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Abstract—One of the main objectives of localization algorithms
is to compute accurate estimates of sensor positions. This task is
usually performed using measurements exchanged with neighbor-
ing sensors. However, when erroneous measurements occur, the
localization process may yield wrong estimates, which leads to
unreliable information for location-based applications. This paper
proposes a robust localization technique that works efficiently,
even under unreliable measurements assumptions. The proposed
method uses belief function theory to estimate sensors locations.
Assuming that the reliability of sensors measurements is known,
the method combines all the available information to make a
final decision about the positions. Each measurement is then used
to define a belief function based on the reliability information.
Experiments with simulated data demonstrate the effectiveness
of this approach compared with state-of-the-art methods using
different combination rules.

Index Terms—Belief functions, connectivity measurements, dis-
tributed estimation, intervals, reliability of sensors.

I. INTRODUCTION

IN RECENT years, advances in miniaturization, low-power
circuit design, and efficient wireless communication have

produced a new technological innovation—wireless sensor net-
works. These networks are composed of a large number of tiny
devices that have sensing, computation, and communication
capabilities [1]–[3]. The main constraint of such networks
is their limited energy reserves, as their power supplies are
nonrenewable. The development of sensor networks was first
motivated by military applications such as target tracking and
battlefield surveillance. Due to many characteristics of sensor
networks, they are now used in many civil and industrial appli-
cations, such as environment monitoring, vehicle detection, and
healthcare applications [4]–[9]. The major advantage of wire-
less sensor networks remains in their wireless nature since they
can be deployed more rapidly and less expensively than wired
networks. However, in such networks where no infrastructure
exists, sensors are able to move in an uncontrollable manner,
and hence, they need to be relocalized. In fact, in most applica-
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tions, the measured data are highly related to the geographical
location where they have been sensed. For this reason, many
researchers in mobile sensors fields have primarily focused on
the self-localization of the nodes.

The first solution was to equip all sensors with global posi-
tioning systems (GPSs) [10], [11]. Nevertheless, this solution
is currently impractical as the GPS receivers are expensive
and high energy consuming. For this reason, many alternative
algorithms have been proposed to estimate node positions. Most
of them consist of equipping a few sensors with GPS receivers.
These sensors, called anchors, are aware of their positions.
Other sensors, called nonanchor nodes or simply nodes, do not
know their positions, and therefore, they exchange informa-
tion with anchors to be localized. In [12]–[14], anchor-based
techniques using the Monte Carlo sequential approach have
been proposed [15]. The localization problem is defined using
a mobility model as well as the data exchanged between nodes
and anchors. The Monte Carlo approach consists of generat-
ing a fixed number of positions, called particles, using the
localization equations, to cover the solution area. Alternatively,
Mourad et al. [16]–[18] performed the localization process
using interval analysis [19]–[22]. Based on these techniques,
nodes positions are defined as 2-D boxes using intervals.

Almost all previously proposed methods are designed for
a trusted environment where no erroneous measurements are
considered. However, wireless sensor networks might be de-
ployed in a hostile environment where the strength and the
content of exchanged signals can be corrupted. In particular,
state-of-the-art techniques use the connectivity measurement
approach. It consists of considering an anchor in the vicinity
of the considered node if the strength of the signal sent by this
anchor and received by the node is higher than a given threshold
ρr. A noise or a reflection of the signal could change the
corresponding received signal strength indicator (RSSI). Thus,
an anchor might be considered within the vicinity of a node
while it is not, and vice versa. In these circumstances, the fusion
of the observation data could probably lead to an erroneous
estimation of nodes positions. In [23], Caron et al. presented a
method for data fusion under unreliable sensors assumptions.
In this paper, an estimation of the reliability of sensors in
addition to a computation of a state vector is performed using
particle filters. Different approaches have been proposed for
fault diagnosis in the robotic field as well. They are based on
very different assumptions, but they are not entirely applicable
to the localization problem in mobile sensor networks due to
their complexity and their high energy consumption.

The positioning of mobile sensors remains a challenging
task within a network where unreliable measurements may
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occur. This paper proposes an original method for position
estimation where the confidence in measured data is assumed to
be known. The proposed method uses belief theory, also known
as the Dempster–Shafer theory, or the evidence theory [24]–
[28]. The information provided by a measure is used to define a
belief function. Belief functions are then combined, using belief
theory and interval analysis [19], [22] to define a set of regions,
each of which having a specific weight. The resulting boxes
are then propagated to be used with the future measurements
to define the next-step position boxes. The main advantage of
the proposed method lies in the consideration of more than
one possible solution using the reliability of the measured data.
Based on this technique, the proposed method is more robust
than the existing methods, particularly in hostile environments.

The rest of this paper is organized as follows. Section II
describes the localization problem. The basic tools of the belief
theory are then introduced in Section III. In Section IV, the
localization algorithm is presented using the belief theory.
Simulations are performed in Section V, whereas Section VI
concludes the paper.

II. PROBLEM STATEMENT

To define the localization problem, two types of sensors are
introduced, namely, 1) the anchors and 2) the nonanchor nodes,
or simply nodes. Anchors are sensors equipped with a GPS,
and thus, they know their positions. Unlike anchors, nodes are
unaware of their locations and, hence, exchange information
with anchors to localize themselves. Therefore, position estima-
tion is performed using anchors information. Mobile nodes take
advantage of their mobility to refine the localization problem,
as well. In the following, both the mobility model and the
observation equations are introduced.

A. Mobility Model

The proposed method benefits from the mobility of the
nodes to improve the accuracy of the estimation. The mobility
equation consists of a prior state-space equation given by

x(t) = f (x(t − 1)) (1)

where x(t) and x(t − 1) are the coordinate vectors of the mo-
bile node at times t and t − 1, respectively, and f is a function
reflecting the prior information about the node movement.

