) = A(K1,-). This implies thatu; can be
arbitrarily fixed tol. As a conclusion, the general solution to
problem (6) in then = 2 case is

3. OPTIMIZING THE LINEAR COMBINATION OF
KERNELSBY A GREEDY APPROACH

Any positive linear combination of Mercer kernels is a Merce (e, pm3) 0f pi,us >0
kernel [7]. Given a collection of: kernels, we then consider (n,ud) =< (1,0) if us <0 )
the kernel expansion (0,1) if u3 <0.

m Let J(k) = max, >0 A(Y;c; 1Ky, K*). It can be shown
K”(CC7 m/) - Z,U“L K/i(mvw/)ﬂ Hi 2 0: (5) that
=1 .[1CIQC§J(1)§J(2)

and study the problem of determining the parameterhat This property means that the alignment of the linear combina
maximize the kernel-target alignment. For a classificatiorfion of a subset of kernels should not be better than anydarge

task, this problem can be written as [4] set containing the subset. This suggests the use of a greedy
strategy to combine more than two kernels. It starts from the
max, —p'(H+A)p+ fiu 5 best available kernel in the sense of (4). Next it determines
subjectto p; >0, foralli =1,...,m ©)  the coefficients(i{;., u3;.) that maximize the kernel-target
alignment of

with I denoting the identity matrixH (i, j) = (K;, K;) .
and f(i) = (K;, K*),. The parameteh > 0 arises from (3 — gt K +

a regLEIz;rizaEion cons>t1;aint penalizifige||?. As for SVM op- KG)=wm; (Z MlKl) T K 721 ®)
timization, large values ofn make the resolution of equa- . ]

tion (6) time and memory consuming with standard QP methwhere/ C {1,...,m} contains the indexes of the kernels
ods. Our strategy to handle this problem is to divide it intoS€lected previously. This process is repeated until thgnali
subproblems. When applied to (6) with = 2, this leads to Ment cannot be improved by more thar- 0, see Table 1.

iel

the maximization of This strategy is obviously suboptimal. However, the update
rule (8) is not subject to ill-conditioned Hessian since gbe
W (p1, po) = lutions are calculated analytically. As can be seen in Sec-
—M%(HKlev +A) — u;(”KQH; + ) tion 5, it leads to solutions as good as, and sometimes better

=241 p2 (K1, Ko) g + p1 (K1, K*) o 4 p2 (Ko, K*) 1. than those obtained by solving (6) with standard QP methods.



We can then express the derivative of the alignment with re-

Choosej” = arg max; A(K;, K™) spect tod;, as follows

SetK =0, = (00...0)", ;. = 0andpg,. = 1.

Do OA(Ke,K") _ (OnKe,K")p
00 K I K
Add j* to the set of indexes: I = I U {5*} ' el ®|’|‘F (12)
c <K@,K >F<K®78kK@>F
UpdateK andpu as follows: - K|l Kol .
riBelrp

In the spirit of [9], we propose an algorithm that alternates
the optimisation of a linear combination of kernels, see Ta-
ble 1, with a gradient step in the direction of the gradient of
A(K e, K*) in the paramete® space, see (12). This can be
achieved by the following iterative procedure:

1= e s e = p e
Forall j €1
Maximize A(u1; K + po; K j, K*) using (7)
Choosej* = argmax;gr A(,ufjf{ +u3, K, K*) o
_ . ) 1. Initialize ® to some value;
While A(uf;. K + pud, Kj, K*) — A(K,K*) > ¢

RetunK and/ory 2. Using our greedy algorithm, find* for © fixed;

3. For all u; > 0, updated; such thatA(Keg, K*) is
maximized. This can be achieved by a gradient descent

Table 1. The greedy algorithm
0; — 6;+nVe, A(Ke, K")

4. OPTIMIZING THE KERNEL PARAMETERSBY A until a given stopping criterion is met;
GRADIENT STEP
4. Goto step 2. or stop when the maximumdifK o, K™)

Previously, we have supposed that the parameters of the ker- s reached.

nels were available from previous calculations. Here, we re i .
lax this assumption by iteratively adjusting them during th !N s,tep 3, convergence can be improved with th'e use of New-
calculation of the solution (8). Let us rewrite the model4s) On's method. Some constraints @ncan also be imposed.

kp(z,z';0) = Z“i ki(z,x';0;) 9) 5. EXPERIMENTS
i=1
With © = (61, ... ,6,,), ande; the parameters of;. Ideally, To compare our greedy algorithm with a standard QP strat-

the model parameters should be obtained by maximizing th

kernel-target alignment

gy, experiments were conducted on a Pentium 4, 3.4 GHz,
GB RAM with the benchmarkbreast cancer Wisconsirit
was randomly divided into a training set4f6 instances and

O — argmax A(Ke, K*) — arg max (Ke,K")pp a test set oR33 instances. Six kemnelgn = 6) were se-
e e |Kelg lected from the family of polynomial kernel§l +~{z, z’))?
i — i 2 2
whereK g is the Gram matrix of the kernel (9). Let us restrict With ¢ = 1., 4, gaussian kernelgxp (— |z — a'[|*/20%)

