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SUPERVISED NONLINEAR UNMIXING OF
HYPERSPECTRAL IMAGES

USING A PRE-IMAGE METHODS

N.H. Nguyen1, J. Chen1,2, C. Richard1, P. Honeine2 and C. Theys1

Abstract. Spectral unmixing is an important issue to analyze remotely
sensed hyperspectral data. This involves the decomposition of each
mixed pixel into its pure endmember spectra, and the estimation of
the abundance value for each endmember. Although linear mixture
models are often considered because of their simplicity, there are many
situations in which they can be advantageously replaced by nonlinear
mixture models. In this chapter, we derive a supervised kernel-based
unmixing method that relies on a pre-image problem-solving tech-
nique. The kernel selection problem is also briefly considered. We show
that partially-linear kernels can serve as an appropriate solution, and
the nonlinear part of the kernel can be advantageously designed with
manifold-learning-based techniques. Finally, we incorporate spatial in-
formation into our method in order to improve unmixing performance.

1 Introduction

Pixel-vectors in hyperspectral images are usually mixtures of spectral components
associated with a number of pure materials present in the scene (Keshava &
Mustard 2002). In order to reveal embedded information, one needs to identify the
endmembers present in each pixel and derive the relative proportions of different
materials. Under the assumption that the endmembers have been determined a
priori using some appropriate extraction approaches, see e.g., (Boardman 1993;
Nascimento & Bioucas-Dias 2005; Winter 1999), unmixing of hyperspectral images
then consists of estimating the fractional abundances.

The abundance estimation problem has most often been solved based on the
linear mixing model. Some examples are described in (Dobigeon et al. 2009; Heinz
& Chang 2001; Honeine & Richard 2012; Theys et al. 2009). For instance, the
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FCLS method presented in (Heinz & Chang 2001) estimates the abundances by
minimizing a mean-square-error criterion subject to linear equality and inequal-
ity constraints. The geometric strategy described in (Honeine & Richard 2012)
reduces to calculate ratios of polyhedra volumes in the space spanned by the hy-
perspectral pixel-vectors. The main advantage of the former is the convexity of
the optimization problem. A very low computational cost characterizes the latter.

In real-world scenes, the interaction between materials can generate nonlinear
effects that influence the precision in abundance calculation, and can cause the
abundance vectors to violate the non-negativity and the sum-to-one constraints.
Nonlinear models can then be introduced to account for these effects, e.g., the
generalized bilinear model (Halimi et al. 2011), the post non-linear mixing model
Jutten & Karhunen (2003), and the intimate model (Hapke 1981). Nonlinear un-
mixing methods attempt to invert these models and estimate the abundances. In
(Halimi et al. 2011), a nonlinear unmixing algorithm for general bilinear mixture
model was proposed. Based on Bayesian inference, this method however has a high
computational complexity and is dedicated to the bilinear model. In (Nascimento
& Bioucas-Dias 2009; Raksuntorn & Du 2010), the authors extended the collec-
tion of endmembers by adding artificial cross-terms of pure signatures to model
light scattering effects on different materials. However, it is not easy to identify
which cross-terms should be selected and added to the endmember dictionary. If
all the possible cross-terms were considered, the set of endmembers would expand
dramatically. Another possible strategy is to use manifold learning approaches
such as Isomap (Tenenbaum et al. 2000), and LLE (Roweis & Saul 2000), which
allow the use of linear methods in a linear space of non-linearly mapped data. Fi-
nally, in (Chen et al. 2013b), the authors formulated a new kernel-based paradigm
that relies on the assumption that the mixing mechanism can be described by a
linear mixture of endmember spectra, with additive nonlinear fluctuations defined
in a reproducing kernel Hilbert space. This family of models has a clear phys-
ical interpretation, and allows to take complex interactions of endmembers into
account.

The abundance estimation stage can be accomplished within the context where
the abundances of the endmembers are known for some pixels, called training data.
A learning process is then applied to estimate the abundances for the remaining
pixels. See, e.g., (Altmann et al. 2011b; Themelis et al. 2010; Tourneret et al.
2008). In (Altmann et al. 2011b), the map that approximates the abundances
for any pixel-vector is a linear combination of radial basis functions. Its weights
are estimated based on training samples. An orthogonal least-squares algorithm
is then applied to reduce the number of radial basis functions in the model. In
this chapter, we show that the learning process for abundance estimation based on
training data can be viewed as a pre-image problem (Honeine & Richard 2011).
While the mapping from input space to feature space is of primary importance in
kernel methods, the reverse mapping from feature space back to input space can be
also useful. Solving the pre-image problem within the context of our application
consists of approximating the reverse mapping from the high-dimensional space
of hyperspectral pixel-vectors to the low-dimensional space of abundance vectors.
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We also consider the problem of kernel selection. As in (Chen et al. 2013b),
we show that partially-linear kernels can serve as an appropriate solution. In
this case, the nonlinear part of the kernel can be advantageously designed with
manifold-learning-based techniques. We also investigate how to incorporate spatial
correlation into the abundance estimation process. Total-variation regularization
was introduced with success in (Iordache et al. 2011) to perform this task within
the context of linear unmixing, and used in (Chen et al. 2013a) to extend the
kernel-based framework presented in (Chen et al. 2013b). In the spirit of these
recent results, a pre-image method for nonlinear spectral unmixing coupled with
a �1-type spatial regularization is derived in this chapter.