Many mobility models have been proposed in the literature
to simulate sensor movements [29], [30]. This paper employs
a very general model, inspired by the random walk mobility
model [30]. The proposed model assumes that the maximal
velocity of the node is known. In other words, no restriction
is made on the direction of the motion. The velocity could be
random as well but less than its maximal value. Let vmax be
the maximal velocity of the tracked node, and let Δt be the
duration between two following time steps. Then, the distance
traveled by the node between time steps (t − 1) and t is less
than Δt · vmax. Let θ and v be the direction and the velocity
of the node, respectively, between (t − 1) and t. Then, the
mobility model is given by{

x1(t) = x1(t − 1) + Δt · v · cos(θ)
x2(t) = x2(t − 1) + Δt · v · sin(θ) (2)

where θ and v are unknown variables included in [0, 2π] and
[0, vmax], respectively, and x(t) = (x1(t), x2(t)) is the coordi-
nate vector of the mobile node at time t. Equation (2) could be
reformulated as follows:

(x1(t) − x1(t − 1))2 + (x2(t) − x2(t − 1))2 =(Δt · v)2 (3)

where v ≤ vmax. If the previous position x(t − 1) is punctual,
the mobility constraint consists of a disk equation centered on
x(t − 1) and having Δt · vmax as radius. Any prior information
about the mobility of the nodes could be used to refine the
proposed model.

B. Observation Model

In addition to its mobility model, a node uses observation
information to localize itself. In particular, it collects connectiv-
ity information from anchors within its vicinity to estimate its
position. These measurements are based on a comparison of the
RSSIs. Let ρi(t) be the RSSI of the signal emitted by the anchor
ai and received by the considered node at time t. As shown in
the Okumura–Hata model [31], [32], which is also called the
channel path loss model, ρi(t) decreases monotonically with
the increase of the distance traveled by the signal as follows:

ρi(t) = ρ0 − 10 · nP · log10

d (ai(t),x(t))
d0

+ εi(t) (4)

where ai(t) is the position of the anchor ai at time t, ρi(t)
is in decibels below 1 mW, ρ0 (in decibels below 1 mW)
is the strength of the signal measured at a certain distance
d0, nP is a path loss parameter, d(ai(t),x(t)) is the distance
between ai(t) and xj(t), and εi(t) is the measurement noise.
In particular, εi(t) is assumed to be a Gaussian noise.

Let ρr be the strength related to the communication range
value r. Then, the node compares all the RSSIs of the signals
that it receives at time t to ρr. Practically, one is able to
fix ρr to a specific value and then compute r using ρr and
the Okumura–Hata model. Under irregular radio propagation
patterns, the maximal value of the communication range could
be used. Consider I∗(t) ⊆ {1, . . . , Na} is the set of indices
of the anchors emitting the received signals, where Na is
the total number of anchors in the network. According to
the Okumura–Hata model, for i ∈ I∗(t), if ρi(t) ≥ ρr, then
d(ai(t),x(t)) ≤ r. In this case, the anchor ai is considered
within the vicinity of the node and will be called detected
anchor. In the other case, where ρi(t) < ρr, d(ai(t),x(t)) > r,
and the anchor is not taken into account.

Let I(t) ⊆ I∗(t) be the set of indices of all detected anchors.
Each anchor listed in I(t) defines a connectivity measurement
that could be used in the localization of the considered node.
In fact, all detected anchors are located at a distance from the
node less than r. Then, for each detected anchor ai, i ∈ I(t),
an observation constraint is set as follows:

(x1(t) − ai,1(t))
2 + (x2(t) − ai,2(t))

2 ≤ r2. (5)

Therefore, the observations are modeled as equations of disks
centered on the detected anchors and having r as radii.

In practice, the RSSIs of exchanged signals could be mod-
ified due to an imperfect environment or sensor damages.
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This might lead to erroneous measurements, where anchors
are assumed to be within the vicinity of the node while they
are not, and vice versa. Let ρ∗i (t) and ρi(t) be the theoretical
and the measured RSSIs, respectively, related to a distance
d(ai(t),x(t)). The following four cases could be encountered.

Case 1: ρi(t) ≥ ρr and ρ∗i (t) ≥ ρr. In this case, the anchor
ai is detected, which is true, leading to an accurate
measurement.

Case 2: ρi(t) < ρr and ρ∗i (t) < ρr. In this case, the anchor
ai is withdrawn. This is also true, and no measurement is
generated.

Case 3: ρi(t) < ρr ≤ ρ∗i (t). In this case, the anchor ai is
supposed out of the detection area of the node, which is
false. No measurement is generated, which leads to a loss
in the estimation accuracy.

Case 4: ρ∗i (t) < ρr ≤ ρi(t). In this case, the anchor ai is sup-
posed within the vicinity of the node while it is not. A false
observation constraint is then obtained, leading to inaccu-
rate estimation of nodes positions. In such a case, the re-
sulting measurements are called erroneous measurements.

The proposed method takes the erroneous measurements into
account. Therefore, it assumes that the amounts of confidence
that could be given to observations are provided. Let βi ∈ [0, 1],
i ∈ I(t) be the reliability values given to the measurements.
In particular, βi = 1 means that the measurement is totally
trustworthy, whereas βi = 0 means that the measurement is
absolutely unreliable. Then, if a detected anchor ai is consid-
ered with a reliability equal to βi, the node is located within
the disk centered on the anchor and having r as radius with a
reliability equal to βi. Thus, a correct measurement should have
high reliability, whereas an erroneous one should have low reli-
ability. The observation model then consists of the observation
equation (5) and its corresponding reliability values.

Remark 1: This paper does not develop a method for relia-
bility evaluation. However, it suggests an evaluation technique
based on the RSSI values. According to this technique, the
measurement is assumed reliable as much as its RSSI is higher
than ρr. In fact, when the RSSI ρi(t) of a signal is much
higher than ρr, there is a high probability to have its theoretical
value ρ∗i (t) higher than ρr. Let βr and β be the smallest
and the highest reliability values, respectively, that are able
to be assigned to the measurements. These values correspond,
respectively, to the threshold ρr and a maximal strength ρ. βr

and β could be taken equal to 0 and 1, respectively. The strength
ρ could be equal to the initial transmission strength or a multiple
of ρr. In all cases, ρ should be higher than the maximum of the
received strengths ρ ≥ maxi∈I(t){ρi(t)}. Therefore, according
to this technique, the reliability given to an observation i having
an RSSI equal to ρi(t) could be computed as follows:

βi = βr + (ρi(t) − ρr) ·
β − βr

ρ − ρr
. (6)

Note that the proposed method remains a suggestion. Other
techniques, mainly based on channel analysis, could be used for
reliability computation. In addition, in the simulation section,
an evaluation of the sensitivity of the proposed method to wrong
reliability values assigned to measurements is performed.

