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ABSTRACT

In hyperspectral image analysis, pixels are mixtures of spec-
tral components associated to pure materials. Although the
linear mixture model is the mostly studied case, nonlinear
techniques have been proposed to overcome its limitations.
In this paper, a manifold learning approach is used as a
dimensionality-reduction step to deal with non-linearities
beforehand, or is integrated directly in the endmember ex-
traction and abundance estimation steps using geodesic dis-
tances. Simulation results show that these methods improve
the precision of estimation in severely nonlinear cases.

1. INTRODUCTION

In hyperspectral imagery, a pixel is a mixture of spectral com-
ponents associated with a number of pure materials present
in the scene. In order to reveal underlying information, one
needs to identify the endmembers present in the measured
mixed pixels and derive the relative proportions of these ma-
terials. Under the assumption that the endmembers have been
determined a priori using some off-the-shelf extraction tech-
niques, see [2, 3, 4, 5], unmixing of hyperspectral images
then consists of estimating their abundances [6]. In [7], these
two problems are combined using a geometric formulation.
The abundances are defined as barycentric coordinates in a
reduced-dimensional space, and can be derived using either a
ratio of simplex volumes, or a ratio of distances.

Most existing approaches are focused on linear models
due to their inherent simplicity from conceptual and imple-
mentational points of view. In real images, the interaction
between materials can cause nonlinear effects that may influ-
ence the precision in abundance calculation, which can vi-
olate the sum-to-one constraint and the non-negativity con-
straint. A possible strategy is, first, to use nonlinear meth-
ods for dimensionality reduction, such as ISOMAP [8] and
LLE[9], and then to apply usual linear methods on reduced
data. An interesting example is the combined use of geodesic
distances and N-FINDR in [10].

In this paper, we generalize the approach described in [10]
thanks to the use of geodesic distances with the geometric

formulations for abundance estimation proposed in [7]. This
paper is organized as follows. Section 2 is dedicated to end-
member extraction and abundance estimation using a geomet-
ric approach. Section 3 introduces a new framework based on
manifold learning to perform nonlinear unmixing, i.e., end-
member extraction and abundance estimation. Section 4 pro-
vides some experimental results. Some concluding remarks
are presented in Section 5.

2. ENDMEMBER EXTRACTION AND ABUNDANCE
ESTIMATION: A GEOMETRIC FRAMEWORK

2.1. Basic linear mixing and abundance estimation

The basic linear mixing model can be expressed as

r =Mα+ n (1)

with n a noise vector, r = [r1, . . . , rL]
> an L-by-1 column

pixel supposed to be a mixture ofR endmember spectra. Each
column mi of the L-by-R matrix M is the spectrum of an
endmember, and α is the R-by-1 vector of abundances.

In practice, the spectral dimension is reduced to (R − 1)
in order that the following mixing model be satisfied

r =

R∑
i=1

αimi (2)

subject to the equality constraint
∑R

i=1 αi = 1 and inequality
constraints αi ≥ 0. Suppose that the endmembers mi have
been extracted using any off-the-shelf technique. We shall
now give a direct geometric framework to estimate the abun-
dances in the same low-dimensional space. See [7] for ex-
tensive details. Estimating α in (2) subject to the sum-to-one
constraint can be performed by solving the following system(

1 1 . . . 1
m1 m2 . . . mR

)
α =

(
1
r

)
. (3)



Using Cramer’s rule, the solution can be written as

αi =

det
(

1 . . . 1 . . . 1
m1 . . . r . . . mR

)
det
(

1 . . . 1 . . . 1
m1 . . . mi . . . mR

) , (4)

for all i = 1, . . . , R. This results can also be expressed by
geometric formulation.

Consider the simplex S = {m1,m2, . . . ,mR}. Its ori-
ented volume can be calculated as follows

VS =
1

(R− 1)!
det
(

1 1 . . . 1
m1 m2 . . . mR

)
(5)

Let \ denotes the set difference operator, S \ {mi} ∪ {r} is
the set S with mi replaced by r. The calculation of each
abundance coefficient αi can thus be performed as

αi =
VS \{mi}∪{r}

VS
(6)

for all i. This can also be written in term of distances

VS =
1

(R− 1)!
δ(mi)VS \{mi} (7)

where δ(mi) is the signed distance between the vertex mi

and the subspace spanned by the other vertices of S. This
leads us to

αi =
δ(r)

δ(mi)
(8)

for all i. As shown in [7], by using these equations, one can
easily integrate abundance estimation into endmember extrac-
tion algorithms [2, 3, 4, 5].