H 2
ourselves to the case where this kernel can be differedtiatét"d €xponential kernelsxp (—|lz — z'[|/20*). The thresh-

with respect t@®. We have
8<K@7 K~ >F

00y,

Ok (T, x5 0)
= Zyi%#
2,3

(1>

(OxKe,K")p
and

OKolly _ |5~ Onuleiei®) 0 g

00, o 00,
1 (10)
> kul(@s, x5 0)°
i
=(hKe,Ko)r/|Kel g (11)

old € controlling the sparsity of the solution, see Table 1,
was set tol0~3. This resulted in solutions witB nonzero
w;'s for QP, and only2 for our algorithm. In both cases, the
gaussian kernel was combined with t8@ degree polyno-
mial kernel. Thet degree polynomial kernel was also in-
volved in the QP solution, with a very small weight — about
10~'4. On Table 2, one can notice that the alignment ob-
tained with our algorithm led to a substantial improvement
compared to QP, which partly failed to converge due to ill-
conditioned Hessian. In both cases, the alignment of the com
posite kernels remained high on the validation set. Figure 1
compares the computation time as a function of the number
of candidate kernels. We observe that our algorithm is much
less time-consuming than the QP strategy for large

Lftp://ftp.ics.uci.edu/pub/machine-learning-databAses



Table 2. Alignment of the composite kernel,. The per-
formance of the kernel that was first selected by the greedy

algorithm is also mentioned.

alignment| error
£,-SVM usingkopt 0.2313 | 5.14%
£,-SVM usingx,, (QP) 0.5667 | 3.58%
¢,-SVM usingx,, (greedy)| 0.6396 | 3.37%
£5-SVM usingkopt 0.2411 | 3.58%
£5-SVM usingx,, (QP) 0.5667 | 2.93%
l5-SVM usingx,, (greedy)| 0.6396 | 2.79%

training | test # of kernels ©
alignment (QP) | 0.5667 | 0.5012 3 - K
alignment (greedy) 0.2198 | 0.2168 1 7
i 0.6375 | 0.6039 2 % QP\ ,
50 /

10 20 30 40 50

Fig. 1. Computation time, in seconds, as a function of the
numberm of candidate kernels.

0.645

training set

Table 3. Alignment and error rate of SVM witkgp ande,, .

Our greedy approach was next coupled with a gradient de-
scent to jointly adjust the free parameters of theandidate
kernels. The gradient stepwas set td).5, and the gradient
descent was stopped when the improvement of the alignmen
was less tham0~°. Figure 2 shows the evolution of the align-
ment during the gradient descent. Note that the alignment
estimated from the test set increases in the same manner as
the alignment optimized on the training set. The final values
of the alignment wer®.6396 and0.6093 on these two sets, [
respectively. Finally, the composite kernels were used wit
£1-SVM and/>-SVM classifiers. They were trained witt
in {1,10, 100}, and tested using 5-fold cross validation. Each 2l
kernel of the set of candidate kernels was also tested ohdivi
ually to determine the best one, denoteddgy. The perfor- [l
mances of the kernelg,, and o are reported in Table 3.
These results show that the composite kernels outperformed
the kernelkop, and give an advantage to our gradient-based‘”
greedy algorithm over the QP approach. We observed that the
computation time required to exhibipy, including the train-
ing and the cross-validation stages, was alsdimes longer.

6. CONCLUSION (6]

We presented a method for automatically optimizing themalig
ment of a linear combination of kernels while adjusting thei
free parameters in a data-dependent way. This led to an i)
provement of the performance of SVM in a binary classifica-
tion context, and a drastic reduction of the time usuallynspe

to pick a good kernel. Direct extensions of this work include [8]
multi-class and regression applications.

[9]

test set
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IEig. 2. Evolution of the alignment during gradient descent.

7. REFERENCES

J. P. Vert, K. Tsuda, and B. Sghkopf, “A primer on kernel methods,”
in Kernel Methods in Computational BiologB. Sclolkopf, K. Tsuda,
and J. P. Vert, Eds. Cambridge, MA: The MIT Press, 2004, pp7G5—

S. Vishwanathan, O. Guttman, K. Borgwardt, and A. Smolaerfiel
extrapolation,” National ICT Australia, Tech. Rep. 00502@05.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J.r¢ala, “On
kernel-target alignment,Advances in Neural Information Processing
Systemsvol. 14, pp. 367-373, 2002.

J. Kandola, J. Shawe-Taylor, and N. Cristianini, “On #xtensions
of kernel alignment,” Department of Computer Science, Uniteisf
London, Tech. Rep. 120, 2002.

] ——, “Optimizing kernel alignment over combinations of kets,” De-

partment of Computer Science, University of London, Tech..R&f,
2002.

G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, L. Elf@oui, and M. I.
Jordan, “Learning the kernel matrix with semi-definite prognaing,”
Proc. of the nineteenth International Conference on Maehiearning
pp. 323-330, 2002.

M. G. Genton, “Classes of kernels for machine learning:taistics
perspective,’Journal of Machine Learning Researctol. 2, pp. 299—
312, 2001.

G. Zoutendijk, “Methods of feasible directions: a stuidylinear and
non-linear programming,” iProc. of the 21st International Conference
on Machines Learning Elsevier, 1970.

O. Chapelle and V. Vapnik, “Choosing multiple parametenssupport
vector machines,Machine Learningvol. 46, no. 1-3, pp. 131-159,
2003.



