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The knowledge of node positions is essential to many

applications of wireless sensor networks. We propose an original

model-free technique for localization in mobile ad hoc sensor

networks (MANETs). Region constraints are set by a comparison

of the received signal strength indicators (RSSIs) at both anchors

and nonanchor nodes. The accuracy of this method remains in

the way that it overcomes the use of the channel pathloss model.

It is thus naturally adapted to nonstationary environments.

The proposed approach uses interval analysis and constraints

satisfaction techniques to compute accurate locations in a

guaranteed way. Simulations are performed on group trajectories

of sensors whose movements are generated using a reference

point group mobility model. The simulation results confirm the

efficiency of the proposed method and show that it outperforms

the anchor-based methods in terms of accuracy and estimation

errors.
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I. INTRODUCTION

In recent years, mobile ad-hoc sensor networks

(MANETs) have attracted great interest from

researchers in the field of signal processing and

wireless communications [1—3]. Such networks are

composed of a large number of low-cost and densely

deployed smart sensors [4]. These tiny components

have processing and communication capabilities but

are limited in computational capacities and memory

resources. One of the most important constraints

of the sensors is their low energy consumption

requirement. Therefore, sensors protocols and

built-in algorithms must focus primarily on energy

conservation in order to extend the network lifetime.

MANETs have been broadly applied in various

fields, such as military, health monitoring, and

environment observation [1, 5—7]. Sensor networks

have also stimulated research in information

acquisition, processing and transmission in wireless

devices such as mobile phones. A major advantage

of MANETs is in their wireless nature as they can

be deployed more rapidly and less expensively than

wired networks. However, the lack of an explicit fixed

infrastructure also becomes a major disadvantage in

uncontrolled mobility networks due to the continuous

change of sensors locations. In fact, in almost all the

applications of MANETs, observed information is

tightly related to the geographical locations of sensors.

For this reason, the self-localization of sensors

has been a primary focus of many researchers in

MANETs field. The first direct way to obtain location

information is to install Global Positioning Systems

(GPS) on all sensors [8]. However, this solution is

currently impractical as GPS receivers are expensive,

high energy consuming, and relatively massive for

tiny sensor devices.

Many localization algorithms have been proposed

in literature to estimate sensors positions. Most of

the proposed methods assume that a few number

of sensors are equipped with localization hardware

such as GPS receivers. These sensors, that know

their positions, are called anchors. All remaining

sensors are called nonanchor nodes (or simply

nodes). They exchange information with anchors

in order to estimate their positions. Anchor-based

approaches using repetitive static localization are

presented in [9], [10], [11], and [12]. For instance,

in [9], each node defines its position as the center

of all detected anchors within its vicinity at every

time step. However, the main drawback of these

methods is that they do not take advantage of the

mobility of the nodes. In [13], [14], [15], techniques

are proposed for data fusion or node selection

aiming at targets localization. In these methods,

the location estimation is performed outside of the

unknown-position component. In a different manner,

researchers in [16] propose an original method that
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uses communication to a moving target to refine the

solution area. Alternatively, dynamic approaches based

on the sequential Monte-Carlo technique [17] have

been proposed in [18], [19], and [20]. A mobility

model is added to the observation of anchors in order

to improve the positions estimation. In these methods,

every node generates a fixed number of positions

called particles in order to cover the solution area.

Nevertheless, these particle-filter-based methods are

high memory consuming since a large amount of

particles is required to achieve good performance.

In our previous work [21—23], we proposed

dynamic methods using interval analysis [24—27].

These algorithms handle interval data in order to

compute sensor locations. Using constraint satisfaction

techniques [27—29], these methods aim to find the

smallest box that covers the set of solutions. In [21]

and [22], the localization problem is defined by a

mobility model added to connectivity measurements

considering anchors; whereas observations in [23]

are set by rings equations based on received signal

strength indicator (RSSI) comparisons [30—32].

In this paper we propose an original decentralized

dynamic method based on intervals. The novelty

of this method remains in the way that it defines

observations considering all the sensors in the

network. In other words, it employs measurements

to both anchors and nonanchor nodes. The observation

constraints are defined as rings equations using RSSI

comparisons. The major advantage of this method is

that it works reliably in low-anchor density networks.

While anchor-based approaches restrict environment

conditions such as uniformly deployed anchors,

the proposed method relaxes these assumptions in

a guaranteed way. Extensive simulations are then

run showing better performance of our method than

anchor-based methods especially in networks where

only few sensors are equipped with GPS.

The rest of this paper is organized as follows. In

Section II we define the localization problem setting

mobility and observation constraints. In Section III we

briefly present the theory of interval analysis. We then

expose the interval-based solution of the problem.

The performances of our method are illustrated with

simulation results in Section IV. Finally, Section V

concludes the paper.