III. BELIEF THEORY

The belief theory is a branch of mathematics that deals
with evidence combination for decision making. This theory
has been used in many fields such as data fusion and pattern
recognition [33], [34]. This paper uses the belief theory for
resolving the localization problem. In this section, the basic
definitions of the belief theory are first introduced. The main
concepts of evidence combination are then defined.

A. Basic Definitions

The belief theory, which is also called the Dempster–Shafer
theory or the evidence theory, is a variant of the probabil-
ity theory where elements are not single points but rather
sets or intervals [24]–[28]. One fundamental function of the
Dempster–Shafer theory is the basic belief assignment (BBA)
or simply mass function m. Let Ω = {ω1, . . . , ωn} be the
domain of a variable x and let 2Ω be the set of all subsets of
Ω, 2Ω = {∅, {ω1}, . . . ,Ω}. ∅ denotes the impossible event if Ω
covers all possible values of x. Otherwise, it includes all the
possible values of x not listed in Ω. For instance, let x be a real
variable Ω ⊆ R. If Ω = R, then ∅ denotes the impossible event,
whereas if Ω � R, then ∅ refers to Ω = R \ Ω. Ω is called the
frame of discernment. A mass function defined on Ω, which is
denoted by mΩ, is a mapping from 2Ω to the interval [0, 1] as
follows:

mΩ : A ∈ 2Ω �−→ mΩ(A) ∈ [0, 1] (7)

where
∑

A∈2Ω mΩ(A) = 1. The value of the BBA given to
A consists of the proportion of evidence saying that the ob-
served variable x belongs to A. The value of mΩ(A) gives
no additional information about any subset of A. Let Ai, i ∈
{1, . . . , p}, be the subsets of Ω having nonzero mass values. Ai,
i ∈ {1, . . . , p}, represents the focal elements of the proposed
BBA. Particular BBAs exist according to the number or the
types of their focal elements. For instance, a BBA mΩ is called
categorical if it has only one focal element (p = 1). It is called
empty if its only focal element is Ω. Moreover, mΩ is said to be
normal if mΩ(∅) = 0.

Two other important notions in the evidence theory are the
belief and the plausibility functions. These functions, denoted
by bel and pl, respectively, are derived from the BBA. Given
the BBA function mΩ introduced above, the belief of a set A
is the sum of the BBA values of all the proper subsets of A as
follows:

belΩ(A) =
∑

i|Ai⊆A,Ai 
=∅
mΩ(Ai) (8)

whereas the plausibility of A is the sum of the BBA values of
all subsets intersecting A as follows:

plΩ(A) =
∑

i|Ai∩A 
=∅
mΩ(Ai). (9)

The belief is then the proportion of available evidence given to
A, while the plausibility is a measure of the maximum support
of evidence that could be given to A. The probability of the
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TABLE I
EXAMPLE OF A BBA WITH THE CORRESPONDING

BELIEF AND PLAUSIBLILITY VALUES ASSIGNED

TO EACH SUBSET OF Ω = {ω1, ω2, ω3}

TABLE II
EXAMPLE OF A BBA DEFINED ON R

event A falls within an interval whose lower and upper bounds
are given by the belief and the plausibility values, respectively.
Table I shows an example of a normal BBA, defined on Ω =
{ω1, ω2, ω3}. It also shows the belief and the plausibility values
assigned to each subset of Ω.

In general, the frame of discernment is assumed to be finite.
However, the belief theory could be extended to the infinite case
[35], [36]. If Ω = R, focal elements become intervals [19], [22].
In a multidimensional space, where Ω = Rn, focal elements are
multidimensional intervals, also called boxes, rather than real
intervals. Table II shows an example of a normal BBA, defined
on Ω = R, with the corresponding belief and plausibility val-
ues. The first column of the table gives only the focal elements
of the BBA.

Note that when the source of information is not completely
reliable, one is able to discount the BBA using a discounting
coefficient (1 − α) ∈ [0, 1]. This coefficient consists of the
amount of reliability of the source [27]. Using such coefficient
allows us to transfer a part of the evidence to the whole frame
Ω. A discounted BBA is obtained as follows:

mα,Ω(A)=
{

(1 − α) · mΩ(A), if A∈Ω, A 
=Ω
α + (1 − α) · mΩ(A), if A=Ω.

(10)

B. Evidence Combination

The combination of evidence consists of the aggregation of
information coming from multiple sources. These sources pro-
vide different assessments for the same frame of discernment.
Let S1 and S2 be two independent sources of information about
a variable x. The knowledge held by these distinct sources
could be quantified by two mass functions m1 and m2. Let
F1 = {A1, . . . , Ap} and F2 = {B1, . . . , Bq} be the sets of
focal elements of m1 and m2, respectively. To combine these
sources, different combination rules have been proposed, such
as the conjunctive and the disjunctive rules [37], [38]. In this
paper, the conjunctive rule of combination is used since it leads
to a more informative and specialized BBA. The combination of

the information provided by both sources using the conjunctive
rule yields a mass function m1©∩ 2 defined as follows:

m1©∩ 2(C)=(m1 ©∩ m2)(C)=
∑

i,j|Ai∩Bj=C

m1(Ai)m2(Bj) (11)

for all subsets C ⊆ Ω. The mass m1©∩ 2(∅) assigned to the
empty set measures the conflict between the sources. To obtain
a normal BBA, one is able to apply the Dempster rule, which
consists of the conjunctive rule followed by a normalization
phase given by

m1
⊕

2(C) =
{

m1©∩ 2(C)
1−m1©∩ 2(∅) , if C ⊆ Ω, C 
= ∅
0, if C = ∅.

