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Abstract—This paper deals with the problem of single target
tracking in controlled mobility sensor networks. It thus proposes
an original strategy to manage the mobility of sensor nodes, in
order to improve the estimation of the positions of the target. The
proposed method consists of estimating the actual position of the

target, then it uses position estimates to predict a region where
the target is assumed to fall in the next time-step. A structure of
triangle is then defined, aiming at covering at best the predicted
area. Each mobile sensor is then assigned a position at the vertices
of the structure, in the way to minimize the total traveled distance
by the nodes. One constraint for this technique is to maintain
the total coverage of the network. For this reason, we propose to
use a hybrid network, including static nodes, as well, to insure
continuously the coverage of the network. Simulation results
corroborate the efficiency of the proposed method compared to
the target tracking methods considered for networks with static
nodes.
Index Terms—Controlled mobility, interval analysis, network

coverage, optimization, state estimation, target tracking.

I. INTRODUCTION

In recent years, advances in miniaturization, low-power

circuit design and efficient wireless communication have pro-

duced a new technological innovation, the Mobile Sensor

Networks (MSN). These networks are composed of a large

number of mobile devices having sensing, processing and

communication capabilities [1], [2]. The mobility of these

devices could be either passive or controlled. In the case

of passive mobility, sensors are moved in an uncontrollable

manner in response to external forces, whereas in the case of

controlled mobility, sensors are moved in response to internal

or external commands. In this paper, we consider the case of

mobile sensors having a controlled mobility. In such a case,

one could take advantage of the mobility of the nodes to

improve the accuracy of the sensed data in the network.

One interesting application of MSN is target tracking. It

consists of estimating instantly the position of a moving

target. It is of great importance in surveillance and security

especially in military applications. This problem has been

mainly considered for networks having static nodes [3], [4].

However, when sensors are able to move, it is important

to take advantage of their mobility in order to improve the

position estimation. Different techniques have been proposed

to manage the mobility of the nodes [5], [6]. These techniques

have mainly focused on improving the area coverage or

increasing the lifetime of the network, etc. A few methods

have been developed for target tracking in MSN [7], [8].

For instance, researchers in [7] have proposed a mobility

management scheme based on the Bayesian estimation theory.

Note that many assumptions are made in this method such

that both the target and the sensor nodes are supposed having

constant velocities.

This contribution focuses on target tracking in MSN where

nodes have a controlled mobility. A novel strategy for man-

aging sensors mobility is thus proposed. It aims at moving

the sensors to improve the tracking of a single target. The

main constraint of this method is to minimize the energy con-

sumption in order to maximize the lifetime of the network. At

each time step, the proposed method consists of i) estimating

the current position of the target, ii) predicting the next-step

position of the target, and then iii) computing a set of new

locations to be taken by the nodes in the way to improve the

estimation process. The proposed strategy should also maintain

the total coverage of the network. Beside the mobile nodes, we

propose to use static nodes aiming at ensuring a continuous

coverage of the network independently of the movement of

the mobile ones.

The rest of the paper is organized as follows. In Section

2, we describe the method. Section 3 introduces the different

steps of the algorithm. Simulation results are given in Section

4. Section 5 concludes the paper.

II. DESCRIPTION OF THE METHOD

The aim of the method is to manage the mobility of the

nodes at each time-step in the way to improve the estimation

of the next-step position of the target. The main constraint

for this method is to minimize the energy consumption while

moving the sensors. Another constraint consists of maintaining

the total coverage of the surveillance area, in the way to be

able to detect any intrusion. For this reason, we propose to

use a hybrid network, that is, a network composed of mobile

and static sensors. While mobile sensors follow the target at

each time-step, static sensors are uniformly deployed in the

way to maintain the total coverage of the network. Assume

that the sensing ranges of static sensors are circular having rs

as radii. Then, in order to cover the total area with the static

sensing disks, one is able to use the disk packing theory [9].
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A simpler solution consists of using the (
√

