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ABSTRACT

Like its linear counterpart, the Kernel Least Mean Square (KLMS)
algorithm is also becoming popular in nonlinear adaptive filtering
due to its simplicity and robustness. The “kernelization” of the linear
adaptive filters modifies the statistics of the input signals, which now
depends on the parameters of the used kernel. A Gaussian KLMS
has two design parameters; the step size and the kernel bandwidth.
Thus, new analytical models are required to predict the kernel-based
algorithm behavior as a function of the design parameters. This pa-
per studies the stochastic behavior of the Gaussian KLMS algorithm
for white Gaussian input signals. The resulting model accurately
predicts the algorithm behavior and can be used for choosing the
algorithm parameters in order to achieve a prescribed performance.

Index Terms— Adaptive filtering, KLMS, convergence analy-
sis, nonlinear system, reproducing kernel

1. INTRODUCTION

Most existing dynamic system modeling approaches focus on lin-
ear models due to their inherent simplicity. However, many prac-
tical applications (e.g., in communications and bioengineering) re-
quire nonlinear signal processing. Unlike linear systems which can
be uniquely identified by their impulse response, nonlinear systems
can be characterized by representations ranging from higher-order
statistics to series expansion methods [1, 2].

Since the pioneering works of Aronszajin [3], Kimeldorf and
Wahba [4], and Duttweiler and Kailath [5], nonlinear system identifi-
cation methods based on reproducing kernel Hilbert spaces (RKHS)
have gained wide popularity. Recent developments in kernel-based
methods related to dynamic system identification include, most
prominently, transcriptions of state-of-the-art adaptive filtering tech-
niques into a kernel-based formalism. Kernel adaptive filtering
is an appealing solution to the nonlinear adaptive filtering prob-
lem. Developing adaptive filters in RKHS allows the use of linear
structures to solve nonlinear estimation problems. The kernel least-
mean-square algorithm (KLMS) was proposed in [6]. The kernel
recursive-least-square algorithm (KRLS) was described in [7]. The
kernel-based normalized least-mean-square algorithm (KNLMS)
and affine projection (KAPA) algorithms were studied in [8, 9]. A
monograph on kernel adaptive filtering was also recently published
[10].

Our work brings a new contribution to the discussion about
kernel-based adaptive filtering by providing the first convergence
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analysis of the KLMS. Here we explore the behavior of the coeffi-
cients of the KLMS associated with a Gaussian kernel, applied to
nonlinear stationary system identification. Our goal is to determine
an analytic model for the mean and mean-squared behavior of the
estimation error. In a future contribution, this will allow us to eval-
uate how the convergence speed and quality of the estimate can be
controlled by the algorithm setup.

2. FINITE-ORDER KERNEL-BASED ADAPTIVE FILTERS

Let U be a compact subspace of Rq , κ : U × U → R a reproducing
kernel, and (H, 〈·,·〉H) the induced RKHS with its inner product.
The reproducing property states that any function ψ(·) of H can be
evaluated at any u(n) of U using ψ(u(n)) = 〈ψ(·), κ(·,u(n))〉H,
where κ(·,u(n)) is a positive definite kernel. By setting H as the
hypothesis space, we consider the squared error between the model
outputs ψ(u(n)) and the desired responses d(n), that is,

N∑
n=1

[d(n) − ψ(u(n))]2. (1)

The representer theorem [4] states that ψ(·) that minimizes (1) can
be written as a kernel expansion in terms of available training data:

ψ(·) =
N∑

n=1

αn κ(·,u(n)). (2)

This reduces the optimization problem to determining vector α =
[α1, . . . , αN ]� that minimizes ‖d − Kα‖2, whereK is the Gram
matrix with (n, �)-th entry κ(u(n),u(�)), and d = [d1, . . . , dN ]�.
Since the order of the model is equal to the number N of available
data u(n), this approach cannot be considered for online applica-
tions. To overcome this barrier, one can focus on finite-order models

ψ(·) =
M∑
j=1

αj κ(·,u(ωj)), (3)

where the M kernel functions κ(·,u(ωj)) form the dictionary. A
possible technique to select the kernel functions in (3) is the approx-
imate linear dependence (ALD) criterion [7]. It consists of including
a kernel function κ(·,u(�)) in the dictionary if it satisfies

min
γ

‖κ(·,u(�))−
∑
j

γj κ(·,u(ωj))‖
2

H > ε0, (4)
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where ε0 is a parameter determining the level of sparsity of the
model. To control the model order with reduced computational com-
plexity, the coherence-based sparsification rule has also been consid-
ered [8, 9]. The kernel κ(·,u(�)) is inserted into the dictionary if

max
j

|κ(u(�),u(ωj))| ≤ ε0 (5)

with ε0 a parameter determining the coherence of dictionary. It was
shown in [8] that the dimension of dictionaries determined under
rule (5) remains finite. For the rest of the paper, we shall assume that
the dictionary is known and that its sizeM is finite.