This chapter is organized as follows. Section 2 describes the problem of non-
linear unmixing of hyperspectral data. It also introduces the pre-image problem
within the context of kernel-based data processing. Section 3 solves the pre-image
problem with kernel matrix regression in order to perform nonlinear unmixing of
hyperspectral data. Section 4 addresses the question of kernel selection. Section 5
aims at solving the same problem with spatial regularization. Section 6 shows
experimental results. Finally, Section 7 concludes the chapter.

2 Hyperspectral data unmixing formulated as a pre-image problem

2.1 Hyperspectral image mixing model

Let r = [r1, r2, . . . , rL]� be an observed hyperspectral pixel-vector, with L the
number of spectral bands. We shall assume that r is a mixture of R endmember
spectra mi. Let us denote by M = [m1,m2, . . . ,mR] the L-by-R endmember
matrix, and by α the R-dimensional abundance vector associated with r.

We first consider the linear mixing model where any observed pixel is a linear
combination of the endmembers, weighted by the fractional abundances, that is,

r =Mα+ v (2.1)

where v is a noise vector. The abundance vector α is usually determined by
minimizing a cost function, e.g., the mean-square reconstruction error, under the
non-negativity and sum-to-one constraints

αi ≥ 0, ∀i ∈ 1, . . . , R
R∑
i=1

αi = 1. (2.2)

The above model assumes that abundance vector α lies on a simplex of R vertices.
A direct consequence is that pixel-vectors r also lie in a simplex with vertices the
R endmember spectra. There are many situations, involving multiple scattering
effects, in which model (2.1) may be inappropriate and could be advantageously
replaced by a nonlinear one. Consider the general mixing mechanism

r = Ψ(α,M) + v (2.3)
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Fig. 1. The basic pre-image problem.

with Ψ an unknown function that defines the interactions between the endmembers
in matrix M subject to conditions (2.2).

As illustrated in Figure 1, models (2.1) and (2.3) both rely on a mapping
from the low-dimensional input space A of abundance vectors α into the high-
dimensional output space R of hyperspectral data r. In this paper, we consider
the problem of estimating abundances as a pre-image problem (Honeine & Richard
2011). Solving the pre-image problem, within a supervised learning context, con-
sists of approximating the reverse mapping that allows to recover the abundance
vector α given any pixel-vector r, based on training data.

2.2 Estimating a pre-image

This section introduces an original framework, based on the pre-image problem,
for supervised unmixing of hyperspectral data. See Figure 2. In order to allow the
model to better capture some complex mixing phenomena, we use a reproducing
kernel Hilbert space (RKHS) framework in place of R. We shall now review
the main definitions and properties related to reproducing kernel Hilbert spaces
(Aronszajn 1950).

Let H denote a Hilbert space of real-valued functions ψ on R, and let 〈· , ·〉H
be the inner product in H. Suppose that the evaluation functional δr defined by
δr[ψ] = ψ(r) is linear with respect to ψ and bounded, for all r in R. By virtue of
the Riesz representation theorem, there exists a unique positive definite function
r �→ κ(r, r′) in H, denoted by κ(·, r′) and called representer of evaluation at r′,
which satisfies (Aronszajn 1950)

ψ(r′) = 〈ψ, κ(·, r′)〉H, ∀ψ ∈ H (2.4)

for every fixed r′ ∈ R. A proof of this may be found in (Aronszajn 1950). Re-
placing ψ by κ(·, r) in (2.4) yields

κ(r, r′) = 〈κ(·, r), κ(·, r′)〉H (2.5)

for all r, r′ ∈ R. Equation (2.5) is the origin of the generic term reproducing kernel
to refer to κ. Denoting by Φ the map that assigns the kernel function κ(·, r) to
each input data r, Equation (2.5) implies that

κ(r, r′) = 〈Φ(r),Φ(r′)〉H. (2.6)
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The kernel thus evaluates the inner product of any pair of elements of R mapped
to the space H without any explicit knowledge of Φ and H. Within the machine
learning area, this key idea is known as the kernel trick.

As shown in Figure 2, mapping back to the space A in order to recover α, given
any κ(·, r) in H, is a critical task. Generally, most of the features in H have no
exact pre-image in A. The pre-image problem in kernel-based machine learning
has attracted a considerable interest in the last fifteen years. See (Honeine &
Richard 2011) for an overview. In (Mika et al. 1999), Mika et al. introduced the
problem and its ill-posedness. They also derived a fixed-point iteration strategy,
potentially unstable, to find a solution without any guarantee of optimality. In
(Kwok & Tsang 2003), Kwok et al. suggested a relationship between the distances
in the feature space H and in the input space A. Applying a multidimensional
scaling technique yields an inverse map estimate, and thus a pre-image. This
approach has opened the way to a range of other techniques that use training
data in both spaces as prior information, such as manifold learning (Roweis &
Saul 2000; Tenenbaum et al. 2000) and out-of-sample methods (Arias et al. 2007;
Bengio et al. 2003).