II. PROBLEM STATEMENT

The proposed method defines two types of sensors

deployed in the network, anchors and nonanchor

nodes (or simply nodes). Anchors are equipped with

positioning hardware such as GPS. They are aware

of their positions, whereas nonanchor nodes do not

know their locations and thus need to be implemented

with the localization algorithm. The proposed method

takes advantage of the mobility of the node to set

the problem constraints. It thus involves a mobility

model to refine the localization problem. Besides the

mobility model, it uses measurements to both anchors

and nonanchor nodes. In the following, we define the

mobility and the observation models describing the

localization problem.

A. Mobility Model

Sensors are deployed in a dynamic field of

interest where they are moving in an uncontrollable

manner. Many mobility models have been proposed

in literature to describe their motion [33—35]. In

our method we aim to use a basic mobility model

in the way that the algorithm remains general and

thus applicable to as many situations as possible. A

simple mobility model with minimum assumptions

is the random walk mobility model. It assumes that

only the maximal velocity vmax of nodes is known.

Between two time steps, the node is able to move in

any direction with a velocity less than vmax, which

means that the distance traveled by the node over

1 s is less than vmax. Hence, the mobility equation is

formulated as follows,

(x1(t)¡ x1(t¡ 1))2 + (x2(t)¡ x2(t¡ 1))2 · v2max (1)

where x1(t) and x2(t) are the coordinates of the

considered mobile node at time t. The time period is

supposed equal to 1 s. Any additional details on nodes

mobility could be added to refine the model. Knowing

the punctual position of the considered node at time

t¡ 1, the mobility constraint given by (1) is a disk
equation whose radius is vmax.

B. Observation Model using RSSI Comparison

1) Introduction: The motivation of the method

is to compute accurate locations in a network where

only a few sensors are equipped with GPS. For this

purpose, the proposed observation model involves all

sensors within the vicinity of the considered node,

including other nodes. That is, at each time step,

the considered node collects measurements from the

anchors and the nonanchor nodes located within its

communication range. The observations are rings

equations centered on the detected sensors. Their

inner and outer radii are defined using comparison

of RSSI [23, 30, 31]. Using RSSI comparison, the

method avoids the estimation of the channel pathloss

model, which links the distance traveled by a signal to

its strength.

Each ring centered on a specific sensor is

generated by a comparison of the strengths of the

signals sent by the sensor and received by all others.

This approach assumes that the strength of a signal

decreases monotonically as the traveled distance

by the signal increases. Practically, each sensor

broadcasts signals with the same initial strength P0
in the network. Other sensors receive these messages

with different RSSI, depending on their distances
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Fig. 1. Rings generation using RSSI comparison.

to the sender. Assume that M is the considered

mobile node, X is the sensor sending signals, and

Y and Z are two other sensors of the network. Let

RSSIX,Y, RSSIX,M and RSSIX,Z be the strengths of

the signals sent by X and received by Y, M, and Z

respectively. Hence, if RSSIX,Y < RSSIX,M < RSSIX,Z ,

then d(X,Y)> d(X,M)> d(X,Z) where d(¢, ¢) is the
Euclidean distance operator. The node M is thus likely

to fall within the ring centered on X and of radii

d(X,Z) and d(X,Y) as shown in Fig. 1. Therefore, the

generation of rings is tightly related to the positions of

the involved sensors.

2) Observation Equations: The definition of

rings requires the knowledge of sensors positions.

This might be a drawback for rings involving

nonanchor nodes since their positions are unknown.

Moreover, the incertitude over nodes positions yields

an incertitude over rings and thus larger rings than

they should be in reality. In order to avoid losing

relevant information, the key idea of the method is to

generate series of rings definitions, each using either

anchors or nodes. Consider that I and J are the set of

indices of all anchors and nodes within the vicinity of

M, respectively. Each sensor sk, k 2 fI [ Jg, broadcasts
signals in the network with a fixed initial strength.

According to the RSSI measurements over anchors, a

first definition of the ring radii is established. Indices

of selected anchors to define the inner and outer radii,

lA,k and hA,k respectively, are as follows,

lA,k = argfmin
i2Ik
fRSSIsk ,ai j RSSIsk ,ai ¸ RSSIsk ,Mgg

hA,k = argfmax
i2Ik
fRSSIsk ,ai j RSSIsk ,ai · RSSIsk ,Mgg

(2)

where ai is the ith anchor of the network and Ik is the

set of indices of anchors detected by the sensor sk.

The corresponding inner and outer radii, denoted rA,k
and RA,k respectively, are given by

rA,k = d(sk,alA,k ), RA,k = d(sk,ahA,k ): (3)

Similarly, the strength of the considered node M is

compared with the RSSI measured at nodes. A second

definition of the ring is performed. The indices of the

chosen nodes are defined by

lN,k = argfmin
j2Jk
fRSSIsk ,xj j RSSIsk ,xj ¸ RSSIsk ,Mgg

hN,k = argfmax
j2Jk

fRSSIsk ,xj j RSSIsk ,xj · RSSIsk ,Mgg
(4)

where xj is the jth node of the network and Jk is

the set of indices of nodes detected by the sensor sk.

