
Performance analysis of multitask diffusion
adaptation over asynchronous networks

Roula Nassif†, Cédric Richard†, André Ferrari†, Ali H. Sayed‡
† Université de Nice Sophia-Antipolis, CNRS, France

Email: {roula.nassif, cedric.richard, andre.ferrari}@oca.eu
‡University of California, Los Angeles, USA

Email: sayed@ee.ucla.edu

Abstract—The multitask diffusion LMS algorithm is an effi-

cient strategy to address distributed estimation problems that

are multitask-oriented in the sense that the optimum parameter

vector may not be the same for every cluster of nodes. In this

work, we explore the adaptation and learning behavior of the

algorithm under asynchronous conditions when networks are

subject to various sources of uncertainties, including random link

failures and agents turning on and off randomly. We conduct

a mean-square-error performance analysis and examine how

asynchronous events interfere with the learning performance.

I. INTRODUCTION

Distributed optimization enables the solution of inference
problems in a decentralized manner over networks [1]. De-
pending on the number of parameter vectors to estimate,
we distinguish between two types of networks: single-task
networks and multitask networks. Several strategies have been
proposed for single-task scenarios in the literature where
the entire network is employed to collectively estimate a
single parameter vector. Among these techniques, we men-
tion consensus strategies, incremental strategies, and diffusion
strategies (e.g., [2]–[5]). Diffusion strategies are particularly
attractive due to their enhanced adaptation performance and
stability.

In some application scenarios, however, there is need to
employ distributed algorithms that can handle clustered models
with multiple parameter vectors. In this work, we are therefore
interested in distributed and collaborative estimation over
clustered multitask networks where agents are grouped into
clusters, and each cluster has to estimate its own parameter
vector. Existing strategies for these cases tend to depend on
how the tasks relate to each other and on the availability or
not of prior information. For instance, the scenarios studied
in [6], [7] do not assume any prior information. In particular,
nodes do not know which other nodes share similar objectives.
The scenarios described in [8]–[11], on the other hand, assume
that the local parameter vectors share a common latent signal
subspace. Another way to exploit and model relationships
among tasks is to formulate local optimization problems
with appropriate regularizers. The multitask diffusion LMS
algorithm developed in [12] uses co-regularization between
neighboring clusters to enhance estimation accuracy.

The work of C. Richard and A. Ferrari was supported in part by ANR and
DGA grant ANR-13-ASTR-0030 (ODISSEE). The work of A. H. Sayed was
supported in part by NSF grants CCF-1011918 and ECCS-1407712.

The strategy developed in [12] assumes that all agents act
synchronously. Nevertheless, in many real-world applications,
networks are subject to uncertainties, such as random agent
and link failures, changing topologies, or agents turning on/off
randomly for energy conservation. An extensive study on the
performance of the diffusion strategies in the presence of asyn-
chronous events or changing topologies has been developed
in [13]–[15] for single-task adaptation. In this work, we extend
the analysis to multitask scenarios involving mean-square-
error designs.

Notation. We use normal font letters to denote scalars, bold-
face lowercase letters to denote column vectors and boldface
uppercase letters to denote matrices. We use the symbol ⌦ to
denote Kronecker operation and the symbol tr(·) to denote the
trace operator.

II. ASYNCHRONOUS MULTITASK DIFFUSION ADAPTATION

We consider a connected network consisting of N nodes
grouped into Q clusters. At each time instant i, node k
collects a scalar zero-mean measurement d

k

(i) and a zero-
mean L ⇥ 1 regression vector x

k

(i) with positive-definite
covariance matrix R

x,k

= E{x
k

(i)x>
k

(i)}. We assume that
the temporal measurement sequence {d

k

(i),x
k

(i)} is related
to the unknown parameter vector w?

k

via the linear regression
model:

d
k

(i) = x

>
k

(i)w?

k

+ z
k

(i), (1)

with z
k

(i) a zero-mean measurement noise of variance �2

z,k

.
The noise process is assumed to be temporally white and spa-
tially independent of any other signal. The optimum parameter
vectors are only constrained to be equal within each cluster,
namely, w?

k

= w

?

Cj
whenever node k belongs to cluster C

j

.
However, if cluster C

p

is connected to cluster C
q

, that is, there
exists at least one edge connecting a node of C

p

to a node
of C

q

, then their optimum parameter vectors are allowed to
jointly satisfy certain properties. In [12], smoothness of the
graph signal W?