2.2. On non-negativity constraint violation

The non-negativity constraint is violated if the pixel under
consideration lies outside the simplex S formed by endmem-
bers. In equations (6)-(8), volumes and distances are oriented.
Their sign can be either positive or negative, depending on the
order of the sequence defined by simplex vertices in the case
of volume-based expressions, or on which side of the hyper-
plane the pixel lies in the case of distance-based expressions.
Thus, equations (6)-(8) are appropriate for pixels that lie in-
side the simplex S. A negative αi means that the pixel is
outside S . An alternative approach, which lies beyond the
scope of this paper, should be used to process these pixels.

3. MANIFOLD LEARNING FOR ENDMEMBER
EXTRACTION AND ABUNDANCE ESTIMATION

The hypothesis model used by endmembers extraction meth-
ods and abundance estimation processes, such as those de-
scribed above, are basically linear. Due to nonlinear physical

effects such as multiple light scattering, this assumption may
be uncorrect. Manifold learning can be used to overcome this
drawback, by mapping the data into a lower-dimension man-
ifold and returning the desired simplex. Manifold learning
techniques considered hereafter are the basic ISOMAP [8]
and LLE [9]. We shall now present some endmember extrac-
tion methods combined with abundance estimation that are
based on manifold learning.

3.1. N-FINDR

The N-FINDR algorithm aims to find the endmembers by
maximizing the volume of the simplex formed by pixels. The
apices that define this simplex are the endmembers, provided
that there exists a pure pixel for each endmember in the data
set. A nonlinear dimensionality reduction is first performed
with LLE or ISOMAP. The former maps data into a single
global coordinate system of lower dimensionality, and can
thus be used as a preprocessing step for endmember extrac-
tion and abundance estimation in this new coordinate system.
As shown below, the latter can also be jointly used with equa-
tions (6) and (8) for endmember extraction and abundance
estimation as it returns geodesic distances.

Volume calculation is usually accomplished by computing
the determinant of a simplex matrix. It can also be written in
terms of the Cayley-Menger determinant as shown indepen-
dently in [7, 10]. Let dij be the Euclidean distance between
endmember spectra mi and mj . The square volume of the
simplex defined by themi’s is given by

V 2
S =

(−1)R

2R−1((R− 1)!)2
det(C1,...,R) (9)

with

C1,...,R =

(
D2

1,...,R 1
1 0

)
(10)

where D2
1,...,R is the squared distance matrix whose (i, j)-th

entry is D2
R(i, j) = d2ij for all i, j = 1, . . . , R. Note that we

can also rewrite (9) as

det(C1,...,R) = −(d1C−12,...,R d
>
1 ) det(C2,...,R)

with d1 = (d212, . . . , d
2
1R, 1). Finally, we can calculate the

distance between the vertexm1 and the subspace spanned by
the other vertices (m2, . . . ,mR) as follows

δ(m1) =

(
d1C

−1
2,...,R d

>
1

2

) 1
2

(11)

Distances in equation (9) can be either Euclidean distances, or
geodesic distances calculated with ISOMAP algorithm. This
allows us to calculateα via (6) or (8) based on manifold learn-
ing considerations.



3.2. SGA

The SGA algorithm successively determines the endmembers
as follows. First, the algorithm starts with a random point t,
and then searchs for another point that maximizes the volume
of the simplex S1i = {t, ri}. This point is chosen as the
first endmember and labeled m1. SGA continues with the
simplexes S2i = (m1, ri). The point ri that maximizes the
volume of this simplex is selected as the second endmember
and labeled m2. The searching process continues until the R
required endmembers are determined.

Using the Cayley-Menger determinant with geodesic dis-
tances calculated by ISOMAP leads to an improved SGA
based on manifold learning. This algorithm jointly calculates
volumes by using (9), and the abundances by using (6). LLE
algorithm should also be used, but as a preprocessing stage
for dimensionality reduction since it does not return geodesic
distances. In this case, equations (6) and (8) can used for
abundance estimation in this new coordinate system.