(12)

C. State Estimation Using the Belief Theory

The goal of state estimation is to compute an accurate
estimate of the state of a system using measured data. In this
paper, we propose a bounding method for state estimation
using the belief theory. In this approach, one attempts to build
sets containing all state vectors consistent with measurements.
Consider a dynamic system that has an unknown state. Dif-
ferent information about the state could be available such as
measurements or state evolution. Having multiple sources of
information, the method consists of representing the informa-
tion brought by each source by a mass function. Once mass
functions are defined, resolving the problem aims at combining
all mass functions using the conjunctive rule of combination,
which is given in (11). This leads to a BBA that has multiple
focal elements, each of which having a specific mass. At
each iteration, the focal element having the highest weight is
chosen. The selected focal element would correspond to the set
including the unknown state.

IV. LOCALIZATION ALGORITHM

The localization problem is defined using mobility and ob-
servation equations introduced in Section II as follows:⎧⎨
⎩

(x1(t)−x1(t−1))2+(x2(t)−x2(t−1))2 =(Δt · v)2

(x1(t)−ai,1(t))
2+(x2(t)−ai,2(t))

2≤r2, i ∈ I(t)
v≤vmax.

(13)

Each observation constraint is also assigned a reliability mea-
sure denoted by βi, i ∈ I(t).

A. Description of the Method

In this paper, the localization problem is resolved using
both the belief theory and the interval analysis [19], [22]. The
key idea of the method consists of handling each observation
equation as a source of information. Note that the sources are
independent since each sensor is able to move and exchange
information with the network independently from the others.
Hence, at each time step, observation BBAs are defined using
measurement constraints. The mobility model is also used to
define an additional BBA called mobility BBA. Thus, the num-
ber of all elementary BBAs is equal to |I(t)| + 1. Resolving the
problem consists of combining all elementary BBAs in a final
one, having several focal elements. The frame of discernment Ω
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Fig. 1. Generation of the mobility BBA.

is set to the largest area where nodes are able to go. If this area
is not bounded, Ω is set to R2, having all sensors moving in the
same plane. Since Ω is infinite, focal elements of all BBAs will
be 2-D intervals [16], [17], [22].

Let mt−1 be the final BBA computed at time t − 1, and let
K(t − 1) be the number of its focal elements. They are given by
[x]k(t − 1) = [x1]k(t − 1) × [x2]k(t − 1), k ∈ {1, . . . , K(t −
1)}. The first step of the method consists of propagating these
focal elements to the current instant. This step is performed us-
ing the mobility model. In the interval framework, all variables
are replaced by the intervals at which they belong. In particular,
the node coordinate vector x(t) = (x1(t), x2(t)) is replaced
by the box [x](t) = [x1](t) × [x2](t) [16], [17]. Then, if (2) is
considered, the mobility model is reformulated as follows:{

[x1](t) = [x1](t − 1) + [−Δt · vmax,Δt · vmax]
[x2](t) = [x2](t − 1) + [−Δt · vmax,Δt · vmax].

(14)

Propagating the previous focal elements using this model leads
to the following boxes:{

[x1]∗k(t) = [x1]k(t − 1) + [−Δt · vmax,Δt · vmax]
[x2]∗k(t) = [x2]k(t − 1) + [−Δt · vmax,Δt · vmax].

(15)

Since the mobility relation is bijective, masses of the previous
focal elements are transmitted to the new boxes. Thus, a mobil-
ity BBA m∗

t could come out of the previous BBA mt−1. This
BBA has K(t − 1) focal elements [x]∗k(t), whose masses are
given by m∗

t([x]∗k(t)) = mt−1([x]k(t − 1)). Fig. 1 illustrates
the propagation of the BBA mt−1 having three focal elements.

In addition to the mobility equation, the observation equa-
tions are used to define several mass functions. For each reliable
measurement i, i ∈ I(t), a disk is defined centered on the
anchor ai and having the communication range r as radius.
This leads to a categorical BBA mi having the disk as a focal
element. In the interval framework, each disk i is replaced by
the smallest box Ai covering it as follows:

Ai = [ai,1(t) − r, ai,1(t) + r] × [ai,2(t) − r, ai,2(t) + r]
i ∈ I(t). (16)

Therefore, the BBA corresponding to a reliable measurement i
is given by

mi(A) =
{

1, if A = Ai

0, otherwise.
(17)

However, since measurements are not completely reliable, the
given BBAs should be discounted according to (10). The

discounting coefficients αi are taken equal to 1 − βi. The
observation BBAs are then given by

mα
i (A) =

{
βi, if A = Ai

1 − βi, if A = Ω,
0, otherwise.

(18)

Therefore, a part of the evidence is given to the frame of
discernment Ω. In such a case, each observation BBA mα

i has
two focal elements Ai and Ω.

The localization process consists of combining the mobility
mass function m∗

t with all the observation mass functions mα
i ,

i ∈ I(t), according to the conjunctive rule of combination. The
final BBA, denoted by mt, will be more informative than the
elementary ones. To compute mt, one should compute its focal
elements and then assign them the proper masses. Let F∗ and
Fi be the sets of focal elements of m∗

t and mα
i , i ∈ I(t),

respectively. Then, F∗ = {[x]∗1(t), . . . , [x]∗K(t−1)(t)} and Fi =
{Ai,Ω}. Since mt results from the conjunctive rule of combi-
nation, its focal elements are given by the overlapping regions
of all possible combinations of the elementary focal elements.
Let C be the combination matrix having |I(t)| + 1 columns and
KC rows. This special matrix has focal boxes as elements. In
other words, the combination number 	, denoted by C� and
corresponding to row 	 of C, contains |I(t)| + 1 elements. In
particular, the element number s of C�, denoted by C�,s, is
chosen from the set of focal elements of the sth elementary
BBA. Let I(t) = {i1, . . . , i|I(t)|}, then the combination matrix
C is given by the following:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai1 Ai2 · · · Ai|I(t)| [x]∗1(t)
...

...
...

...
Ai1 Ai2 · · · Ai|I(t)| [x]∗K(t−1)(t)
Ω Ai2 · · · Ai|I(t)| [x]∗1(t)
...

...
...

...
Ω Ai2 · · · Ai|I(t)| [x]∗K(t−1)(t)
...

...
...

...
Ω Ω · · · Ω [x]∗1(t)
...

...
...