= {w?

1

, . . . ,w?

N

} is enforced by regularizing
the estimation problem with the squared `

2

-norm of the graph
gradient at each node k, namely, by using

kr
k

Wk2

=

X

`2Nk

⇢
k`

kw
k

� w

`

k2 (2)

where N
k

denotes the neighborhood of node k, and ⇢
k`

is
the nonnegative weight assigned to the edge between nodes k

and `. In a manner similar to [12], combining the mean-square
error criterion and the regularizer (2) at each node to estimate
the unknown parameter vector w?

Cj
at the level of each cluster

leads to a Nash equilibrium problem [16] defined by the Q
subproblems (P

j

):

(P
j

) :

8
>>>>>>>>><

>>>>>>>>>:

min

wCj

JCj (wCj ,w�Cj)

with JCj (wCj ,w�Cj)

=

X

k2Cj

E{|d
k

(i) � x

>
k

(i)wCj |2}

+ ⌘
X

k2Cj

X

`2Nk\Cj

⇢
k`

kwCj � wC(`)

k2

(3)

where C(`) is the cluster to which node ` belongs, and ⌘
is the regularization strength. The notation w�Ci denotes the
collection of weight vectors estimated by the other clusters,
namely, w�Ci = {wCk : k = 1, . . . , Q} � {wCi}. Note in (3)
that the regularizer excludes those neighbors of node k that
belong to its cluster. This is because these particular neighbors
will be pursuing the same vector as node k.

An adapt-then-combine diffusion algorithm is derived
in [12] for solving (3). Following the same procedure as [14],
which provides a general framework for single-task asyn-
chronous networks, we introduce the following multitask dif-
fusion LMS algorithm for asynchronous networks:
8
>>>>><

>>>>>:

k

(i+ 1) = w

k

(i) + µ
k

(i)
⇥
d
k

(i) � x

>
k

(i)w
k

(i)]x
k

(i)

+ ⌘µ
k

(i)
X

`2Nk(i)\C(k)

�

⇢
k`

(i)(w
`

(i) � w

k

(i))

w

k

(i+ 1) =

X

`2Nk(i)\C(k)

a
`k

(i)
`

(i+ 1)

(4)
where w

k

(i) is the estimate of w

?

k

at time i,
k

(i) is an
intermediate estimate, and C(k)� is the cluster to which node
k belongs, excluding k. To model the asynchronous behavior
of agent k at time i, we allow its step-size parameter to be
a bounded random variable µ

k

(i) 2 [0, µ
max,k

]. Furthermore,
we model uncertainties in the links within and among clusters
by the use of nonnegative random combination coefficients
{a

`k

(i)} and regularization factors {⇢
k`

(i)}. The notation
N

k

(i) denotes the random neighborhood of agent k at time i.
At each time i, the random coefficients a

`k

(i) and ⇢
k`

(i)
are required to satisfy the following constraints:

X

`2Nk(i)\C(k)

a
`k

(i) = 1, and
⇢

a
`k

(i) > 0, if ` 2 N
k

(i) \ C(k),
a
`k

(i) = 0, otherwise.

(5)
X

`2Nk(i)\C(k)

�

⇢
k`

(i) = 1, and

8
<

:

⇢
k`

(i) > 0, if ` 2 N
k

(i) \ C(k),
⇢
kk

(i) � 0,
⇢
k`

(i) = 0, otherwise.
(6)

Let M(i) be the diagonal matrix with entries µ
k

(i), A(i) the
left-stochastic matrix whose (`, k)-th entry is a

`k

(i), and P (i)
the right-stochastic matrix whose (k, `)-th element is ⇢

k`

(i).
The random matrices M(i), A(i), and P (i) are assumed
to be mutually independent, and independent of any other

random variables. We further assume that {M(i)}, {A(i)}
and {P (i)} are weakly stationary processes with means M , A
and P , respectively. Let C

M

, C
A

and C

P

be their Kronecker
covariance matrices defined as

C

M

, E{(M(i) � M) ⌦ (M(i) � M)} (7)
C

A

, E{(A(i) � A) ⌦ (A(i) � A)} (8)
C

P

, E{(P (i) � P) ⌦ (P (i) � P)}. (9)

III. STOCHASTIC PERFORMANCE ANALYSIS

Let us denote by w(i) and w

? the block weight estimate
vector and the block optimum weight vector, namely,

w(i) , col{w
1

(i), . . . ,w
N

(i)} (10)
w

? , col{w?