In this chapter, we shall use an efficient method for solving the pre-image
problem that was recently proposed in (Honeine & Richard 2011). It consists
of deriving a transformation that preserves the inner products between training
data, in the input space A and, with some abuse of notation, in the feature space
H. Given any r, it thus allows to estimate α from κ(·, r). The next section is
dedicated to this approach, and its application to supervised unmixing.

3 Supervised unmixing

Given a set of training data {(α1, r1), . . . , (αn, rn)}, we seek the pre-image α in
A of some arbitrary κ(·, r) of H. The proposed approach consists of two stages:
First, learning the reverse map; Then, estimating the pre-image.

A

αi
κ(·, ri)

ΨH

?
κ(·, rj)

H

Fig. 2. The pre-image problem.

3.1 Stage 1: Learning the reverse map

By virtue of the Representer Theorem (Schölkopf et al. 2000), we know that
we can limit our investigation to the space spanned by the n kernel functions
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{κ(·, r1), . . . , κ(·, rn)}. Let us focus on only a subspace spanned by � functions to
be determined, denoted by {ψ1, . . . , ψ�} with � ≤ n, of the form

ψk =
n∑
i=1

λki κ(·, ri), k = 1, . . . , �. (3.1)

We consider the analysis operator C: H → IR� defined as

Cϕ = [〈ϕ, ψ1〉H . . . 〈ϕ, ψ�〉H]�. (3.2)

Note that the k-th entry of the representation of any kernel function κ(·, r) is given
by

〈κ(·, r), ψk〉H =
n∑
i=1

λki κ(r, ri). (3.3)

It is interesting to note that 〈κ(·, r), ψk〉H = ψk(r) by the reproducing property of
the space H. The kernel function κ(·, r) is thus represented by the �-length vector

ψr = [ψ1(r)ψ2(r) . . . ψ�(r)]� (3.4)

with ψk(r) defined in (3.3). In order to fully define the analysis operator C, that
is, to estimate the λki, we suggest to consider the following relationship between
any inner product in the input space A and, with some abuse of notation, with its
counterpart in the feature space H

α�
i αj = ψ�

ri
ψrj

+ εij , ∀ i, j = 1, . . . , n (3.5)

where εij denotes the lack-of-fit of the above model. Note that there is no con-
straint on the analysis functions ψk, except their form (3.1) and the goodness-of-fit
constraint (3.5), because reconstruction from expansion coefficients is not consid-
ered. Let us now estimate the λki in (3.3) so that the empirical variance of εij is
minimal, that is,

min
λ11,...,λ�n

1
2

n∑
i,j=1

(α�
i αj −ψ�

ri
ψrj

)2 + η P (ψ1, . . . , ψ�) (3.6)

where P is a regularization function, and η a tunable parameter used to control
the tradeoff between fitting the data and smoothness of the solution. We shall use
�2-norm penalization in this paper, defined as

P (ψ1, . . . , ψ�) =
�∑

k=1

‖ψk‖2H. (3.7)

The optimization problem can be expressed in matrix form as

min
L

1
2
‖A−KL�LK‖2F + η trace(L�LK) (3.8)
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where A and K are the Gram matrices with (i, j)-th entries defined as α�
i αj and

κ(ri, rj), respectively, and L is the matrix with (i, j)-th entry given by λij .
Taking the derivative of this cost with respect to L�L, rather than L, we get

L̂
�
L̂ =K−1(A− ηK−1)K−1. (3.9)

In the following, we shall show that only L̂
�
L̂ is needed to calculate the pre-image.

3.2 Stage 2: Estimate the pre-image

Let us first consider the case of any function ϕ of H, which can be written as
follows

ϕ =
n∑
i=1

φi κ(·, ri) + ϕ⊥ (3.10)

with ϕ⊥ an element of the orthogonal complement to the subspace spanned by the
kernel functions κ(·, ri). Note at this point that the parameters φi are supposed to
be known. In any case, they can be evaluated by projecting ϕ onto the subspace
spanned the n kernel functions κ(·, ri), that is, by solving

min
φ
‖ϕ−

n∑
i=1

φi κ(·, ri)‖2H. (3.11)

This yields the n-by-n linear system of equationsKφ = ϕ0, where ϕ0 is the vector
with i-th entry ϕ(ri), and φ stands for the vector with i-th entry φi, for i =
1, . . . , n. Referring back to Equation (3.10), the k-th entry of the representation
of ϕ by the analysis operator C, denoted by ϕ, is given by

〈ϕ, ψk〉H =
n∑

i,j=1

φi λ̂kj κ(ri, rj), (3.12)

where λ̂kj is the (k, j)-th entry of the matrix L̂ estimated during Stage 1. This
directly implies that ϕ = L̂Kφ. Minimizing now the lack-of-fit (3.5), with respect
to the pre-image α given ϕ, between α�αi and ϕ�ψri

for i = 1, . . . , n, leads to
the optimization problem

α̂ = argmin
α

1
2
‖Λ�α−KL̂�

L̂Kφ‖2

= argmin
α

1
2
‖Λ�α− (A− ηK−1)φ‖2 (3.13)

subject to the non-negativity and sum-to-one constraints (2.2). Here Λ is the
matrix with i-th column the vector αi.