...
Ω Ω · · · Ω [x]∗K(t−1)(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Note that the index is, is ∈ I(t) refers to the anchor number s
within the set of the detected anchors over all the anchors in
the network. is is not necessarily equal to s. The total num-
ber of combinations is given by KC = K(t − 1) · 2|I(t)|. Each
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Fig. 2. Example of a localization problem.

combination C� yields a box B� =
⋂|I(t)|+1

s=1 C�,s. According to
the combination rule, the mass of a box B� is given by

mt(B�) = m∗
t

(
C�,|I(t)|+1

)
·
|I(t)|∏
s=1

mα
is

(C�,s). (20)

Note that in case of conflict, some resulting boxes could be
empty. To obtain a normal BBA in such cases, one is able
to set to zero the masses of empty boxes and then apply a
normalization phase where the sum of all masses is reset to 1.

Each nonempty box B� defines a focal element of the normal
final BBA. However, since the number of focal elements could
be quite large, this method proposes to limit the number of
selected focal elements to K(t). This number is either cho-
sen beforehand for all the time steps, or defined instantly by
choosing the focal elements having masses higher than a certain
bound. The K(t) boxes having the highest masses are then
selected to define the focal elements of mt, whereas other boxes
are withdrawn. A final normalization phase is required in this
case. Let [x]k(t), k ∈ {1, . . . , K(t)} be the final set of focal
elements of mt. The estimated position at time t is the box
[x]k(t) or set of boxes having the highest mass. This box, in
addition to the others, will be kept in the memory to be used in
the following time step.

Example 1: Consider the localization problem given by three
measurements having β1 =0.9, β2 =0.8, and β3 =0.2. It is also
assumed that the previous BBA has two focal elements [x]1(t−
1) and [x]2(t−1), whose masses are equal to 0.7 and 0.3,
respectively. Fig. 2 illustrates in gray the focal elements of the
elementary BBAs coming out of this problem. The number
of all possible combinations is equal to 2 ∗ 23 =16. Table III
shows all possible combinations, the resulting intersection
boxes, and their corresponding masses according to the
first final BBA m+

t , where ∅ has an nonzero mass and the
normalized final BBA mt. Each nonempty focal element is
assigned the corresponding number 	 in Fig. 2. The illustrations
show that mt has seven focal elements, which are shown in
black, in addition to [x]∗1 and [x]∗2, in the plot. The one

TABLE III
COMBINATIONS, FOCAL ELEMENTS, AND MASSES

CORRESPONDING TO THE PROBLEM GIVEN IN FIG. 2

having the highest weight is B3, corresponding to the position
estimate. If only focal elements having a mass higher than 0.1
are selected, only two focal elements remain in the list, namely,
1) B3 and 2) B7. Their final masses after the normalization
would be equal to 0.8 and 0.2, respectively.

B. Alternative Algorithm

The previous section proposes a method using evidence com-
bination for sensor localization. The presented method relaxes
the observation disk equations to define the focal elements
of the observation BBAs. Indeed, disks are replaced by the
boxes covering them. In this section, an alternative algorithm,
allowing us to take disk equations into account, is proposed.
This algorithm consists of three steps. Similar to the previous
method, the first step corresponds to the propagation phase
where the mobility BBA m∗

t is defined. The second step con-
sists of the combination of the observation measurements only,
yielding an observation BBA mo. This BBA will be combined
to the mobility one afterward in the third step.

Using the belief theory, each measurement having a reliabil-
ity equal to β yields either a disk constraint with a mass equal to
β, or the frame of discernment where the constraint is omitted.
Instead of relaxing the disk constraints to define focal elements,
the exact equations are employed. For this reason, a binary
matrix of combinations is defined where 1 or 0 in a column
s, s ∈ {1, . . . , |I(t)|}, means that the constraint is is selected
or not, respectively. is denotes the sth index in the indices set
I(t). Let Co be this binary matrix; then

Co =

⎛
⎜⎜⎝

Co,1

Co,2

...
Co,Ko

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 · · · 1
1 1 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎠ . (21)

The total number of observation combinations is equal to Ko =
2|I(t)|. A combination Co,� leads to a box Bo,�, resulting of the
intersection of all constraints denoted by 1 in Co,�. Thus, the
mass of a box Bo,� is given by

mo(Bo,�) =
|I(t)|∏
s=1

q�,s (22)
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where

q�,s =
{

βis
, if Co,�,s = 1

1 − βis
, otherwise.

(23)

In other words, mo(Bo,�) =
∏|I(t)|

s=1 (βis
.Co,�,s + (1 − βis

).
(1 − Co,�,s)).

For each combination 	 ≤ Ko, the box Bo,� is obtained by
overlapping the disks of the observation constraints assigned a
1 in Co,�. Let J� be the set of indices of these constraints. To
compute the intersection region, each observation equation i is
written in terms of intervals as follows:

([x1](t) − ai,1(t))
2 + ([x2](t) − ai,2(t))

2 = [0, r2]. (24)

This constraint could be reformulated as follows [17]:{
[x1](t) = ai,1(t) +

[
−bi,1(t), bi,1(t)

]
[x2](t) = ai,2(t) +

[
−bi,2(t), bi,2(t)

] (25)

where ⎧⎪⎪⎨
⎪⎪⎩

bi,1(t) =
√

r2 − inf
(
([x2](t) − ai,2(t))

2
)

bi,2(t) =
√

r2 − inf
(
([x1](t) − ai,1(t))

2
)

with inf() being an operator yielding the inferior bound of the
considered interval. The overlapping region is obtained by con-
tracting the whole frame Ω in the Waltz algorithm using (25).
The Waltz contractor [22] is a simple algorithm that iterates
all constraints, without any prior order, until no contraction is
possible. For each combination 	, Ω is reduced to a smaller box
covering the intersection region of all disks found in J�. Using
square equations instead of disk equations in this step leads to
the same result as with the previous method.