1

, . . . ,w?

N

} (11)

where col{·} stacks its column vector arguments on top of
each other. Let us define the block weight error vector as:

e
w(i) , w

? � w(i). (12)

To perform the theoretical analysis, we introduce the following
independence assumption.

Assumption 1: (Independent regressors) The regression vec-
tors x

k

(i) arise from a zero-mean random process that is
temporally stationary, white, and independent over space. ⌅

Using data model (1), the error recursion can be written in
the following form:

e
w(i+ 1) = B(i)ew(i) � g(i) + ⌘r(i) (13)

where

B(i) , A>
(i)[I

NL

� M(i)(R
x

(i) + ⌘Q(i))] (14)
g(i) , A>

(i)M(i)col{x
k

(i)z
k

(i)}N
k=1

(15)
r(i) , A>

(i)M(i)Q(i)w? (16)

with

A(i) , A(i) ⌦ I

L

(17)
M(i) , M(i) ⌦ I

L

(18)
Q(i) , I

NL

� P (i) ⌦ I

L

(19)

and R
x

(i) is the N ⇥ N block diagonal matrix whose k-th
block is the L ⇥ L matrix x

k

(i)x>
k

(i).

A. Mean behavior analysis

Taking the expectation of both sides of (13) and using
Assumption 1 yields the following condition for stability.
The result follows from the analysis of the spectral radius
of B , E{B(i)} defined in (22).

Lemma 1: (Mean stability) Assume that all agents have the
same step-size expectation, that is, E{µ

k

(i)} = µ̄ for all k.
For any initial conditions, the asynchronous multitask diffusion
algorithm (4) converges in the mean if µ̄ satisfies:

0 < µ̄ <
2

max

1kN

{⇢(R
x,k

)} + 2⌘
(20)

where ⇢ denotes the spectral radius of its matrix argument.
The asymptotic mean bias is given by:

lim

i!1
E{ew(i)} = ⌘(I

NL

� B)

�1

r (21)

where

B , A>
[I

NL

� M(R
x

+ ⌘Q)] (22)
r , A>MQw

? (23)

with A , A⌦I

L

, M , M ⌦I

L

, Q , I

NL

�P ⌦I

L

, and
R

x

is the block diagonal matrix whose k-th block is R

x,k

.⌅

B. Mean-square behavior analysis

We shall now use the block Kronecker product ⌦
b

, and the
block vectorization operation bvec(·), since these operators
allow to exploit the block structure of matrices [15], [17].
Before proceeding, let us introduce some useful matrices:

M I , E{M(i) ⌦
b

M(i)} = (M⌦M +C

M

) ⌦ I

L

2 (24)
A I , E{A(i) ⌦

b

A(i)} = (A ⌦ A+C

A

) ⌦ I

L

2 (25)
Q I , E{Q(i) ⌦

b

Q(i)} (26)
= (I

N

2 � I

N

⌦ P � P ⌦ I

N

+ P ⌦ P +C

P

) ⌦ I

L

2

By Assumption 1 and (13), the mean-square of the weight
error vector e

w(i+ 1), weighted by any positive semi-definite
matrix ⌃, satisfies the following relation:

E{kew(i+ 1)k2

⌃} = E{kew(i)k2

⌃0} + E{kg(i)k2

⌃} +

2⌘E{r>(i)⌃B(i)ew(i)} + ⌘2E{kr(i)k2

⌃} (27)

with kxk2

⌃ = x

>⌃x and ⌃0
= E{B>

(i)⌃B(i)}. The free-
dom in selecting ⌃ will allow us to derive several performance
metrics. Let � , bvec(⌃) and �0 , bvec(⌃0

). Using that
bvec(UV W) = (W

> ⌦
b

U)bvec(V), it can be checked that
� and �0 are related by the following relationship �0

= F>
�,

where F is the (NL)2 ⇥ (NL)2 matrix given by:

F , E{B(i) ⌦
b

B(i)}
⇡ A>

I
⇥
I

(NL)

2 � I

NL

⌦
b

M(R
x

+ ⌘Q) �
M(R

x

+ ⌘Q) ⌦
b

I

NL

⇤
(28)

where, considering the case of sufficiently small step-sizes,
terms involving higher order moments of the step-sizes have
been ignored.