Let us now consider the particular case where one seeks the pre-image α of
some kernel function κ(·, r0). Substituting ϕ by κ(·, r0) in Equation (3.11) leads
us to the system Kφ = κ0, where κ0 is the vector with i-th entry κ(ri, r0).
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Minimizing the appropriate lack-of-fit (3.5) with respect to the pre-image α leads
us to the optimization problem

α̂ = arg min
α

1
2
‖Λ�α− (A− ηK−1)K−1κ0‖2 (3.14)

subject to the non-negativity and sum-to-one constraints (2.2). This convex opti-
mization problem can be solved using the FCLS strategy to deal with the equal-
ity constraints (Heinz & Chang 2001), associated with a nonnegative least-mean-
square algorithm. See, e.g., (Chen et al. 2011) for an overview.

4 Kernel selection

The kernel function κ(·, r) maps the measurements r into a very high, even infinite,
dimensional space H. It characterizes the solution space for the possible nonlinear
relationships between input data α and output data r. Classic examples of kernels
are the Gaussian kernel κ(ri, rj) = exp

(−‖ri − rj‖2/2σ2
)
, with σ the kernel

bandwidth, and the q-th degree non-homogeneous polynomial kernel κ(ri, rj) =
(1 + r�i rj)

q, with q ∈ IN∗. We shall now make some suggestions for selecting
specific kernels, before testing it in the next section. On the one hand, we shall
briefly propose to design the kernel directly from data by using manifold learning
techniques. On the other hand, we shall present a partially-linear kernel that has
proved its efficiency for nonlinear unmixing (Chen et al. 2013b).

4.1 Kernel selection based on manifold learning techniques

In (Ham et al. 2003), the manifold learning problem is treated within the context
of kernel PCA. The process of revealing the underlying structure of data is viewed
as a nonlinear dimensionality reduction method, based on local information with
LLE (Roweis & Saul 2000), or geodesic distance with Isomap (Tenenbaum et al.
2000). These techniques can be used to design kernels that preserve some aspects
of the manifold structure of the space R to which the vectors ri belong, in the
feature space H of the functions κ(·, ri). We used such techniques in (Nguyen
et al. 2012) for unmixing of hyperspectral data.

As an example, we consider radial basis kernels of the form κ(ri, rj) = f(‖ri−
rj‖) with f ∈ C∞. A sufficient condition for this class of kernels to be positive-
definite, and thus valid, is the complete monotonicity of the function f , which can
be expressed as follows,

(−1)k f (k)(r) ≥ 0, ∀r ≥ 0 (4.1)

where f (k) denotes the k-th order derivative of f (Cucker & Smale 2002). In-
stead of using the euclidean distance dij = ‖ri − rj‖ with f , we can use pairwise
distances diso,ij = ‖ri − rj‖iso provided by Isomap. This approach consists of
constructing a symmetric adjacency graph using a nearest neighborhood based
criterion, and applying Dijkstra algorithm to compute the shortest path along
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edges of this graph, between each pair of data. Unfortunately, the Gram matrix
Kiso constructed in such a way has no guarantee of being positive definite. This
difficulty can be overcome by using multidimensional scaling, which maps the data
into a low-dimensional euclidean subspace where edge lengths are best preserved.
An alternative is to force matrix Kiso to be positive definite using one of the
approaches describes in (Muñoz & Diego 2006).

4.2 Partially-linear Kernel

Model (2.1)-(2.2) assumes that the relationship between the abundance vectors αi
and the hyperspectral pixel-vectors ri is linear. There are however many situa-
tions, involving multiple scattering effects, in which this model may be inappro-
priate and could be advantageously replaced by a nonlinear one. In (Chen et al.
2013a,b), we studied mixing models defined by a linear trend parameterized by the
abundance vector, combined with a nonlinear fluctuation term. Extensive experi-
ments, both with synthetic and real scenes, illustrated the flexibility and and the
effectiveness of this class of models. In the spirit of these derivations, we suggest
to consider kernels of the form

κ(ri, rj) = (1− γ) r�i Σ rj + γ κ′(ri, rj) (4.2)

with κ′(ri, rj) a reproducing kernel, Σ a non-negative matrix, and γ a parameter
in [0, 1] to adjust the balance between the linear and the nonlinear kernels.

In all the experiments, we shall use the above kernel with Σ = (MM�)†

κ(ri, rj) = (1− γ) r�i (MM�)† rj + γ κ′(ri, rj) (4.3)

where (·)† stands for the pseudo-inverse. Indeed, for γ = 0, it can be shown that
this kernel leads to the least-mean-square estimate of the abundance vector in the
case of a linear mixing scenario.

5 Spatial regularization applied to supervised unmixing

5.1 Formulation

In the previous section, we showed how to estimate the abundances by learning a
reverse mapping. This approach consisted of considering pixel vectors as if they
were independent from their neighboring pixels. However, a fundamental property
of remotely sensed data is that they convey multivariate information into a 2D
pictorial representation. Hyperspectral analysis techniques can thus benefit from
the inherent spatial-spectral duality in hyperspectral scenes. Following this idea,
researchers exploited spatial information for endmember estimation (Martin &
Plaza 2011; Rogge et al. 2007; Zortea & Plaza 2009) and pixel vectors classification
(Fauvel et al. 2012, to appear; Li et al. 2011). Recently, spatial processing methods
were also derived for semi-supervised unmixing (Chen et al. 2013a). In this section,
we aim at improving the pre-image method by incorporating such information.
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Following (Iordache et al. 2011), an optimization method based on split variable
iteration is proposed to deal with this problem that suffers the non-smoothness of
the regularization term.