All nonempty observation boxes will be combined afterward
with the mobility boxes. The number of all possible combina-
tions is equal to K(t − 1).K∗

o , where K∗
o ≤ Ko is the number

of nonempty observation boxes. The mass of each resulting
box is equal to the product of the observation and the mobility
masses of the considered boxes in the combination. Similarly
to the previous method, the number of the focal elements of
the final BBA K(t) could be limited. Using disk equations,
this method leads to smaller focal elements, which increase
the estimation accuracy. However, iterating the constraints in
the Waltz contractor may be more consuming in terms of
computation time. The pseudocode of this method is given in
Algorithm 1, where w() yields the width of the considered
interval, and max[K(t)]{} gives the K(t) maximal values. In
the simulation section, this version of the method will be used.

Note that this alternative method could be easily applied
with many different observation models. Indeed, having a
whatsoever observation equation, for each combination Co,�,
all observation constraints assigned a 1 in Co,� are overlapped,
leading to an observation box. For instance, one is able to use
the RSSI-based model where each measured RSSI is used with
the Okumura–Hata model to compute the distance between the
anchor sending the signal and the node receiving it. Assume that
di is the computed distance between the anchor ai and the node,

and let [di] = [di, di] be the interval including the incertitude
over di. In this case, the observation model is given as follows:

([x1](t) − ai,1(t))
2 + ([x2](t) − ai,2(t))

2 =
[
di

2, di
2
]

i ∈ I(t) (26)

where I(t) is the set of indices of all detected anchors. One is
able to iterate these constraints in the Waltz algorithm instead
of those of disks to compute the observation boxes.

Algorithm 1: Pseudocode of the method.
Input: K(t), [x]k(t − 1), 1 ≤ k ≤ K(t − 1), mt−1, I(t),

ai(t), βi, i ∈ I(t), vmax, Δt, r;
Output: [x]k(t), k ∈ {1, . . . ,K(t)};
for k ∈ {1, . . . , K(t − 1)} do

[x1]∗k(t) = [x1]k(t − 1) + [−Δt.vmax,Δt.vmax];
[x2]∗k(t) = [x2]k(t − 1) + [−Δt.vmax,Δt.vmax];
m∗

t([x]∗k(t)) = mt([x]k(t − 1));
end

Ko = 2|I(t)|, Co =

⎛
⎝ 1 · · · 1

...
...

0 · · · 0

⎞
⎠ ;

for 	 ∈ {1, . . . , Ko} do
J� = {is|Co,�,s = 1, s ∈ {1, . . . , |I(t)|}};
Bo,� = Ω;
Ar� = w(Bo,�,1) ∗ w(Bo,�,2)Arold

� = Ar� + 1;
while Ar� < Arold

� do
Arold

� = Ar�;
for s ∈ {1, . . . , |J�|} do

Bo,�,2 = Bo,�,2 ∩ [ais,2(t) − r, ais,2(t) + r];
bis,1(t) =

√
r2 − inf((Bo,�,2 − ais,2(t))2);

[φis,1] = ais,1(t) + [−bis,1(t), bis,1(t)];
Bo,�,1 = Bo,�,1 ∩ [φis,1];
Bo,�,1 = Bo,�,1 ∩ [ais,1(t) − r, ais,1(t) + r];
bis,2(t) =

√
r2 − inf((Bo,�,1 − ais,1(t))2);

[φis,2] = ais,2(t) + [−bis,2(t), bis,2(t)];
Bo,�,2 = Bo,�,2 ∩ [φis,2];

end
Ar� = w(Bo,�,1) ∗ w(Bo,�,2);

end
mo(Bo,�) =

∏|I(t)|
s=1 (βis

.Co,�,s + (1 − βis
).(1 − Co,�,s));

end
s = 0;
for 	 ∈ {1, . . . , Ko} do

if Bo,� 
= ∅ then
for k ∈ {1, . . . , K(t − 1)} do

s = s + 1, [x]+s (t) = Bo,� ∩ [x]∗k(t);
m+

t ([x]+s (t)) = mo(Bo,�) ∗ m∗
t([x]∗k(t));

end
end

end
S = {s|m+

t ([x]+s (t)) ∈ max[K(t)]{m+
t }};

for k ∈ {1, . . . , K(t)} do
[x]k(t) = [x]+S(k)(t), mt([x]k(t)) = m+

t ([x]+S(k)(t));
end
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V. SIMULATIONS

This section illustrates the performances of the proposed
method. All sensors are spread in a 100 m × 100 m area, which
is known as the deployment area. In all simulations, the sensors
are assumed to have a group mobility where their movements
are dependent on each others [29], [30]. In particular, a group
mobility model is generated where sensors are moving in the
northeast direction in the first 60 s and then in the northwest
direction until 100 s. An example of the paths of 15 anchors
and 30 nodes according to this model is illustrated in Fig. 3.
Thus, nodes and anchors are moving for 100 s, the localization
period Δt being equal to 1 s. Their maximal velocity is equal to
2.2719 m · s−1, whereas the communication range r is set to
10 m. In the following, an evaluation of the proposed method
is first shown under imperfect circumstances. An illustration
of the sensitivity of the effectiveness of the method to the
reliability values of erroneous measurements is then given. The
proposed approach is compared afterward with two different
methods based on the Monte Carlo approach and the interval
theory, both of them having been developed for a perfect
environment. In all simulations, without loss of generality, a
single mobile node is considered since it localization problem
does not depend on other nodes. Note that the simulations
are performed on an Intel(R) Core(TM)2 central process-
ing unit (2.40 GHz, 1.00 GB random access memory) using
MATLAB 6.1.

A. Evaluation of the Proposed Method

To illustrate the effectiveness of the proposed method, ten
anchors are randomly deployed, four of them being initially
chosen within the vicinity of the node. The others are taken
within the ring centered on the node and having r and 2r as
radii, where the communication range r is equal to 10 m. In
such a case, a high number of erroneous measurements could be
obtained, since anchors that are out of the vicinity of the node
remain so close to it. Indeed, their corresponding RSSIs, being
less than but close to the threshold ρr, are able to overpass it
due to a small additive noise. All sensors are supposed to have a
group mobility according to the trajectories illustrated in Fig. 3.
To generate measurements, the proposed technique proceeds
as follows. RSSI values are first generated using the distances
between the anchors and the node. This step is performed
using a noiseless Okumura–Hata model with ρo = 100 dBm,
d0 = 0.1 m, and nP = 3. These parameters yield a threshold
ρr = 40 dBm. A Gaussian noise with mean μ = 0 dBm and
variance σ2 = 4 dBm2 is then added to the computed RSSIs.
To define the connectivity measurements, the resulting values
are compared with ρr. Fig. 4 illustrates the number of detected
anchors using the noisy RSSIs. In perfect environments, four
anchors are in the vicinity of the node at each time step. In this
section, correct measurements are assigned random reliability
values taken within the interval [0.5, 1], whereas erroneous ones
are assigned values within the interval [0, 0.5]. The reliability
values assigned to correct and erroneous measurements are
illustrated in Fig. 5. The number of focal elements chosen at
each time step is also limited by only keeping those whose

Fig. 3. Paths of 15 anchors and 30 nodes moving together.