By expressing the second term on the RHS of equation (27)
as tr(⌃E{g(i)g>

(i)}) and using tr(⌃W) = bvec(W>
)

>
�,

we obtain:
E{kg(i)k2

⌃} = g

>
b

� (29)

with g

b

, A>
I M I bvec(S) and S , diag{�2

z,k

R

x,k

}N
k=1

. In
the same way, we get:

E{kr(i)k2

⌃} = r

>
b

� (30)

where r

b

, A>
I M IQ I bvec(w?

w

?

>
). Finally, the third term

on the RHS of (27) is given by:

E{r>(i)⌃B(i)ew(i)} = E{ew(i)}>E{B(i)⌦
b

r(i)}>� (31)

where

K , E{B(i) ⌦
b

r(i)}
= A>

I
⇥
(I

NL

⌦
b

MQw

?

) �
M I((Rx

⌦
b

Qw

?

) + ⌘Q I(INL

⌦
b

w

?

))

⇤
. (32)

Finally, the weighted variance E{kew(i)k2

⌃} can be expressed
as:

E{kew(i+ 1)k2

�} = E{kew(i)k2

F>�} + g

>
b

� +

2⌘E{ew(i)}>K>
� + ⌘2

r

>
b

�. (33)

Note that we use interchangeably k.k2

⌃ and k.k2

� to refer to
the same square weighted norm using ⌃ or its block vector
representation �. Iterating expression (33) starting from i = 0,
it can be shown that E{kew(i+1)k2

�} converges to a bounded
value, as i tends to infinity provided that F in (28) is stable.

Lemma 2: (Mean-square stability) Assume that all agents
have the same step-size expectation, that is, E{µ

k

(i)} = µ̄ for
all k. Assume further that {µ

max,k

} are sufficiently small. The
asynchronous multitask diffusion algorithm (4) is mean-square
stable if the matrix F is stable. ⌅

Iterating equation (33) until time instants i and i + 1, and
comparinfg these expressions, we can relate E{kew(i+1)k2

�}
to E{kew(i)k2

�}. This leads to the following result.
Corollary 1: (Transient behavior) Consider sufficiently

small step-sizes that ensure mean and mean-square stability.
Then, the variance curve ⇣(i+1) = E{kew(i+1)k2

�} evolves
according to the following recursion for i � 0:

⇣(i+ 1) =⇣(i) � kew(0)k2

(I(NL)2�F>
)(F>

)

i�+

g

>
b

(F>
)

i

� + ⌘2

r

>
b

(F>
)

i

�+

2⌘E{ew(i)}>K>
� + 2⌘�(i)�

(34)

where �(i) is the 1 ⇥ (NL)2 row vector updated as follows:

�(i+ 1) = �(i)F>
+ E{ew(i)}>K>

(F> � I

(NL)

2
), (35)

and e
w(0) is the initial condition. ⌅

Expression (34) allows us to derive several performance
metrics through the proper selection of ⌃. For instance, the
network MSD value at time instant i, defined by MSD

net

(i) ,
1

N

E{kew(i)k2}, is obtained for ⌃ =

1

N

I

NL

. The MSD of
cluster C

q

at time instant i is defined as:

MSDCq (i) ,
1

n
q

X

k2Cq

E{kew
k

(i)k2} (36)

where n
q

is the number of nodes in cluster C
q

. This quantity
can be obtained by computing E{kew(i+1)k2

⌃Cq
} with a block

diagonal weighting matrix ⌃Cq that has the block 1

nq
I

L

as k-
th entry, for all k 2 C

q

, and zeros elsewhere.
Corollary 2: (Steady-state variance relation) If convergence

is achieved, then

lim

i!1
E{kew(i)k2

(I(NL)2�F>
)�}

= g

>
b

� + ⌘2

r

>
b

� + 2⌘E{ew(1)}>K>
�. (37)

⌅

1

C
1

C
2

C
5

C
6

C
7

C
3

C
4

C
8

19

18

20

17

109

8 7

5

4 6

1

2

11

3 12 13

1516

14

Fig. 1. Network topology.

0.98

1

1.02

−0.51

−0.5

−0.49
0.49

0.5

0.51

x-v
alu

ey -value

z
-
v
a
lu

e

w ⋆
C 6

w ⋆
C5

w ⋆
C3

w ⋆
C4

w ⋆
C2

w ⋆
C1

w ⋆
C 7

w ⋆
C 8

Fig. 2. Network configuration: parameter vector inputs.