Note that the involved nodes should also be in the

vicinity of the node M in order to exchange positions

information with it. Similarly to the anchor-based ring

definition, the inner and outer radii using nodes for

receivers are defined as follows,

rN,k = d(sk,xlN ,k ), RN,k = d(sk,xhN ,k ): (5)

Finally, the optimal inner and outer radii of each

ring are deduced from elementary radii within the

localization as follows,

rk =maxfrA,k,rN,kg, Rk =minfRA,k,RN,kg: (6)

Note that observation messages do not include

radii values, but the indices lA, lN , hA, and hN
corresponding to either anchors or nodes. Coordinates

of involved anchors are also exchanged within

observation messages. During the localization process,

the considered node communicates with the specified

nonanchor nodes to get their positions and set the

rings equations as follows,

r2k · (x1(t)¡ sk,1(t))2 + (x2(t)¡ sk,2(t))2 · R2k , k 2 fI [ Jg
(7)

where x1(t) and x2(t) are the coordinates of the

considered node and sk,1(t) and sk,2(t) are those of sk
at time t. Fig. 2 shows two definitions, in straight and

dashed lines, of the ring centered on the anchor ak.

Each definition is using either nodes or anchors as

receivers. The final optimal ring, if nodes positions

are considered to be punctual, is given in bold

line.

III. INTERVAL-BASED ALGORITHM

The self-localization of sensors is a key problem

of mobile sensor networks. In this paper we resolve

the problem using interval analysis [24, 27]. In the

following, we first recall the basic concepts of interval

analysis. We then expose the resolution of the problem

using intervals.
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Fig. 2. Rings definition using anchors and nonanchor nodes.

A. Interval Analysis

The field of interval analysis is a relatively recent

branch of mathematics [24, 27]. It has important

applications such as solving global optimization

problems in a guaranteed way. The guaranteed aspect

remains in the way that the interval result will contain

the entire set of punctual solutions. Interval analysis

is based upon the very simple idea of enclosing real

numbers in intervals and vectors in multi-dimensional

boxes. A real interval, [x] = [x, x̄], is a closed subset of

R, defined as follows,

[x] = [x, x̄] = fx 2 R j x· x· x̄g (8)

where x and x̄ are the lower and upper endpoints of

the interval. An interval can be identified by its center

c([x]) = (x+ x̄)=2 and its width w([x]) = x̄¡ x, as
well. A multi-dimensional interval, also called box,

is defined by the Cartesian product of real intervals as

follows,

[x] = [x1]£ ¢¢ ¢£ [xn] = [x1, x̄1]£ ¢¢ ¢£ [xn, x̄n]
= f(x1, : : : ,xn) 2 Rn j xi · xi · x̄i,1· i· ng: (9)

An interval has a dual nature as both a number and

a set of real numbers [24, 27, 25]. The interval theory

makes use of this duality to extend arithmetic and set

operations for intervals. For instance, if we consider

the set difference operator, an interval [x] deprived of

an interval [y] is an interval given by

[x] n [y] = [fx 2 [x] j x =2 [y]g]: (10)

All set operations defined for intervals could be

extended to boxes. Then, a box [x] deprived of a box

[y] yields a box, [z] = [x] n [y], whose coordinates

i 2 f1, : : : ,ng are given by

[zi] =

½
[xi] n [yi] if [xk]μ [yk], 1· k · n, k 6= i
[xi] otherwise

:

(11)

In the same manner, the main classical arithmetic

operations, namely addition (+), substraction (¡),
multiplication (¤), and division (=), are extended to
real intervals and boxes.

Similarly to operators, all functions could be

applied to intervals. Consider a function f : x 2 Rn 7¡!
f(x) 2Rm. Applying f to a box [x]μ Rn is a set given
by f([x]) = ff(x) j x 2 [x]g. The resulting set is not
necessarily a connected interval, which leads to

the inclusion functions. An inclusion function of f,

denoted [f], computes a box of Rm enclosing f([x]),
f([x])μ [f]([x]). This is the so-called wrapping effect.
It is obvious that a function has an infinite number of

inclusion functions. The minimal inclusion function,

denoted [f]¤, leads to the smallest box containing
f([x]).

Using intervals theory, it becomes possible to

achieve tasks often thought to be out of the reach of

numerical methods. Let x be a variable of Rn and f a
function defined from Rn to Rm, then f(x) = 0 is a set
of constraints. If x 2 [x], then H : (f(x) = 0,x 2 [x]) is
called a constraint satisfaction problem (CSP) [27].