The theory outlined above shows that, with a proper sparsifica-
tion rule, nonlinear adaptive filtering problems can be formulated as
finite-order linear ones where the input signal in U has been nonlin-
early mapped to a Hilbert spaceH. Figure 1 shows a block diagram
illustrating a kernel-based adaptive filter. The function ψ(u(n)) rep-
resents a nonlinear mapping ψ : U → H, and z(n) is a zero-mean
additive noise uncorrelated with any other signal.

u(n)

+

+

+

NL

−

e(n)

z(n)

κω(n)
α(n)

d̂(n)

d(n)

ψ(u(n))

Adapt. algo.

U → H

Fig. 1: Kernel-based adaptive system identification.

3. MEAN SQUARE ERROR ANALYSIS

The performance of kernel adaptive filters is a function of the model
order, the kernel used, the adaptive algorithm employed and the
properties of the signal operating environment (SOE). This paper
studies the kernel-based optimal nonlinear filtering problem for sta-
tionary SOE, zero-mean white Gaussian input signal u(n), and the
so-called Gaussian kernel defined by

κ(u,u′) = exp

{
−‖u− u′‖2

2ξ2

}
(6)

where ξ is the kernel bandwidth [10]. The stationary SOE assump-
tion holds when a stationary input vector u(n) yields a stationary
vector ψ(u(n)) at the output of the nonlinearity. This requirement
is satisfied by several nonlinear systems used to model practical sit-
uations, such as Wiener and Hammerstein systems with memoryless
nonlinearities. The following sections study the transient behavior
of KLMS under these conditions and for {u(n)} a sequence of in-
dependent and identically distributed (i.i.d.) Gaussian vectors with
possibly correlated components.

Let us denote by κω(n) the vector of kernels at time n, that is,

κω(n) = [κ(u(n),u(ω1)), . . . , κ(u(n),u(ωM ))]�. (7)

where the u(ωi)’s denote input vectors chosen to build the dictio-
nary. From Fig. 1, the estimated desired response is given by

d̂(n) = α
�(n)κω(n), (8)

where α(n) = [α1(n), . . . , αM (n)]�. The estimation error is

e(n) = d(n)− d̂(n). (9)

Squaring both sides of (9) and taking the expected value yields
the mean-square error (MSE)

Jms(n) = E[d2(n)]− 2pkdα(n) +α
�(n)Rκκα(n) (10)

whereRκκ = E
[
κω(n)κ

�
ω(n)

]
is the correlation matrix of the in-

put kernel κω(n), and pkd = E [d(n)κω(n)] the cross-correlation
vector between κω(n) and d(n).

AssumingRκκ positive definite, the optimum weight vector is

αopt = R
−1

κκpkd (11)

and the minimum MSE is given by

Jmsmin = E
[
d2(n)

]
− p

�

kdR
−1

κκpkd. (12)

These are the well-known expressions of the Wiener solution and
minimum Jms, where the input signal vector has been replaced by
the input kernel vector. Thus, determination of αopt requires the
determination of Rκκ given the statistical properties of the input
vector u(n) and the kernel function.

3.1. Kernel-based input correlation matrix

The entries of the correlation matrixRκκ are given by

[Rκκ]ij =

{
E[κ2(u(n),u(ωi))], i = j

E[κ(u(n),u(ωi))κ(u(n),u(ωj))], i �= j
(13)

with 1 ≤ i, j ≤ M . Asu(ωi) andu(ωj) are input vectors chosen to
build the dictionary, they are also i.i.d. Gaussian. Using the results
in [11, p.100], it can be shown that theRκκ entries are given by

[Rκκ]ij =

⎧⎪⎪⎨
⎪⎪⎩

ξq

det(4Σ0 + ξ2I)1/2
, i = j

ξ2q

det((Σ0 + ξ2I)(3Σ0 + ξ2I))1/2
, i �= j

(14)

where q is dimension of u(n), I is the identity matrix,Σ0 is the au-
tocorrelation matrix of u(n), and det(·) denotes matrix determinant.

4. GAUSSIAN KERNEL KLMS ANALYSIS

The KLMS weight update equation for the system in Fig. 1 is [10]

α(n+ 1) = α(n) + η e(n)κω(n). (15)

Defining the weight-error vector v(n) = α(n) − αopt leads to the
weight-error vector update equation

v(n+ 1) = v(n) + η e(n)κω(n). (16)

The error equation is given by

e(n) = d(n)− κ
�

ω(n) v(n) − κ
�

ω(n)αopt (17)

and, as a consequence, the optimal estimation error is

e0(n) = d(n)− κ
�

ω(n)αopt. (18)

In the following we use the independence assumption (IA) [12]
to neglect the statistical dependency of κω(n) and α(n).
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4.1. Mean weight behavior

Using (17) in (16) yields

v(n+ 1) = v(n) + η d(n)κω(n)− η κ�

ω (n)v(n)κω(n)

− η κ�

ω (n)αopt κω(n).
(19)

Taking the expected value of both sides and using IA yields

E[v(n+ 1)] = (I − ηRκκ)E[v(n)] (20)

which is the LMS mean-weight behavior for an input vector κω(n).