To determine the steady-state network MSD from equa-
tion (37), we set � to 1

N

(I

(NL)

2 � F>
)

�1bvec(I
NL

). The
steady-state MSD of cluster C

q

is obtained by setting � to
(I

(LN)

2 � F>
)

�1bvec(⌃Cq).

IV. SIMULATION RESULTS

The asynchronous ATC model (4) was run over the clustered
network shown in Fig. 1, consisting of N = 20 nodes
divided into 8 clusters. The vectors to estimate, w

?

Ci
, were

of length L = 3, with entries defined as in Fig. 2. As we
can see from Figs. 1 and 2, two clusters are connected if
their optimum parameter vectors share two identical compo-
nents. The regression vectors were zero-mean random vectors
governed by a Gaussian distribution with covariance matrix
R

x,k

= �2

x,k

I

L

. The background noises z
k

(i) were i.i.d. zero-
mean Gaussian random variables, independent of any other
signal, with variance �2

z,k

. The variances �2

x,k

and �2

z,k

are
shown in Fig. 3.

We used the Bernoulli asynchronous model [14] with fixed
underlying topology. The step-sizes µ

k

(i) were distributed as:

µ
k

(i) =

⇢
µ
k

, with probability q
k

0, with probability 1 � q
k

(38)

2 4 6 8 10 12 14 16 18 20
0.8

0.9

1

1.1

1.2

Node number, k

σ
2 x
,k

2 4 6 8 10 12 14 16 18 20
0.1

0.11

0.12

0.13

0.14

Node number, k

σ
2 z
,k

Fig. 3. Network configuration: input and noise variances.

with µ
k

a fixed step-size. The combination weights {a
`k

(i)}
were distributed as follows:

a
`k

(i) =

⇢
a
`k

, with probability p
`k

0, with probability 1 � p
`k

(39)

for all ` 2 N�
k

(i) \ C(k), where 0 < a
`k

< 1 is a fixed
coefficient, and N�

k

(i) denotes N
k

(i) \ {k}. The combination
coefficients {a

`k

(i)} were spatially uncorrelated for ` 6= k.
Each node k was able to set the combination coefficient a

kk

(i)
at each iteration i as follows:

a
kk

(i) = 1 �
X

`2N�
k (i)\C(k)

a
`k

(i) (40)

to ensure condition (5). The weights {⇢
k`

(i)} were distributed
as follows:

⇢
k`

(i) =

⇢
⇢
k`

, with probability r
k`

0, with probability 1 � r
k`

(41)

for all ` 2 N
k

(i) \ C(k), where 0 < ⇢
k`

< 1 is a
fixed regularization factor. The factors {⇢

k`

(i)} were spatially
uncorrelated for k 6= `. At each iteration i, each node k was
able to adjust ⇢

kk

(i) as follows:

⇢
kk

(i) = 1 �
X

`2Nk(i)\C(k)

⇢
k`

(i) (42)

to ensure condition (6).
We set the coefficient a

`k

in (39) such that a
`k

= |N
k

\
C(k)|�1 for all ` 2 N

k

\C(k), where |·| denotes the cardinality
of its argument and the neighborhood N

k

is the union of all
possible realizations for the random neighborhood N

k

(i). We
set the factors ⇢

k`

in (41) to ⇢
k`

= |N
k

\ C(k)|�1 for ` 2
N

k

\ C(k), and ⇢
k`

= 0 for any other `. The upper bounds
µ

max,k

were uniformly set to 0.03. The regularization strength
⌘ was set to 1. The MSD curves were averaged over 100

Monte-Carlo runs. Three different scenarios were considered:
1) 50% idle: q

k

= p
`k

= r
k`

= 0.5;
2) 30% idle: q

k

= p
`k

= r
k`

= 0.7;
3) no idle nodes: q

k

= p
`k

= r
k`

= 1.
It can be observed in Fig. 4 that the simulation results match

well the theoretical results.
We also considered the following simulation. We kept the

same coefficients {a
`k

} and {⇢
k`

} as the previous simulation.

0 500 1000 1500
−30

−25

−20

−15

−10

−5

0

5

Iteration i

M
S
D

in
d
B

0% idleness

30% idleness

50% idleness

Theoreti cal MSD
Experimental MSD
Steady-state MSD

Fig. 4. Network mean-square deviation (MSD).