Let us denote by Δ the matrix of the abundance vectors, that is, Δ =
[α1, . . . ,αn]. In order to take the spatial relationship among pixels into con-
sideration, we suggest to consider a general cost function of the form

J(Δ) = Jerr(Δ) + νJsp(Δ) (5.1)

subject to the non-negativity constraint imposed on each entry of Δ, and the
sum-to-one constraint imposed on each column of the matrix Δ, namely, on each
αi. For ease of notation, these two physical constraints will be expressed by

Δ � 0

Δ�1R = 1N . (5.2)

The function Jerr(Δ) represents the modeling error, and Jsp(Δ) is a regularization
term to promote similarity of the fractional abundances within neighboring pixels.
The non-negative parameter ν is used to control the trade-off between data fidelity
and pixel similarity.

To take spatial relationships among pixels into consideration, let us consider
the following regularization function

Jsp(Δ) =
n∑
i=1

∑
j∈N (i)

‖αi − αj‖1 (5.3)

where ‖ ‖1 denotes the vector �1-norm, and N (i) is the set of neighbors of the
pixel i. This regularization term promotes spatial homogeneity as neighboring
pixels may be characterized by similar abundances for most materials. Without
any loss of generality, in this paper, we restrict the neighborhood of the pixel i by
taking the 4 nearest pixels i−1 and i+1 (row adjacency), i−w and i+w (column
adjacency). In this case, let us define the (n×n) matricesH← andH→ as the two
linear operators that compute the difference between any abundance vector and its
left-hand neighbor, and right-hand neighbor, respectively. Similarly, let H↑ and
H↓ be the linear operators that compute that difference with the top neighbor and
the down neighbor, respectively. With these notations, the regularization function
(5.3) can be rewritten in matrix form as

Jsp(Δ) = ‖ΔH‖1,1 (5.4)

with H the (n×4n) matrix
(
H←H→H↑H↓

)
and ‖ ‖1,1 the sum of the �1-norms

of the columns of a matrix. Note that this regularization function is convex but
non-smooth.
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Considering both the modeling error and the regularization term, the optimiza-
tion problem becomes

min
Δ

n∑
i=1

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ν‖ΔH‖1,1

subject to Δ � 0 and Δ�1R = 1N (5.5)

where ν controls the trade-off between model fitting in each pixel and similarity
among neighboring pixels. For ease of notation, in the following, we shall write
Δ ∈ S+1 to denote the non-negativity and sum-to-one constraints.

5.2 Solution

Even though the optimization problem (5.5) is convex, it cannot be solved easily
because of the non-smooth regularization term. In order to overcome this draw-
back, we rewrite it in the following equivalent form

min
Δ∈S+1

n∑
i=1

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ν‖U‖1,1

subject to V = Δ and U = V H (5.6)

where we have introduced two new matrices U and V , and two additional con-
straints. The matrix U will allow us to decouple the non-smooth �1-norm regu-
larization functional from the main quadratic problem. The matrix V will relax
connections between pixels. This variable-splitting approach was initially intro-
duced in (Goldstein & Osher 2009).

As studied in (Goldstein & Osher 2009), the split Bregman iteration algorithm
is an efficient method to deal with a broad class of �1-regularized problems. By
applying this framework to (5.5), the following formulation is obtained

Δ(k+1),V (k+1),U (k+1) = arg min
Δ∈S+1,V ,U

n∑
i=1

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2

+ ν‖U‖1,1+
ζ

2
‖Δ−V −D(k)

1 ‖2F +
ζ

2
‖U−V H−D(k)

2 ‖2F
(5.7)

with

D
(k+1)
1 = D

(k)
1 +

(
V (k+1) −Δ(k+1)

)

D
(k+1)
2 = D

(k)
2 +

(
V (k+1)H −U (k+1)

)
(5.8)

where ‖ ‖2F denotes the matrix Frobenius norm, and ζ is a positive parameter.
Because we have split the components of the cost function, we can now solve the
above minimization problem efficiently by iteratively minimizing the cost function
with respect to Δ, V and U separately. We shall now describe the three steps
that have to be performed.
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5.2.1 Step 1: Optimization with respect to Δ

The optimization problem (5.7) reduces to

Δ(k+1) = arg min
Δ∈S+1

n∑
i=1

1
2

(
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ζ‖αi − ξ(k)

i ‖2
)

(5.9)

where ξ(k)
i = V

(k)
i +D(k)

1,i . Here, V (k)
i and D(k)

1,i denote the i-th column of V (k)

and D(k)
1 , respectively. It can be observed that this problem can be decomposed

into subproblems, each one involving an abundance vector αi. This results from
the use of the matrix V in the split iteration algorithm (5.7).