3.3. VCA

The VCA algorithm is based on the fact that the affine trans-
formation of a simplex is also a simplex. It then projects
the data onto a direction that is orthogonal to the subspace
spanned by the endmembers that were found previously. The
farthest point gives the new endmember. The algorithm iter-
ates until it reaches the desired number of endmembers. Ba-
sically, VCA processes the distance between a point and the
subspace spanned by the endmembers. Again, we can use
geodesic distances returned by ISOMAP with (8) and (11)
to get a manifold-learning based algorithm that jointly deter-
mines the endmembers and estimates the abundances.

4. SIMULATION RESULTS

We shall now compare all these algorithms using an artificial
data set that consists of random samples in a two-dimensional
simplex, transformed into a three-dimensional nonlinear man-
ifold by projection on a swissroll structure. See [10] for de-
tails on the experimental setup. The non-linearity of the swis-
sroll data is parameterized by a variable σ. The endmembers
are also in the dataset. The coordinate of a data point ri as a
function of the abundance local αi can thus be expressed by

ri1 = αi1 sin(σαi1) + 1

ri2 = αi1 cos(σαi1) + 1

ri3 = αi2 + 1

(12)

Following the sum-to-one constraint, the abundance of the
third endmembers can be generated by αi3 = 1−(αi1+αi2).
By setting a single abundance to one, the others to zero, one

can find the endmembers

m1 = (sin(σ) + 1, cos(σ) + 1, 1)

m2 = (1, 1, 2)

m3 = (1, 1, 1)

(13)

Swissroll data unmixing was performed over a 1000-sample
set using the conventional and the manifold-learning based
algorithms. The number of endmembers was set to R = 3.
Endmember extraction was performed with N-FINDR, SGA
and VCA, in a linear and a nonlinear way. Linear process-
ing consisted of performing first a PCA to map the data into a
two-dimensional space, and then applying one of the above
three algorithms. LLE and ISOMAP were considered for
nonlinear processing. The former was used as a preprocessing
step, prior to N-FINDR, SGA and VCA, which were jointly
applied with (6) and (8) to extract endmembers and evaluate
their fractions of abundance in mixed pixels. The latter was
applied to compute the geodesic distances in (9)-(11), which
were used by N-FINDR, SGA and VCA to extract the end-
member, and to evaluate the abundances via (6) and (8).

These algorithms were compared for σ values in [0, 5].
The upper graphic in Figures 1-3 shows the mean of the min-
imum spectral angle between estimated endmembers m̂i and
the ground truthmi.

θ =
1

R

R∑
i=1

min
j

arccos

(
m̂i ·mj

‖m̂i‖‖mj‖

)
(14)

It can be observed that the nonlinear algorithms yield accept-
able error values over the entire range of σ, and perform better
than the linear algorithms. As the nonlinearity parameterized
by σ increases, they however fail to retrieve all the endmem-
bers. The lower graphic in Figures 1-3 shows the error be-
tween the original and the estimated abundances defined by

E =
1

R

R∑
k=1

min
k′

(
1

N

N∑
i=1

|α̂ik − αik′ |

)
(15)

where N = 1000 is the size of the data set. Again, nonlin-
ear algorithms have better performance than their linear coun-
terparts. Figures 4-5 present the same results in a different
way, which allows to compare the performance of N-FINDR,
SGA and VCA algorithms when associated with ISOMAP
and LLE, respectively. It appears that ISOMAP performs bet-
ter than LLE, but needs more time-consuming calculations.

5. CONCLUDING REMARKS

In this paper, we studied several manifold-learning based ap-
proaches for joint endmember extraction and abundance es-
timation in hyperspectral images. Simulation showed that
they perform better than usual linear approaches in nonlin-
ear unmixing problems. These results were confirmed by ex-
periments on well-known hyperspectral scenes, which will be
presented in the camera-ready paper.
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Fig. 1: N-FINR algorithm with PCA (linear), ISOMAP and LLE
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Fig. 2: SGA algorithm with PCA (linear), ISOMAP and LLE
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Fig. 3: VCA algorithm with PCA (linear), ISOMAP and LLE
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Fig. 4: Abundance error for N-FINDR, SGA and VCA when asso-
ciated with ISOMAP
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Fig. 5: Abundance error for N-FINDR, SGA and VCA when asso-
ciated with LLE
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