Fig. 4. Number of detected anchors using noisy measurements, shown at odd
time steps.

Fig. 5. Reliability values assigned to correct and erroneous measurements,
shown at odd time steps.

masses are higher than 0.1. Fig. 6 shows the boxes obtained
using our method. The plot shows in straight black lines the
boxes with the highest masses, whereas other focal elements are
shown in dashed gray lines. At time t = 7 s for instance, three
focal elements are obtained having masses equal to 0.5700,
0.2627, and 0.1673. The estimated position at this time step
is the best focal element having the highest mass equal to
0.5700. The average computation time needed in our method
per time step is equal to 0.02433 s. Let the estimation error be
the distance between the real position and the center of the box
having the highest mass. Then, the average estimation error per
time step in this example is equal to 0.4973 m. It is obvious that
the estimated boxes include the real positions at all the time
steps, which corroborates the effectiveness of the method, even
under imperfect circumstances.
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Fig. 6. Boxes obtained using our method.

Fig. 7. Number of erroneous measurements on the top plot and the guarantee
indicator on the bottom plot.

B. Sensitivity to the Reliability of Measurements

In the previous section, erroneous measurements are
assigned low reliability values (less than 0.5), whereas correct
ones are given high reliability values (higher than 0.5). Under
these circumstances, the guaranteed aspect of the method
is maintained. In other words, the real position is included
in the estimated box at each time step. In this section, it is
assumed that the model used to assign the reliability values
to measurements is irrelevant. Thus, erroneous measurements
could have high reliability values and maybe higher than those
of good measurements. First, all erroneous measurements are
assumed to have high reliability values taken within [0.5, 0.75].
In this example, the correct measurements have always higher
reliability values than the erroneous ones. Their values are
chosen within [0.75, 1]. The top plot of Fig. 7 shows the number
of erroneous measurements created at each time step. The
bottom plot of Fig. 7 illustrates the guarantee indicator, which
is equal to 1 when the real position is included in the highest
mass box and 0 otherwise. The figure shows that the method
has erroneous measurements at 64 time steps, whereas it loses
its guaranteed aspect at 14 of them. In fact, generally, when
all observation disks have a nonempty intersection, even with

the erroneous ones, the method loses its guaranteed aspect. For
instance, the left plot of Fig. 8 shows the anchors disks obtained
at t = 13 s. The disks have a nonempty intersection, which will
have the highest observation mass. The plot shows the focal
elements of the mobility mass function as well as the estimated
box. In contrast, the right plot of Fig. 8 shows the anchors disks
given at t = 87 s. It is obvious that the erroneous disk has an
empty intersection with the correct observation disks and the
mobility boxes. Then, when erroneous measurements have high
reliability values but less than those of correct measurements,
the method might lose its guaranteed aspect at time steps where
the erroneous observation disks have nonempty intersections
with the correct observation disks. In this case, the estimation
boxes will not cover the real position of the node. However,
other boxes, having smaller masses, are kept in the memory.
Generally, these boxes cover the real position. Using them at
the following time step reduces the propagation of error in
future estimation steps.

Another configuration is then considered, in which correct
and erroneous measurements have random reliability values
chosen within [0, 1]. In such a case, an erroneous measurement
might have a high reliability exceeding reliability values of
correct measurements. In this situation, the guaranteed aspect of
the method is generally lost unless the erroneous measurement
disk has an empty intersection with the mobility boxes. Then,
the effectiveness of the method depends on the way the reliabil-
ity values are assigned to measurements. In cases where good
measurements have reliability values higher than 0.5 and erro-
neous ones have reliability values less than 0.5, the localization
result is always guaranteed. In other situations, the guaranteed
aspect depends on the positioning of anchors, the previous esti-
mated boxes, and the reliability values of measurements. How-
ever, since the method computes several focal elements at every
time step, a wrong estimation at a specific instant is generally
not efficient at following steps, which confirms the importance
of the saving of several focal elements in the memory.

C. Comparison With a Monte Carlo-Based Method

In this paragraph, the robust localization (RL) method is
compared with the Monte Carlo boxed localization (MCB)
proposed in [13]. MCB is an anchor-based method proposed
for environments where all measurements are supposed to be
valid. It employs the Monte Carlo sequential approach given in
[15]. Involving connectivity measurements, the MCB method
generates a fixed number of positions, called particles, to cover
the solution area. All particles are then kept in the memory to be
used in the following time step. In case of empty intersection of
observation constraints, the MCB method satisfies the mobility
model only. To compare the RL method to the MCB method,
the same simulated data as in Section V-A are used first. In
particular, ten anchors are randomly deployed, four of them
being within the vicinity of the node. The others are chosen
within the ring centered on the node and having r and 2r
as radii. The communication range r is set to 10 m as well.
All sensors are then moving using the group mobility paths,
as shown previously. To generate erroneous measurements, a
Gaussian noise with a zero mean and a variance equal to
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Fig. 8. Observation disks at time steps t = 13 s on the left plot and t = 87 s on the right plot.

Fig. 9. Estimated boxes obtained with the RL method and the particles
obtained with the MCB method with ten anchors in the network.