2rs)-side squares

contained in the sensing disks to cover the area. Practically,

if the surveillance area is a W1 × W2 square area, then the

number of static sensors needed to cover the whole area is

equal to Ks = Ks,1 ∗Ks,2, where

Ks,1 = Inth(
W1√
2rs

) and Ks,2 = Inth(
W2√
2rs

), (1)

with Inth(x) yielding the smallest integer equal or higher than
x. The positions of the static sensors would then be given by

the combinations of the following coordinates,
{

A(s,1),p = o1 +
√

2rs

2 + (p− 1)
√

2rs, p ∈ {1, ..., Ks,1},
A(s,2),q = o2 +

√
2rs

2 + (q − 1)
√

2rs, q ∈ {1, ..., Ks,2},
(2)

where o1 =
W1−

√
2rsKs,1

2 and o2 =
W2−

√
2rsKs,2

2 . In other

words, each static sensor would have a coordinate vector de-

noted as,i, equal to a couple of coordinates (A(s,1),p, A(s,2),q)
with i = p + (q − 1)Ks,1, i ∈ {1, ..., Ks}..
Now that the coverage of the network is continuously

maintained, the objective of the method consists of moving the

mobile sensors, as minimal as possible, in the way to follow

the target at each time-step. For these reasons, the method

would be composed of the following steps at each iteration:

1) Estimating the current position of the target;

2) Predicting the next-step position of the target using the

estimated positions;

3) Computing the following positions of the mobile sensors

using the predicted position.

The management of the mobility of the sensors should satisfy

the energy consumption minimization constraint.

III. ALGORITHM

The proposed method is composed of different techniques

for estimating and predicting the positions of the target. It also

includes an approach for computing the next-step positions of

the mobile sensors in the way to cover at best the predicted

location of the target. It is worth noting that the proposed

method is centralized. In other words, all the sensed data are

communicated, via the static nodes, to a central base-station.

Using all information, the algorithm computes the positions

of the target and the movements of each mobile sensors, and

then, the computed information is communicated back to the

sensors. In the following, x(t) = (x1(t), x2(t)) would denote
the target position at time t, am,i(t) = (am,i,1(t), am,i,2(t)),
i ∈ {1, ..., Km}, would denote the mobile sensors coordinates
and as,i = (as,i,1, as,i,2), i ∈ {1, ..., Ks}, would represent

static sensors.

A. Estimation of the current position of the target

In order to estimate the position of the target, we propose

to use a connectivity-based approach. In other words, all

sensors (mobile or static) detecting the target generate a one-

bit information, equal to 1. These measurements are then

communicated to the base-station. Let Im(t) and Is(t) be the
sets of indices of the mobile and static sensors detecting the

target at time t, respectively. If we assume that the sensing

ranges of the mobile sensors are circular having rm as radii,

then the distances separating the target to the mobile sensors

detecting it are less than rm. This is also true for static sensors

detecting the target with distances to the target less than rs.

The estimation model would thus be given by the following,

(x1(t)− am,i,1(t))
2 + (x2(t)− am,i,2(t))

2
≤ r2

m, i ∈ Im(t),
(x1(t)− as,i,1)

2 + (x2(t)− as,i,2)
2
≤ r2

s , i ∈ Is(t).
(3)

In order to resolve this problem, we use the interval theory

[10]. For this reason, we briefly recall the basic definitions

of interval analysis. A real interval, denoted [x], is a closed

subset of IR given as follows,

[x] = [x, x] = {x ∈ IR | x ≤ x ≤ x}, (4)

where x and x are the lower and upper scalar endpoints of

the interval respectively. A multidimensional interval of IRn,

also called box, is given by the cartesian product of n real

intervals, [x] = [x1]×· · ·× [xn]. An interval has a dual nature
as sets and real numbers. The interval theory takes advantage

of this duality to extend all arithmetic and set operations to

intervals.

The key idea of the method consists of considering the target

position as a two-dimensional box [x](t) = [x1](t) × [x2](t)
[11]. In other words, the proposed method aims at computing

the minimal box [x](t) that includes all possible solutions of
the problem. In this way, the target position is a rectangular

area including the unknown location of the target and all

incertitude over its value. In order to resolve the estimation

problem, all constraints should be reformulated using intervals

as follows,

([x1](t)− am,i,1(t))2 + ([x2](t) − am,i,2(t))2 ⊆ [0, r2
m], i ∈ Im(t),

([x1](t) − as,i,1)2 + ([x2](t)− as,i,2)2 ⊆ [0, r2
s ], i ∈ Is(t).