0 500 1000 1500
−35

−30

−25

−20

−15

−10

−5

0

5

Iteration i

M
S
D

in
d
B

Cluste r 1: 50% idl e , non-coop. al g.

Cluste r 3: 50% idl e , non-coop. al g.

Cluste r 7: 10% idl e , non-coop. al g.

Cluste r 1: 50% idl e , c oop. al g.

Cluste r 3: 50% idl e , c oop. al g.

Cluste r 7: 10% idl e , c oop. al g.

Fig. 5. Cooperative vs. noncooperative multitask learning.

Parameters µ
k

in (38) were set to µ
k

= 0.03 for clusters
C
1

, C
2

, C
3

, C
4

and to µ
k

= 0.015 for the remaining clusters.
For the first four clusters, nodes turned off with probability
1 � q

k

= 0.5, and intra-cluster links failed with probability
1 � p

`k

= 0.5. For the four last clusters, we used 1 � p
`k

=

1�q
k

= 0.1. The probability that an inter-cluster link between
two nodes k and ` fails was set to 1�r

k`

= 0.3. We compared
the asynchronous multitask network with its noncooperative
multitask counterpart obtained by setting ⌘ to 0. As shown in
Fig. 5, the performance improves by exploiting cooperation
between clusters. Moreover, for a given cluster, when the
number of nodes increases or the probabilities of success
associated with the Bernoulli variables increase, the learning
is enhanced.

V. CONCLUSION

In this paper, we studied the performance of the multitask
diffusion LMS algorithm over asynchronous networks. We
analyzed the behavior of the proposed asynchronous model
in the mean and mean-square error sense. Simulations were
presented to illustrate our theoretical results. Several open
problems still have to be solved for specific applications. For
instance, it would be interesting to show which regularization
can be advantageously used with our distributed multitask
algorithm, and how they can be efficiently implemented in
an adaptive manner. It would also be interesting to investigate
how nodes can autonomously adjust regularization parameters
to optimize the learning performance and how they can learn
the structure of the clusters in real-time.

REFERENCES

[1] A. H. Sayed, “Adaptive networks,” Proc. of IEEE, vol. 102, no. 4, pp.
460–497, Apr. 2014.

[2] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, Sept. 1986.

[3] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. of IEEE,
vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[4] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, Apr. 2005.

[5] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination
of distributed strategies and network behavior,” IEEE Signal Process.
Mag., vol. 30, no. 3, pp. 155–171, May 2013.

[6] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over
multitask networks,” Submitted for publication. Also available as
arXiv:1404.6813, Apr. 2014.

[7] X. Zhao and A. H. Sayed, “Clustering via diffusion adaptation over
networks,” in Proc. CIP, Parador de Baiona, Spain, May 2012, pp. 1–6.

[8] A. Bertrand and M. Moonen, “Distributed adaptive node-specific signal
estimation in fully connected sensor networks – Part I: sequential node
updating,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5277–5291,
Oct. 2010.

[9] A. Bertrand and M. Moonen, “Distributed adaptive estimation of node-
specific signals in wireless sensor networks with a tree topology,” IEEE
Trans. Signal Process., vol. 59, no. 5, pp. 2196–2210, May 2011.

[10] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed
diffusion-based LMS for node-specific parameter estimation over adap-
tive networks,” in Proc. IEEE ICASSP, Florence, Italy, May 2014, pp.
7223–7227.

[11] J. Chen, C. Richard, A. O. Hero, and A. H. Sayed, “Diffusion LMS for
multitask problems with overlapping hypothesis subspaces,” in Proc.
IEEE MLSP, Reims, France, Sept. 2014, pp. 1–6.

[12] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–
4144, Aug. 2014.

[13] X. Zhao and A. H. Sayed, “Asynchronous diffusion adaptation over
networks,” in Proc. EUSIPCO, Romania, Aug. 2012, pp. 86–90.

[14] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning
over networks-Part I: Modeling and stability analysis,” available as
arXiv:1312.5434, Dec. 2013.

[15] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over
networks-Part II: Performance analysis,” available as arXiv:1312.5438,
Dec. 2013.

[16] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,
SIAM, PA, 1999.

[17] R. H. Koning, H. Neudecker, and T. Wansbeek, “Block Kronecker
products and the vecb operator,” Linear Algebra and its Applications,
vol. 149, pp. 165–184, April 1991.