4.2. Mean square error

Using (17) and the IA, the second-order moments of the weights are
related to the MSE through [12]

Jms(n) = Jmsmin + tr {RκκCv(n)} (21)

where Cv(n) = E[v(n)v�(n)] is the autocorrelation matrix of
v(n) and Jmsmin = E[e20(n)] is the minimum MSE. The study of
the KLMS MSE behavior requires a model for Cv(n). This model
is highly affected by the transformation imposed on the input signal
u(n) by the kernel. An analytical model for the behavior of Cv(n)
is derived in the next section.

4.3. Weight-error correlation matrix behavior

Using (18) and (19), the weight-error vector update becomes

v(n+ 1) = v(n) + η e0(n)κω(n)− η κω(n)κ
�

ω(n) v(n) (22)

Post-multiplying (22) by its transpose and taking the expected value,
neglecting the statistical dependence of κω(n)κ

�
ω(n) and v(n), and

assuming that e0(n) is sufficiently close to the optimal solution of
the infinite order model so that E[e0(n)] ≈ 0, yields

Cv(n+ 1) ≈ Cv(n)− η [RκκCv(n)−Cv(n)Rκκ]

+ η2
T (n) + η2

RκκJmsmin

(23a)

with

T (n) = E
[
κω(n)κ

�

ω(n) v(n)v
�(n)κω(n)κ

�

ω(n)
]
. (23b)

Let us now determine the fourth-order moments in (23b) for the
Gaussian kernel. For y = [u(n) u(ωi)]

�, we have
‖u(n)− u(ωi)‖

2 = y�Oy, with

O =

[
I −I

−I I

]
, (24)

and I the identity matrix. Thus, E[y] = 0 and

Ry = E[yy�] =

[
Σ0 0

0 Σ0

]
. (25)

From [11, p.100], the characteristic function of y�Oy is given by

ψz(β) = E{ejβz} = det(I − 2jβORy)
−1/2. (26)

which can be used to obtain the following result

E {κ(u(ωi),u(n))} = E

{
e
−

‖u(n)−u(ωi)‖
2

2ξ2

}
(27)

= det(I +ORy/ξ
2)−1/2. (28)

Using IA to determine the element (i, j) of T (n) in (23b) yields

[T (n)]ij ≈
M∑
�=1

M∑
p=1

E{κωi
(n)κω�

(n)κωp(n)κωj
(n)}[Cv(n)]�p

(29)

where κωq (n) = κ(u(n),u(ωq)). Depending on i, j, � and p values
we have [11, p.100]:
μ1 := E{κωi

(n)κω�
(n)κωp(n)κωj

(n)} with i = j = p = �

Denoting y = [u(n),u(ωi)]
�, yields

μ1 =
[
det(I2 +O1Ry/ξ

2)
]−1/2 (30)

where O1 =

[
4I −4I
−4I 4I

]
.

μ2 := E{κωi
(n)κω�

(n)κωp(n)κωj
(n)} with i = j = p �= �

Denoting y = [u(n),u(ωi),u(ω�)]
�, yields

μ2 = [det(I3 +O2Ry/ξ
2)]−1/2 (31)

where O2 =

⎡
⎣ 4I −3I −1I

−3I 3I 0I
−1I 0I 1I

⎤
⎦.

μ3 := E{κωi
(n)κω�

(n)κωp(n)κωj
(n)} with i = j �= p = �

Denoting y = [u(n),u(ωi),u(ωp)]
�, yields

μ3 = [det(I4 +O3Ry)/ξ
2]−1/2 (32)

where O3 =

⎡
⎣ 4I −2I −2I

−2I 2I 0I
−2I 0I 2I

⎤
⎦.

μ4 := E{κωi(n)κω�
(n)κωp(n)κωj (n)} with i = j �= p �= �

Denoting y = [u(n),u(ωi),u(ω�),u(ωp)]
�, yields

μ4 = [det(I5 +O4Ry)/ξ
2]−1/2 (33)

where O4 =

⎡
⎢⎣

4I −2I −1I −1I
−2I 2I 0I 0I
−1I 0I 1I 0I
−1I 0I 0I 1I

⎤
⎥⎦.