(5)

The problem is then defined as a constraint satisfaction prob-

lem. An initial domain, for instance the whole deployment

area, is thus contracted in order to obtain the smallest box

including the exact scalar solution. The algorithm used to

perform the contraction is called the Waltz contractor [10].

It is a forward-backward algorithm that iterates all constraints

without any prior order until no contraction is possible. The

computed solution, called boxed estimate, is at best the box

including the overlapping area of all disk constraints. The

punctual estimate would be the center of the boxed estimate

of the position of the target. Fig. 1 shows an illustration of the

estimation phase.

B. Prediction of the next-step position

The aim of this section is to propose a technique for com-

puting a box where the target might fall in the next time-step.

For this reason, we propose to use a second order prediction

model, using intervals. Indeed, the considered model uses the

boxed estimates at times t, t − 1 and t − 2 to compute a

predicted position box for time-step t+1. The prediction model
is formulated as follows,

[x̂](t + 1) = [x](t) + ∆t.[v](t) +
∆t2

2
.[γ](t), (6)
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Fig. 1. An illustration of the estimation phase.

rm

am,1
am,2

am,3

Fig. 2. A triangle of sensors having the side lengths equal to the sensing
range.

where [x̂](t + 1) is the predicted position box of the target,

∆t is the time period falling between two time-steps, [v](t) =
[x](t)−[x](t−1)

∆t
and [γ](t) = [v](t)−[v](t−1)

∆t
. Using intervals, the

prediction phase yields a box, called prediction box, including

the next-step position of the target and the incertitude brought

by measurements over its value.

C. Definition of the mobile sensors positions

The goal of the method consists of moving the sensors in

an energy-aware manner in order to improve the coverage

of the prediction box. For this reason, we propose to use

the triangulation principle. In other words, if we consider

only three mobile nodes, the triangulation-based idea consists

of constructing an equilateral triangle with the sensors. The

intersection area of the sensing disks of the mobile nodes

should cover the target at the next time-step. Let the triangle

sides be equal to the sensing range rm of the mobile nodes, as

shown in Fig. 2. If the target is detected by the three sensors

(considering only mobile nodes), then the estimation phase

leads to the smallest box covering the intersection area of their

sensing disks. The accuracy of the estimation would depend on

the sensing range of the mobile sensors. Indeed, with smaller

sensing disks, smaller overlapping areas are obtained leading

to smaller boxed estimates.

Having more than three sensors, one is able to construct

a structure of triangles in the way to cover the whole pre-

diction box. Using triangle structures, every single point of

the prediction box could be covered by at least three mobile

sensors. An example of a structure of seven mobile sensors is

given in Fig. 3. Having rm as triangle side length, one could

compute the required number of mobile sensors depending on

the size of the prediction box. Let Km,1 be the number of

the sensors required in the first down row and let Km,2 be

rm

Fig. 3. An example of a structure of seven mobile sensors with the prediction
box.

the number of required rows. Having the type of structures of

Fig. 3, rows having odd indices are thus composed of Km,1

sensors whereas those of even indices have Km,1 +1 sensors.

In order to guarantee a coverage of the whole box even for

points close to the borders,Km,1 andKm,22 are set as follows,

Km,1 = Inth(
Ŵ1

rm

) + 1 and Km,2 = Inth(
Ŵ2
√

3
2 rm

) + 1, (7)

where Ŵ1 and Ŵ2 are the widths of [x̂1](t+1) and [x̂2](t+1)

respectively,
√

3
2 rm is the height of the sensor triangle and

Inth(x) is the smallest integer equal or greater than x. The

total number of mobile sensors to be moved is then equal to

K∗
m = Km,1

Km,2+δ

2 + (Km,1 + 1)
Km,2−δ

2 , where δ = 1 if

Km,2 is odd and 0 otherwise. The coordinates of the vertices

of the structure would thus be defined by combinations of the

following coordinates,




A(m,1),p =

{
b̂o,1 + (p− 1)rm, if q is odd (1 ≤ p ≤ Km,1),

b̂e,1 + (p− 1)rm, if q is even (1 ≤ p ≤ Km,1 + 1),

A(m,2),q = b̂2 + (q − 1)
√

3
2

rm, 1 ≤ q ≤ Km,2,
(8)

where b̂o,1 = x̂1 −
Km,1rm−Ŵ1

2 , b̂e,1 = x̂1 −
(Km,1+1)rm−Ŵ1

2

and b̂2 = x̂2 −
Km,2

√
3

2
rm−Ŵ2

2 . The obtained positions Am,k,

k ∈ {1, ..., K∗
m}, are thus symmetric with respect to the

prediction box. These positions should then be assigned to the

Km mobile sensors. However, when Km 6= K∗
m, two cases

could be encountered. If K∗
m < Km, we propose to use the

closest K∗
m mobile nodes to the center of the prediction box.