Let us now solve the local optimization problem

α
(k+1)
i = arg min

αi

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ζ‖αi − ξ(k)

i ‖2

subject to αi � 0

α�
i 1R = 1. (5.10)

Estimating αi reduces to a quadratic optimization problem with linear equality
and inequality constraints, which can be efficiently solved by off-the-shelf methods.
This process has to be repeated for i = 1, . . . , n in order to get Δ(k+1).

5.2.2 Step 2: Optimization with respect to V

The optimization problem (5.7) now reduces to

V (k+1) = arg min
V

‖Δ(k+1) − V −D(k)
1 ‖2F + ‖U (k) − V H −D(k)

2 ‖2F . (5.11)

Equating to zero the derivative of (5.11) with respect to V leads to(
Δ(k+1) − V −D(k)

1

)
+
(
U (k) − V H −D(k)

2

)
H� = 0 (5.12)

whose solution is then given by

V (k+1) =
(
Δ(k+1) −D(k)

1 + (U (k) −D(k)
2 )H�

)
(I +HH�)−1. (5.13)

As a conclusion, this subproblem has an explicit solution that involves the inverse
of the matrix (I +HH�). The latter can be evaluated once the neighborhood
relationship is defined.

5.2.3 Step 3: Optimization with respect to U

The last optimization problem we have to consider is as follows

U (k+1) = arg min
U

ν‖U‖1,1 +
ζ

2
‖U − V (k+1)H −D(k)

2 ‖2F . (5.14)
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Its solution can be expressed via the well-known soft threshold function

U (k+1) = Thresh
(
V (k+1)H +D(k)

2 ,
ν

ζ

)
(5.15)

where Thresh(·, τ) denotes the component-wise application of the soft threshold
function defined as

Thresh(x, τ) = sign(x) max(|x| − τ, 0). (5.16)

As in Step 2, the third subproblem has an explicit solution. The computational
time is also almost negligible.

To conclude, the problem (5.6) is solved by iteratively applying (5.7) and (5.8),
where the optimization of (5.7) can be performed by applying Steps 1 to 3. These
iterations continue until some stopping criterion is satisfied. It can be shown that,
if the problem (5.7) has a solution Δ∗ given any ζ > 0, then the generated sequence
Δ(k) converges to Δ∗ (Eckstein & Bertsekas 1992).

6 Simulation results

In this section, we shall experiment the pre-image method with and without spatial
regularization in order to evaluate the benefit of using the latter. We shall compare
it with state-of-the-art methods.

6.1 Experiments with the pre-image method

Spatial regularization is not addressed in this subsection. Two synthetic scenes
were generated with real material spectra, on the one hand from abundance vectors
uniformly distributed in the simplex defined by the non-negativity and the sum-
to-one constraints, and on the other hand from abundance vectors lying on a
manifold.

6.1.1 Experiments on synthetic images with uniformly-distributed abundances

We shall first report some experimental results on synthetic images, which were
generated by linear and nonlinear mixing of several endmember signatures. The
materials that were considered are alunite, calcite, epidote, kaolinite, and bud-
dingtonite. There spectra were extracted from the ENVI software library, and
consisted of 420 contiguous bands, covering wavelength ranging from 0.3951 to
2.56 micrometers. They were used to synthesize 50 × 50 images with different
mixture models, each providing n = 2500 pixels for evaluating and comparing
several unmixing algorithms. These three models were: the linear model, the bi-
linear mixture model with attenuation factors γij = 1 (Halimi et al. 2011), and
the post-nonlinear mixing model (PNMM) defined by (Jutten & Karhunen 2003)

r = (Mα)ξ + v (6.1)
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where (·)ξ denotes the exponential value ξ applied to each entry of the input vector.
This parameter was set to 0.7. The abundance vectors αi, with i = 1, . . . , 2500,
were uniformly generated in the simplex defined by the non-negativity and the
sum-to-one constraints. In the first scene, only three materials were selected to
generate images: epidote, kaolinite, buddingtonite. In the second scene, five ma-
terials were used: alunite, calcite, epidote, kaolinite, buddingtonite. These scenes
were corrupted with an additive white Gaussian noise v with two levels of SNR,
15 dB and 30 dB.

The following algorithms were considered in our experiments.

• The Fully Constrained Least Square method (FCLS) (Heinz & Chang
2001): This algorithm relies on a semi-supervised learning setting in the sense
that unmixing is performed using endmember spectra as prior information.
It is based on a linear mixture model, and provides the optimal solution in
the least-mean-square sense subject to the non-negativity and the sum-to-
one constraints.

• The Kernel Fully Constrained Least Square method (KFCLS)
(Broadwater et al. 2007): This semi-supervised nonlinear algorithm is the
kernel-based counterpart of FCLS, obtained by replacing all the inner prod-
ucts in FCLS by kernel functions. In the experiments, as for our pre-image
algorithm, we used the Gaussian kernel with kernel bandwidth σ = 4.

• The Bayesian algorithm derived for generalized bilinear model
(BilBay) (Halimi et al. 2011): This semi-supervised method is based on
appropriate prior distributions for the unknown abundances, which must
satisfy the non-negativity and sum-to-one constraints, and then derives joint
posterior distribution of these parameters. A Metropolis-within-Gibbs algo-
rithm is used to estimate the unknown model parameters.