In the interval framework, resolving this problem

leads to a box included in [x]. The solution box is

obtained by contracting the initial domain [x] using

a specific algorithm, called contractor [27, 26]. In

this paper, we use the Waltz contractor [28]. Being a

forward-backward algorithm, it iterates all constraints

without any prior order, until no contraction is

possible. Although it leads to local minimal boxes, the

Waltz contractor remains a simple low-cost algorithm

that works efficiently on the localization problem

presented in this paper.

B. Proposed Algorithm using Intervals

Consider that x1(t) and x2(t) are the coordinates

of the considered node at time t and I and J are

the indices set of all anchors and nodes within its

communication range, respectively. The localization

problem at time t is then defined by both the mobility

and the observation models given by

(x1(t)¡ x1(t¡1))2 + (x2(t)¡ x2(t¡ 1))2 · v2max (12)

r2i · (x1(t)¡ ai,1(t))2 + (x2(t)¡ ai,2(t))2 · R2i , i 2 I
r2j · (x1(t)¡ xj,1(t))2 + (x2(t)¡ xj,2(t))2 · R2j , j 2 J

(13)

where vmax is the maximal velocity of the considered

node, ai,1(t) and ai,2(t) are the coordinates of the ith

anchor at time t, xj,1(t), and xj,2(t) are the coordinates

of the jth node and ri, Ri, rj and Rj are the final radii
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Fig. 3. Solution area of localization problem using rings

definition.

of observation rings as shown in Section IIB. An

illustration of such a problem is given in Fig. 3 where

the position of the node x2 is considered to be known

and punctual.

In general, the localization problem does not

have a single solution, but an infinite set of solutions

covering a bounded area. While most existing

approaches aim to choose one punctual position

within the solution area, interval-based methods

compute an optimal outer domain bounding all

possible solutions. Estimated positions are boxes

where the exact positions certainly exist. With interval

methods, the propagation of the computed positions

leads to a bounded cumulative error during the

estimation process.

The key idea of our technique is to define nodes

locations as two-dimensional intervals [x]. Resolving

Fig. 4. Propagation of previous box [x](t¡ 1) using mobility disk equation in (a) and approximated square equation in (b).

the localization problem in the interval framework

consists of defining it as a CSP and then finding

solutions using the Waltz contractor. For this purpose,

at each time step, an initial box is defined using the

mobility equation formulated with intervals as follows,

[[x1](t)¡ [x1](t¡ 1)]2 + [[x2](t)¡ [x2](t¡ 1)]2

= [0,v2max]: (14)

This leads to two primitive functions given by

[x1](t) = [[x1](t¡ 1)¡ [b1](t)]t [[x1](t¡ 1)+ [b1](t)]
[x2](t) = [[x2](t¡ 1)¡ [b2](t)]t [[x2](t¡ 1)+ [b2](t)]

(15)

where

[b1](t) =

·q
v2max¡ [[x2](t)¡ [x2](t¡ 1)]2

¸
[b2](t) =

·q
v2max¡ [[x1](t)¡ [x1](t¡ 1)]2

¸
:

The previous position box, [x](t¡ 1), is propagated
with the disk equation above. Extending a box using

a disk equation yields a rounded corner box as shown

in Fig. 4(a) in dashed line. Expressing the result using

intervals leads to the minimal box [x]¤(t) enclosing
it. It could also be obtained using a square equation

whose sides are equal to vmax as shown in Fig. 4(b).

Consequently, we are able to simplify the propagation

primitive equations to square equations as follows,

[x1](t) = [x1](t¡ 1)+ [¡vmax,vmax]
[x2](t) = [x2](t¡ 1)+ [¡vmax,vmax]:

(16)

The initial domain is then contracted by the

Waltz algorithm using observation and mobility

constraints without any prior order. During the

localization process, the considered mobile node

collects measurements from sensors within its vicinity

and then communicates with the nodes specified

in the observation messages in order to get their

positions at each iteration of the process. For every
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detected anchor ai, i 2 I, the inner and outer radii of
the corresponding ring are given by

rA,i =

q
(ai,1(t)¡ alA,i ,1(t))2 + (ai,2(t)¡ alA,i ,2(t))2

RA,i =

q
(ai,1(t)¡ ahA,i ,1(t))2 + (ai,2(t)¡ ahA,i ,2(t))2

rN,i =min

hq
[ai,1(t)¡ [xlN ,i ,1](t)]2 + [ai,2(t)¡ [xlN ,i ,2](t)]2

i
RN,i =max

hq
[ai,1(t)¡ [xhN ,i ,1](t)]2 + [ai,2(t)¡ [xhN,i ,2](t)]2

i
ri =maxfrA,i,rN,ig, Ri =minfRA,i,RN,ig

(17)

lA,i, lN,i, hA,i, and hN,i being the indices of anchors

and nodes given in the observation message sent

by the anchor i. Note that the minimal bound of an

interval-inner radius is chosen to avoid losing the

guaranteed aspect of the method. For the same reason,

maximal bounds of interval-outer radii are used as

well. The observations equations based on anchors are

then given by

[[x1](t)¡ ai,1(t)]2 + [[x2](t)¡ ai,2(t)]2 = [r2i ,R2i ], i 2 I:
(18)