4 dBm2 is added to the correct RSSIs values. Then, regarding
the RL method, measurements are assigned high reliability
values if they are correct and low values otherwise. For the
MCB method, 50 particles are generated at each time step.
The maximal number of the iterations allowed to have these
particles is set to 100. Fig. 9 shows the particles and the
estimated boxes obtained using MCB and RL methods, respec-
tively.The average computation times of both methods are equal
to 0.02433 and 0.12714 s per time step, respectively. Therefore,
the RL method is less consuming in terms of computation time
compared to the MCB method. Let the estimation error for
MCB be the distance between the barycenter of all particles and
the real position. Then, the average estimation errors are equal
to 0.4973 m for RL and 1.7646 m for MCB. Consequently, our
method ensures a substantial gain in both estimation accuracy
and computation time compared to the MCB method, partic-
ularly in imperfect environments. In fact, the MCB method

Fig. 10. Estimated boxes obtained with the RL method and the particles
obtained with the MCB method with 20 anchors in the network.

overlaps all measurements, regardless of their reliability values,
to define the estimated particles. If the resulting overlap region
is empty, it considers the mobility constraint only. The presence
of erroneous measurements leads to inaccurate overlap regions,
yielding inaccurate estimates, which increases the estimation
error. On the other hand, the generation process of 50 particles,
needing several iterations, at each time step is high consuming
in terms of computation time, compared with the interval-based
estimation used in the RL method.

A comparison of both methods is then performed using
20 anchors, spread in the whole deployment area. The simu-
lation is performed in the same conditions of error generation
and reliability assignment as previously. Fig. 10 shows the
particles and the boxes obtained with both methods. In this
case, the average computation times per time step are equal
to 0.02823 and 0.15834 s, respectively, for RL and MCB
methods. The average estimation errors are given by 0.4356
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Fig. 11. Estimated boxes obtained with the RL method and the particles
obtained with the MCB method with 30 anchors in the network.

TABLE IV
COMPARISON OF THE RL METHOD TO THE MCB METHOD

USING DIFFERENT NUMBERS OF ANCHORS

and 1.8304 m, respectively. Now, if we consider 30 anchors
spread in the whole deployment area, the average computation
times per time step obtained with RL and MCB are equal to
0.03026 and 0.21637 s, respectively, whereas the respective
average estimation errors are given by 0.3905 and 2.1761 m.
Fig. 11 shows the particles and the boxes obtained with both
methods with 30 anchors in the network. Table IV shows the
total numbers of anchors, the average computation times and
the average estimation errors obtained with both methods. The
table shows the average numbers of detected anchors per time
step as well as the average numbers of correct and erroneous
measurements for each considered number of anchors. The
results show that the computation times increase with the
increase of the total number of anchors in the network in both
RL and MCB methods. In fact, since both methods use all
constraints at each time step, the increase of the number of
detected anchors leads to the increase of the computation times.
On the other hand, the estimation error decreases with the
RL method with the increase of the total number of anchors,
whereas it increases with the MCB method. In fact, MCB
overlaps all constraints, including the erroneous ones, at each
time step to define the estimated particles. Then, the increase of
the number of erroneous measurements leads to the increase of
the estimation error with the MCB method. Moreover, the RL
method considers the reliability of each measurement. Since
the correct measurements have high reliability and erroneous
ones have low reliability, then the estimated boxes having
the highest masses result generally from the overlap of the
correct constraints. Thus, the increase of the number of correct

Fig. 12. Estimated boxes obtained with the RL method and the GBL method
using ten anchors.

TABLE V
COMPARISON OF THE RL METHOD TO THE GBL METHOD

USING DIFFERENT NUMBERS OF ANCHORS

measurements leads to the increase of the accuracy of the RL
method, leading to the decrease of the estimation error, which
agrees with the simulated results.

D. Comparison With an Interval-Based Method

In this section, the RL method is compared to the guaranteed
boxed localization (GBL) proposed in [17]. Handling interval
data, the GBL method is developed for perfect circumstances
where measurements are supposed to be true. At each time
step, it iterates both the mobility and connectivity equations in
the Waltz algorithm to compute the solution box. It is worth
noting that the GBL method uses only the mobility model at
time steps where the observation disks have an empty inter-
section. Similarly to the simulations illustrated in Section V-C,
the GBL and the RL methods are first compared using ten
anchors. Their performances are then illustrated using 20 and
30 anchors. In all cases, erroneous measurements are generated
by adding a zero-mean Gaussian noise with a variance of
4 dBm2 to the RSSIs. Fig. 12 illustrates the estimated boxes
obtained with both RL and GBL in the case of ten anchors.
The plot shows that the GBL boxes are either too small but
not including the real positions or too large using only the
mobility equation. The guaranteed aspect is lost at 27 time
steps with GBL, whereas it is maintained at all time steps with
RL. The average computation time, however, increases from
0.00577 s with GBL to 0.02527 s with RL. In contrast, the
average estimation error decreases from 1.4819 m with GBL
to 0.4973 m with RL. Table V shows the average computation
times, the average estimation errors, and the number of time
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steps where the guaranteed aspect is lost in both methods using
10, 20, and 30 anchors. It is obvious that the increase of the
estimation error is related to the lost of guarantee. The results
show that the proposed method is more efficient than the GBL
method in terms of accuracy at the cost of the computation
time. In fact, similarly to the MCB method, the GBL method
uses all constraints, regardless of their reliability values. Since
erroneous measurements create generally regions not including
the exact position, using all measurements in GBL might lead
to estimated boxes not covering the correct positions. For this
reason, the estimation errors of the GBL method is higher
than those of the RL method. It is worth noting that the RL
method achieves several combinations at each time step leading
to multiple focal elements. This is why it is more consuming
than the GBL method in terms of computational time.

VI. CONCLUSION

This paper has proposed an original method for sensor lo-
calization in imperfect circumstances. The method is developed
for environments where erroneous observations may occur. The
robustness of the method remains in the way that it makes use
of the reliability of the measured data to define the solution.
Using both belief and interval theories, the method proposes
more than one possible position at every time step, each of
which having a specific weight. Computed positions are 2-D
intervals, whose centers define the punctual estimated positions
of the nodes. The effectiveness of the method is evaluated using
simulations on mobile sensors that have group trajectories.
Experimental results show that our method outperforms the
existing methods for perfect environments when erroneous
data are collected. Future works will handle the estimation
of the observations reliability. Moreover, one can define the
localization problem in different imperfect scenarios where, for
instance, only the maximal number of erroneous measures is
supposed to be known.
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