• The RBF-with-OLS method (RBF-OLS) (Altmann et al. 2011a): As
our pre-image method, this supervised algorithm aims at learning a nonlinear
reverse mapping fromR to A. The estimator is a linear combination of radial
basis functions with centers chosen from the training data through an OLS
procedure.

• The pre-image algorithm proposed in this paper: The inhomogeneous
polynomial kernel (P) of degree d = 2, the Gaussian kernel (G) with kernel
bandwidth σ = 4, and the partially-linear kernel (PL) associating a linear
kernel and a Gaussian kernel with σ = 4. The parameter γ combining these
two kernels, and the regularization coefficient η, were set to 10−1 and 10−3.

The cardinality of the training data set was fixed to 200 in order to reach an appro-
priate compromise between the computational cost and the performance. The root
mean square error (RMSE) between the true and the estimated abundance vectors
αi and α̂i was used to compare the performance of the five algorithms. Results
for Scene 1 and Scene 2 unmixing, with three and five endmember materials, are
reported in Table 1 and Table 2, respectively.
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Table 1. Scene 1 (three materials): RMSE comparison.

SNR = 30 dB SNR = 15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0037 0.0758 0.0604 0.0212 0.0960 0.0886
KFCLS 0.0054 0.2711 0.2371 0.0296 0.2694 0.2372
BilBay 0.0384 0.0285 0.1158 0.1135 0.1059 0.1191

RBF-OLS 0.0144 0.0181 0.0170 0.0561 0.0695 0.0730
Pre-image method (P) 0.0139 0.0221 0.0129 0.0592 0.0601 0.0764
Pre-image method (G) 0.0086 0.0104 0.0103 0.0422 0.0561 0.0597
Pre-image method (PL) 0.0072 0.0096 0.0098 0.0372 0.0395 0.0514

Table 2. Scene 2 (five materials): RMSE comparison.

SNR = 30 dB SNR = 15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0134 0.1137 0.1428 0.0657 0.1444 0.1611
KFCLS 0.0200 0.2051 0.1955 0.0890 0.1884 0.1572
BilBay 0.0585 0.0441 0.1741 0.1465 0.1007 0.1609

RBF-OLS 0.0200 0.0236 0.0259 0.0777 0.0805 0.0839
Pre-image method (P) 0.025 0.0267 0.0348 0.0905 0.0903 0.1000
Pre-image method (G) 0.0186 0.0233 0.0245 0.0775 0.0778 0.0875
Pre-image method (PL) 0.0148 0.0184 0.0203 0.0636 0.0616 0.0763

Consider first the semi-supervised algorithms. The FCLS method achieves
a very low RMSE for linearly-mixed images because it was initially derived for
the linear mixing model. As a consequence, it produces a large RMSE with
nonlinearly-mixed images. The KFCLS should have overcome this drawback. It
however performs worse than FCLS, even with nonlinearly-mixed images as it
does not clearly investigate nonlinear interactions between materials (Chen et al.
2013b). BilBay algorithm was derived for the bilinear mixing model, and thus
achieves very good performance with bilinearly-mixed images. Nevertheless, its
performance severely degrades when dealing with a nonlinear mixing model for
which it was not originally designed. Consider now the supervised algorithms.
The pre-image method and RBF-OLS outperforms all the semi-supervised algo-
rithms when dealing with non-linearly mixed images. Of course, they make use
of more information to achieve this performance. Our approach is however much
more flexible than RBF-OLS since it can be associated with any reproducing ker-
nel. In particular, as already observed in (Chen et al. 2013b), the experiments
demonstrate the benefit of using a partially-linear kernel.

6.1.2 Experiment on synthetic images: Test with swiss-roll data

In order to highlight the flexibility of our approach with respect to kernel selection,
we shall now show that kernels designed with manifold learning techniques can be
advantageously used. Let us consider the well-known swiss-role artificial data
set for illustration purpose. It consists of random samples in a two-dimensional
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Fig. 3. Geodesic kernel vs. partially-linear kernel in the case where data lie in a manifold.

simplex, transformed into a three-dimensional nonlinear manifold by projection
on a swiss-roll structure. The non-linearity of the swiss-roll data is parameterized
by a variable ω. The coordinate of a data point ri as a function of the local
abundance αi are expressed by⎧⎪⎨

⎪⎩
ri1 = αi1 sin(ωαi1) + 1
ri2 = αi1 cos(ωαi1) + 1
ri3 = αi2 + 1.

(6.2)

Following the sum-to-one constraint, the abundance of the third endmembers can
be generated by αi3 = 1− (αi1 +αi2). By setting a single abundance equal to one,
and the two others to zero, we obtain the endmember spectra

⎧⎪⎨
⎪⎩
m1 = [sin(ω) + 1, cos(ω) + 1, 1]�

m2 = [1, 1, 2]�

m3 = [1, 1, 1]�.