Similarly, for each detected node xj ,j 2 J , the
corresponding inner and outer radii are given by

rA,j =min

hq
[[xj,1](t)¡ alA,j ,1(t)]2 + [[xj,2](t)¡ alA,j ,2(t)]2

i
RA,j =max

hq
[[xj,1](t)¡ ahA,j ,1(t)]2 + [[xj,2](t)¡ ahA,j ,2(t)]2

i
rN,j =min

hq
[[xj,1](t)¡ [xlN,j ,1](t)]2 + [[xj,2](t)¡ [xlN ,j ,2](t)]2

i
(19)

RN,j =max

hq
[[xj,1](t)¡ [xhN,j ,1](t)]2 + [[xj,2](t)¡ [xhN ,j ,2](t)]2

i
rj =maxfrA,j ,rN,jg, Rj =minfRA,j ,RN,jg:

lA,j , lN,j , hA,j , and hN,j are the indices of anchors and

nodes given in the observation message sent by the

node j. The corresponding observations equations are

given by

[[x1](t)¡ [xj,1](t)]2 + [[x2](t)¡ [xj,2](t)]2 = [r2j ,R2j ], j 2 J:
(20)

In order to implement (18) and (20) in the Waltz

algorithm, primitive constraints should be generated.

Each observation yields couples of primitive

equations, based on either the outer or the inner radii

limitations. Starting with anchors observations, the

primitive constraints derived from outer radii are

given by

[x1](t) = [ai,1(t)¡ [bi,1](t)]t [ai,1(t) + [bi,1](t)]
[x2](t) = [ai,2(t)¡ [bi,2](t)]t [ai,2(t) + [bi,2](t)]

(21)

where

[bi,1](t) =

·q
R2i ¡ [[x2](t)¡ ai,2(t)]2

¸
[bi,2](t) =

·q
R2i ¡ [[x1](t)¡ ai,1(t)]2

¸
:

In order to take advantage of the inner radii

constraints, we must deprive the position box [x]

of the circles of radii ri, i 2 I. Using intervals, the
problem consists of depriving [x] of the square boxes

[zi] inscribed in these circles. The boxes coordinates

are given by

[zi,1] =

"
ai,1(t)¡ ri

p
2

2
,ai,1(t) + ri

p
2

2

#

[zi,2] =

"
ai,2(t)¡ ri

p
2

2
,ai,2(t) + ri

p
2

2

#
:

The corresponding constraints are eventually

formulated by

[x] = [x] n [zi], i 2 I: (22)

In the same manner, when using nodes observations,

outer radii primitive constraints are given by

[x1](t) = [[xj,1](t)¡ [bj,1](t)]t [[xj,1](t) + [bj,1](t)]
[x2](t) = [[xj,2](t)¡ [bj,2](t)]t [[xj,2](t) + [bj,2](t)]

(23)

where j 2 J and

[bj,1](t) =
hq
R2j ¡ [[x2](t)¡ [xj,2](t)]2

i
[bj,2](t) =

hq
R2j ¡ [[x1](t)¡ [xj,1](t)]2

i
:

The position boxes should also be deprived from

the smallest squares inscribed in the inner circles of

different nodes rings. These square boxes have as

coordinates

[zj,1] =

·
max

·
[xj,1](t)¡ rj

p
2

2

¸
,min

·
[xj,1](t) + rj

p
2

2

¸¸
(24)

[zj,2] =

·
max

·
[xj,2](t)¡ rj

p
2

2

¸
,min

·
[xj,2](t) + rj

p
2

2

¸¸
:

This leads us to the following equation,

[x] = [x] n [zj], j 2 J: (25)

Besides observations, primitive constraints derived

from the mobility model (14) are also implemented

in the Waltz algorithm. The pseudocode of the

method is summarized in Algorithm 1. During

each localization period, each node localizes itself

exchanging information with other nodes at different

iterations of the Waltz algorithm. The Waltz contractor

iterates all constraints until the position box of the

considered node is no longer changing. An illustration
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Fig. 5. An illustration of localization result with interval-based method.

of the resulting position box is given in Fig. 5. The

obtained box is much smaller than the one involving

only the anchor-based constraint. Note that extending

the box of the node xj by its outer disk equation does

not yield a disk, but a larger rounded corner box.

Since inner disks constraints also yield boxes, the

so-called rings are thus distorted rings as shown in

Fig. 5.