μ5 := E{κωi
(n)κω�

(n)κωp(n)κωj
(n)} with i �= j �= p �= l

Denoting y = [u(n),u(ωi),u(ωj)u(ω�),u(ωp)]
�, yields

μ5 = [det(I6 +O5Ry)/ξ
2]−1/2 (34)

where O5 =

⎡
⎢⎢⎢⎣

4I −1I −1I −1I −1I
−1I 1I 0I 0I 0I
−1I 0I 1I 0I 0I
−1I 0I 0I 1I 0I
−1I 0I 0I 0I 1I

⎤
⎥⎥⎥⎦.

which completes the evaluation of T (n) in (23). Few iterations of
(23) show that T (n) assumes the same form asRκκ. Identifying the
diagonal and off-diagonal entries of T (n) leads to

T (n) = tr{(T 1 − T 2)Cv(n)}IM + tr{T 2 Cv(n)}11
� (35)

where 1 is aM -by-1 unit vector, and T 1 and T 2 are given by

T 1,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ1,2 μ2,3 μ2,4 μ2,4 . . . μ2,4

μ2,3 μ3,2 μ4,4 μ4,4 . . . μ4,4

μ2,4 μ4,4 μ3,4 μ4,5 . . . μ4,5

μ2,4 μ4,4 μ4,5 μ3,4 . . . μ4,5

...
...

...
...

. . .
...

μ2,4 μ4,4 μ4,5 μ4,5 . . . μ3,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(36)
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Finally, the recursive equation of the weight-error correlation
matrix can be computed as follows

Cv(n+ 1) = Cv(n)− η [RκκCv(n) +Cv(n)Rκκ]

+ η2 tr {(T 1 − T 2)Cv(n)} IM (37)

+ η2 tr {T 2 Cv(n)}11
� + η2 JmsminRκκ.

5. SIMULATION RESULTS

This section presents Monte Carlo simulation results (averaged over
1000 runs) to verify the accuracy of the theoretical model. A coher-
ence level ε0 = 10−5 has been used with (5) to build the dictionary
in all simulations. For a given i-th realization of the statistical simu-
lations, i = 1, . . . , 1000, the dictionary dimensionMi and the input
vectors used to initialize the dictionary were determined from the
observation of 500 samples of u(n). The dimensionMi was deter-
mined as the minimum required to achieve the coherence level ε0,
given the kernel bandwidth ξ. Thus, the dimension of the dictionary
was in general different for each realization. Once determined, how-
ever, the dictionary dimension Mi remained fixed throughout the
entire i-th realization. The value ofM used in the theoretical model
was equal to the average of allMi, i = 1, . . . , 1000.

The function ψ(u(n)) in Fig. 1 was the Wiener model [13]

ψ (u(n)) = [b1u(n) + b2u(n− 1)]2 (38)

The input signal was a sequence of statistically independent vec-
tors u(n) = [u1(n) u2(n)]

� with correlated samples satisfying
u1(n) = 0.65u2(n)+ηu(n) so that σ2

u1
= 1. The nonlinear system

output was corrupted by an i.i.d. noise z(n) ∼ N (0, σ2

z = 10−6).
Table 1 shows a summary of the simulation results for ξ =

0.51 and ξ = 0.65. Different values of M have been obtained
for each case. The values of η were chosen so that both imple-
mentations would lead to the same steady-state MSE Jms∞ . N∞

is the number of iterations required for MSE convergence to within
1dB of Jmsex∞

, where Jmsex∞
is the steady-state Jmsex . Note

that the choice of ξ = 0.65 leads to faster convergence and smaller
computational complexity (smaller value of M ). Fig. 2 shows the
Monte Carlo simulations and the behaviors predicted by the theo-
retical model for both cases. Both plots show excellent matching
between theory and simulations. These results clearly show that the
derived model can be used for design purposes, as it allows the pre-
diction of the algorithm behavior for different choices of parameters
ξ and η. Moreover, these examples show the influence of the value
of the kernel bandwidth ξ on the algorithm performance, since the
step size η is basically the same in both cases.

Table 1: Summary of the Simulation Results.

ξ M η Jmsmin Jms∞ Jmsex∞
N∞

[dB] [dB] [dB]
0.51 5 0.038 -18.435 -18.416 -41.987 3076
0.65 3 0.041 -18.459 -18.439 -41.920 1951

6. CONCLUSIONS

A transient analysis of the KLMS adaptive algorithm implemented
using the Gaussian kernel has been presented. The input signal ker-
nel statistics and its effects on the algorithm performance in nonlin-
ear adaptive estimation with white Gaussian inputs have been stud-
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Fig. 2: KLMS behavior for two different kernel bandwidths.

ied. Analytical models have been derived for the mean and mean-
square behaviors of the adaptive weights. Monte Carlo simulation
results have illustrated the accuracy of the proposed model, and its
applicability for design. It has been verified that the choice of the
kernel bandwidth can significantly modify the adaptive filter perfor-
mance.
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