(6.3)

Swiss-roll data unmixing was performed with our pre-image algorithm, based on
100-sample training sets, for ω values in the interval [0, 2]. The partially-linear
kernel with Gaussian kernel whose bandwidth was set to σ = 4, and the kernel
based on geodesic distances provided by Isomap, were considered. The geodesic
kernel was constructed using the geodesic distance matrix provided by Isomap and
Djisktra algorithms. Note that this matrix was converted into a positive definite
matrix using a technique described in (Muñoz & Diego 2006). Figure 3 clearly
shows that the geodesic kernel is much more appropriate than the partially-linear
kernel in the case where the data lie in a manifold, and the performance of the
algorithm is quite steady even for large ω values.

6.2 Experiments with the spatially-regularized pre-image method

Two spatially correlated abundance maps were generated for the following ex-
periments. The endmembers were randomly selected from the spectral library
ASTER (Baldridge et al. 2009). Each signature of this library has reflectance
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values measured over 224 spectral bands, uniformly distributed in the interval
3 − 12 micrometers. Two synthetic abundance maps identical to (Iordache et al.
2011) were used.

The first data cube, denoted by IM1, and containing 50× 50 pixels, was gen-
erated using five signatures randomly selected from the ASTER library. Pure
regions and mixed regions involving between 2 and 5 endmembers, distributed
spatially in the form of square regions, were generated. The background pixels
were defined as mixtures of the same 5 endmembers with the abundance vector
[0.1149, 0.0741, 0.2003, 0.2055, 0.4051]�. The first row in Figure 4 shows the true
fractional abundances for each endmember. The reflectance samples were gener-
ated with the bilinear mixing model, based on the 5 endmembers, and corrupted
by a zero-mean white Gaussian noise vi with a SNR of 20 dB, namely,

ri = Mαi +
R∑
p=1

R∑
q=p+1

αn,p αn,qmp ⊗mq + vi (6.4)

with ⊗ the Hadamard product.
The second data cube, denoted by IM2 and containing 100 × 100 mixed pix-

els, was generated using 5 endmember signatures. The abundance maps of the
endmembers are the same as for the image DC2 in (Iordache et al. 2011). The
first row of Figure 5 depicts the true distribution of these 5 materials. Spatially
homogeneous areas with sharp transitions can be clearly observed. Based on these
abundance maps, an hyperspectral data cube was generated with the bilinear
model (6.4) applied to the 5 endmember spectral signatures. The scene was also
corrupted by a zero-mean white Gaussian noise vi with a SNR of 20 dB.

Algorithms with and without spatial regularization were compared in order
to demonstrate the effectiveness of adding this type of information. Unsupervised
algorithms that do not use spatial information, were also considered for comparison
purpose. The tuning parameters of the algorithms were set using preliminary
experiments on independent data, via a simple search over predefined grids.

1. The linear unmixing method FCLS (Heinz & Chang 2001): The regulariza-
tion parameter λ was varied in {10−4, 10−3, 10−2, 10−1} in order to determine
the best configuration.

2. The pre-image algorithm without spatial regularization: The partially-linear
kernel with γ = 0.1 was considered. It was associated with the Gaussian
kernel. The bandwidth of the latter was varied in [0.5, 5], and finally set
to 4. The regularization parameter η of the pre-image algorithm was varied
in {10−4, 10−3, 10−2, 10−1}, and was finally set to 10−3. The size of the
training set was set to 200.

3. The pre-image algorithm with spatial regularization: The same parameter
values as above were considered for this algorithm in order to clearly evaluate
the interest of taking spatial information into account. The parameters ζ and
ν, which are specifically related to the spatial regularization, were tuned as
explained below.
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Fig. 4. Estimated abundance maps for IM1. From top to bottom: true abundance map,

FCLS, pre-image method, pre-image method with spatial regularization.

With the image IM1, the preliminary tests led us to λ = 10−2 for FCLS, and
ζ = 1, ν = 0.1 for the proposed algorithm. With the image IM2, these tests led to
λ = 0.01 for FCLS, and ζ = 20, ν = 0.5 for the proposed algorithm.

The estimated abundances are presented in Figures 4 and 5. The reconstruc-
tion errors (RMSE) are reported in Table 3. For both images IM1 and IM2, it can
be observed that when applied on nonlinearly mixed data, the linear unmixing
method FCLS has large reconstruction errors. The proposed pre-image method
allows to notably reduce this error in the mean sense, but the estimated abun-
dance maps are corrupted by a noise that partially masks spatial structures of
the materials. Finally, the proposed spatially-regularized method has lower recon-
struction error and clearer abundance maps. Using spatial information obviously
brings advantages to the nonlinear unmixing process.

Table 3. Comparison of the RMSE for IM1 and IM2.

Algorithms IM1 IM2
FCLS 0.1426 0.0984

pre-image 0.0546 0.0712
pre-image with reg. 0.0454 0.0603
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Fig. 5. Estimated abundance maps for IM2. From top to bottom: true abundance map,

FCLS, pre-image method, pre-image method with spatial regularization.

7 Conclusion

In this chapter, we introduced an hyperspectral unmixing algorithm based on
the pre-image principle, which is usually addressed by the community of machine
learning. Our contribution is two-fold in the sense that the pre-image algorithm
described here, and its spatially-regularized counterpart, are both original. We
showed that these techniques can be advantageously applied for supervised un-
mixing provided that labeled pixel-vectors are available.
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