ALGORITHM 1 Proposed method using anchors and nodes

Input: Initial domain [x1]0 and [x2]0, vmax, observation messages

Output: [x1] and [x2]

Initialization: [x1](0)Ã [x1]0, [x2](0)Ã [x2]0;

for t· T do
[x1](t) = [x1](t¡ 1)+ [¡vmax,vmax];
[x2](t) = [x2](t¡ 1)+ [¡vmax,vmax];
while contraction is positive do

for i 2 I do
RA,i =

q
(ai,1(t)¡ ahA,i ,1(t))2 + (ai,2(t)¡ ahA,i ,2(t))2;

RN,i =max

hq
[ai,1(t)¡ [xhN ,i ,1](t)]2 + [ai,2(t)¡ [xhN ,i ,2](t)]2

i
;

Ri =minfRA,i,RN,ig;
[bi,1](t) =

£p
R2i ¡ [[x2](t)¡ ai,2(t)]2

¤
; [x1](t) = [x1](t)\ [[ai,1(t)¡ [bi,1](t)]t [ai,1(t)+ [bi,1](t)]];

[bi,2](t) =
£p

R2i ¡ [[x1](t)¡ ai,1(t)]2
¤
; [x2](t) = [x2](t)\ [[ai,2(t)¡ [bi,2](t)]t [ai,2(t)+ [bi,2](t)]];

rA,i =
q
(ai,1(t)¡ alA,i ,1(t))2 + (ai,2(t)¡ alA,i ,2(t))2;

rN,i =min

hq
[ai,1(t)¡ [xlN,i ,1](t)]2 + [ai,2(t)¡ [xlN ,i ,2](t)]2

i
;

ri =maxfrA,i,rN,ig;
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[zi,1] =

·
ai,1(t)¡ ri

p
2

2
,ai,1(t) + ri

p
2

2

¸
; [zi,2] =

·
ai,2(t)¡ ri

p
2

2
,ai,2(t) + ri

p
2

2

¸
;

[zi] = [zi,1]£ [zi,2]; [x](t) = [x1](t)£ [x2](t); [x](t) = [x](t) n [zi];
end

for j 2 J do
RA,j =max

hq
[[xj,1](t)¡ ahA,j ,1(t)]2 + [[xj,2](t)¡ ahA,j ,2(t)]2

i
;

RN,j =max

hq
[[xj,1](t)¡ [xhN,j ,1](t)]2 + [[xj,2](t)¡ [xhN ,j ,2](t)]2

i
;

Rj =minfRA,j ,RN,jg;
[bj,1](t) =

hq
R2j ¡ [[x2](t)¡ [xj,2](t)]2

i
; [x1](t) = [x1](t)\ [[[xj,1](t)¡ [bj,1](t)]t [[xj,1](t) + [bj,1](t)]];

[bj,2](t) =

hq
R2j ¡ [[x1](t)¡ [xj,1](t)]2

i
; [x2](t) = [x2](t)\ [[[xj,2](t)¡ [bj,2](t)]t [[xj,2](t) + [bj,2](t)]];

rA,j =min

hq
[[xj,1](t)¡ alA,j ,1(t)]2 + [[xj,2](t)¡ alA,j ,2(t)]2

i
;

rN,j =min

hq
[[xj,1](t)¡ [xlN ,j ,1](t)]2 + [[xj,2](t)¡ [xlN ,j ,2](t)]2

i
;

rj =maxfrA,j ,rN,jg;

[zj,1] =

·
max

·
[xj,1](t)¡ rj

p
2

2

¸
,min

·
[xj,1](t) + rj

p
2

2

¸¸
; [zj,2] =

·
max

·
[xj,2](t)¡ rj

p
2

2

¸
,min

h
[xj,2](t) + rj

p
2
2

i¸
;

[zj] = [zj,1]£ [zj,2]; [x](t) = [x1](t)£ [x2](t); [x](t) = [x](t) n [zj];
end

[b1](t) =

hp
v2max¡ [[x2](t)¡ [x2](t¡ 1)]2

i
; [x1](t) = [x1](t)\ [[[x1](t¡ 1)¡ [b1](t)]t [[x1](t¡ 1)+ [b1](t)]];

[b2](t) =

hp
v2max¡ [[x1](t)¡ [x1](t¡ 1)]2

i
; [x2](t) = [x2](t)\ [[[x2](t¡ 1)¡ [b1](t)]t [[x2](t¡ 1)+ [b2](t)]];

end

end

IV. SIMULATIONS

In order to evaluate the effectiveness of the

proposed method, we generate a sine-based trajectory

and we move all sensors using a reference point group

mobility (RPGM) model [33—35]. According to this

model, each mobile sensor is given a predefined

reference trajectory (e.g. a sinusoidal motion path).

Mobile sensors are then allowed to move randomly

around their reference trajectories. An illustration

of such a model is given in Fig. 6. This plot shows

10 anchors and 30 nodes deployed initially in a

100 m£ 100 m area and then moving according to

the RPGM model for a total period of 100 s. The

maximal velocity of the nodes is equal to 3.169 m/s

according to the chosen model. In Algorithm 1, we

first compare our method with a Monte-Carlo based

method. We then compare it with an interval-based

method using only anchors information.