Otherwise, if K∗
m > Km, we propose to keep the closest Km

positions to the center of the prediction box. In the following,

we will assume that K∗
m is the final number of positions, and

thus the number of mobile sensors to be moved. These sensors

are assumed to be at the positions am,1(t), ..., am,K∗
m

(t), as
well.

Once the positions are defined, the goal of the method is to

assign each mobile node one position, in the way to minimize

the total distance to be traveled. Practically, each mobile node

being at the position am,i(t) should move to a new position

Am,i, chosen within the set defined above, while minimizing∑K∗
m

i=1 ‖am,i(t)−Am,i‖. Using a deterministic (exact) method
to perform this assignment could be high-energy consuming

especially when the number of considered positions is high.

Indeed, the number of all possible solutions is equal to

K∗
m!. For this reason, the assignment problem is resolved
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using a metaheuristic algorithm, the Ant Colony Optimization

approach (ACO) [12], [13]. ACO is a probabilistic method for

solving complex computational problems. Having a set of n

variables, to be assigned n values, and an objective function

to be minimized, ACO starts with an initial solution, and then

it moves towards optimal solutions using an efficient memory-

based search technique. Using ACO, one is able to find the

optimal assignment in a small computational time, compared

to exact methods.

IV. SIMULATIONS

In order to evaluate the effectiveness of the proposed

method, we consider a target moving over 100-steps trajectory
in a [0, 100m]×[0, 100m] surveillance area. The sensing range
rs of static sensors is set to 10m. The number of required

static nodes is thus equal to Ks,1.Ks,2 where Ks,1 = Ks,2 =
Inth( 100

10.
√

2
) = 8. The sensing range rm of mobile sensors is

set to 5m. It is worth noting that all simulations are performed

on an Intel(R) Core(TM)2 CPU (2.40GHz, 1.00GB RAM)

using MATLAB 7.9.

In order to illustrate the performances of our method, we

compare it to a target tracking method developed for static

sensor networks. We thus propose an interval-based method

performing a similar estimation as our method. The sensors

are deployed uniformly for the static method whereas for our

method, the mobile nodes are initially deployed in a random

manner. 100 sensors are used for both methods. In particular,

64 static sensors and 36 mobile ones are considered for our

method. Fig. 4 shows the estimated boxes obtained with both

methods. It also shows the target trajectory and the static

sensors locations for both methods. It is obvious that moving

the nodes leads to more accurate estimates. The average areas

of boxes are equal to 15m2 and 117m2 with our method and

the static method respectively. Let the estimation error be the

average distance between the centers of the boxed estimates

and the exact positions of the target. Then it is equal to 0.92m

with our method whereas it is equal to 3.33m with the static

method. The average distance traveled by the nodes is equal

to 5m per time-step with a target velocity equal to 3.9m. It is

worth noting that the computation time highly increases from

0.0006s to 0.38s while moving the sensors. This is mainly

due to the optimization algorithm.

V. CONCLUSION

In this contribution, we proposed a novel technique for

target tracking in mobile sensor networks. We thus proposed

a strategy for managing the mobility of sensors in order to

improve the accuracy of target position estimates. The method

consists of estimating the current position of the target and

then predicting its following position using a second-order

prediction model. A relocation of sensors is then performed in

order to optimize the target localization for the following time-

step. In order to maintain the total coverage of the network,

the proposed approach uses a hybrid sensor network composed

of both static and mobile nodes. While mobile nodes are

moved to improve the target tracking, static nodes ensure the
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CM boxed estimates
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Fig. 4. An illustration of the estimated boxes obtained with both our method
(CM) and the static method (St).

total coverage of the network. Simulation results illustrate the

efficiency of the proposed method compared to algorithms

developed for static sensor networks. Future works will handle

the problem of multi-target tracking.
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