A. Comparison with a Monte-Carlo-Based Method

In this section we compare our method with

the Monte-Carlo boxed (MCB) localization method

proposed in [19]. It is an anchor-based method using

a sequential Monte-Carlo (particle filter) approach

[17]. The rationale behind this approach consists

of generating a fixed number of particles covering

the solution area. At every time step, each mobile

node collects connectivity information from anchors

Fig. 6. Illustration of reference group mobility model.

within its vicinity and then sets a closed area where it

generates randomly Np positions, called particles. The

estimated position is thus defined as the barycenter

of the generated particles. All particles are then kept

in the memory in order to be used in the following

localization step. In order to compare our method with

the MCB method, we move 3 anchors and 5 nodes

within the 100 m£100 m area using the RPGM

model given in Fig. 6. The anchors and nodes are

chosen to be within the communication range of each
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Fig. 7. Comparison of our method (BL) with the

Monte-Carlo-based method (MCB).

Fig. 8. Best and average ratio curves of errors obtained with our

method over those obtained with the MCB method.

others in all time steps. The communication range

is set to 10 m, which is used in the definition of the

proximity measurements. On the other hand, the

maximal velocity of the sensors is set to its real value

3.169 m/s and the number of particles of the MCB

method is set to 50 particles.

Fig. 7 shows the position boxes and the particles

obtained using both methods for tracking one mobile

node. The average computation time per node over

the 100 time steps is equal to 1.1076 s with the

proposed method and to 1.2542 s with the MCB

technique; whereas the average errors per node and

per time step are equal to 1.61 m and to 5.4532 m,

respectively. Note that the position boxes obtained

with our method contain the real positions at all time

steps, which corroborates the guaranteed aspect of

our method; whereas the MCB particles do not cover

the real positions at almost all the time steps. Fig. 8

shows the average ratio curve of the errors obtained

with our method over those obtained using MCB. It

shows the best ratio curve of errors corresponding to

the node with the least relative error, as well. Note

Fig. 9. Comparison of our proposed method (BL) to the

anchor-based method (MGBL).

that the localization results are highly correlated to

the deployment of anchors and nodes around the

tracked node. The offset between the best and the

average relative error curves shows that even with

the same number of nodes and anchors in their

vicinity, the localization performance is different

between the nodes and also varying over the time.

It is worth noting that, besides the increase of the

estimation accuracy, the proposed method ensures

less consumption of the memory resources compared

with MCB since only one position box is kept in the

memory at every time step.

B. Comparison of the Proposed Method with the
Model-Free Anchor-Based Method

In this section, we compare the proposed method

with the rings overlapping method using only

observations to anchors, proposed in [23]. For this

purpose, we move 3 anchors and 5 nodes as in

Section IVA. All the sensors are able to communicate

with each others at every time step. Fig. 9 shows the

position boxes obtained using our method (BL) and

the anchor-based method (MGBL) corresponding

to the localization of one mobile node. The plot

shows that the boxes obtained with BL are always

included in those obtained with MGBL, leading to

more accuracy of the estimation process. The average

computation time per node over all the time steps is

equal to 1.1076 s with our method and to 0.568 s

with the MGBL method. Although the computation

time increases, the estimation error decreases for all

the nodes. Fig. 10 shows the average ratio curves of

the boxes areas and the estimation errors obtained

with our method over those obtained with MGBL.

It shows as well the best ratio curves of areas and

errors corresponding to the node having the least

relative estimation error. The difference between the

average and the best curves shows that the localization
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Fig. 10. Ratio curves of boxes areas and estimation errors

computed with proposed method over those computed using

anchor-based method.

results vary from one node to another depending on

the deployment of anchors and nodes around them.

In the following, we aim at computing the increase

of the energy consumption in one time step. Assume

that the network is composed of m anchors and n

nodes all of them communicating with each other.

This increase is mainly due to the transmission of

messages during the algorithm computation, to the

reception and the sending of the observation messages

and to the exchange of signals in the measurements

generation phase.

Concerning transmission within the algorithm,

each node sends its coordinates once at each iteration

to all the nodes neighboring it. Moreover, in this

example, the Waltz algorithm is very fast, leading to

the final box in around 2 iterations per time step on

average. In other words, it sends twice its coordinates

to (n¡ 1) sensors. The coordinates consist of two
real intervals and thus 4 real numbers. If we consider

that a real number is coded using 8 bits, then the

coordinates consist of 4 ¤ 8 = 32 bits. Therefore,
a node sends 2 ¤ (n¡ 1) ¤32 = 64 ¤ (n¡ 1) bits per
time step. On the other hand, each node needs the

coordinates of the other nodes since it uses them in

its algorithm. It thus receives coordinates of (n¡ 1)
nodes twice per time step. This leads to a reception

of (n¡1) ¤ 2 ¤ 32 = 64 ¤ (n¡ 1) bits. At last, if we
consider only the transmission costs during the

algorithm, a node sends 64 ¤ (n¡1) bits and receives
64 ¤ (n¡ 1) bits. Let Ps and Pr be the amount of
energy consumption for sending and receiving one bit,

respectively. Hence, the energy consumption of a node

increases about Ps ¤64 ¤ (n¡ 1)+Pr ¤ 64 ¤ (n¡ 1) =
64 ¤ (n¡ 1) ¤ (Ps+Pr) with respect to the anchor-based
method.

If we consider now the reception of measurements,

anchors messages will contain in addition the indices

of nodes used to define the inner and outer radii

of the nodes rings. Then it receives 2 additional

integers in an anchor message, which means the

reception of m ¤ 2 ¤ 8 = 16 ¤m bits. A node also
receives messages from other nodes. These messages

contain the identifier of the sender, the coordinates of

anchors used for the anchor ring, and the indices

of the nodes used for the node ring. This leads to

(1+2 ¤ 2+2 ¤ 1) ¤ 8 = 56 bits. Since it receives
messages from (n¡1) nodes, then it receives 56¤
(n¡1) bits. It receives thus 56 ¤ (n¡ 1)+16 ¤m bits
more. It also sends measurements to all other nodes,

which means that it sends 56 ¤ (n¡ 1) bits. Hence,
the energy consumption increases Ps ¤56 ¤ (n¡ 1)
+Pr ¤ (56 ¤ (n¡ 1)+16 ¤m) with respect to the anchor-
based method for the exchange of measurements.

Consider now the measurements generation. For

anchors observation messages, no additional signals

are exchanged with nodes. The increase remains

in the generation of nodes measurements. If we

consider the case of a sender node generating the

measure, it broadcasts signals in the network including

its identifier (1 number). It sends at minimal m+

n¡ 1 signals in the network, which means sending
(m+ n¡ 1) ¤ 8 bits. Anchors and nodes receive the
signals, measure the RSSIs, and send them back to

the sender. The sender receives thus messages from

(n¡1) nodes including the RSSIs and their identifiers,
which means (n¡1) ¤ 2 ¤ 8 = 16 ¤ (n¡ 1) bits. It also
receives messages from anchors including their two

coordinates, their identifiers and their RSSIs, which

leads to m ¤ 4 ¤ 8 = 32 ¤m bits. A sender thus sends at
minimal (m+ n¡ 1) ¤ 8 bits and receives 32 ¤m+16 ¤
(n¡1) bits. As a receiver, it receives messages from
nodes with the identifiers, which means (n¡ 1) ¤ 8
bits. It then measures the RSSIs and then sends these

values with its identifier back to the senders, leading

to sending (n¡ 1) ¤ 2 ¤8 = 16 ¤ (n¡ 1) bits. At last, for
measurements generation, the energy consumption

increases at minimal of Ps ¤ ((m+ n¡ 1) ¤8+16 ¤
(n¡1))+Pr ¤ (32 ¤m+16 ¤ (n¡ 1)+8 ¤ (n¡ 1)) =
Ps ¤ (8 ¤m+24 ¤ (n¡ 1))+Pr ¤ (32 ¤m+24 ¤ (n¡ 1)).
Finally if we compute the total increase of energy

consumption for a node per time step by adding all

increases, we find

Ps ¤ (8 ¤m+144 ¤ (n¡1))+Pr ¤ (48 ¤m+144 ¤ (n¡ 1)):
One then faces a trade-off between increasing the

estimation accuracy by using all possible information

and reducing the energy consumption as much as

possible by neglecting some information.

In a second manner, we illustrate another example,

where anchors are supposed to be fixed. We thus

consider 5 nodes moving among the group mobility

and we deploy 100 anchors in the whole 100 m£
100 m area. The disposition of anchors located within

the vicinity of the nodes, as well as their number, vary

from one time step to the other. Fig. 11 illustrates the
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Fig. 11. Comparison of proposed method (BL) with

anchor-based method (MGBL) with fixed anchors.

Fig. 12. Ratio curves of boxes areas and estimation errors

computed with proposed method over those computed using

anchor-based method with fixed anchors.

boxes obtained with both BL and MGBL methods for

one of the nodes chosen randomly. The plot shows

that BL performs better than MGBL at many time

steps, noting that it works as well as MGBL in the

worst case. Fig. 12 shows the ratio curves of the

boxes areas and the estimation errors obtained with

BL over those obtained with MGBL for the same

node. As expected, the performances of the proposed

method compared with those of MGBL vary with time

steps, depending on the number and the positions

of the anchors around the nodes. For instance, the

minimal areas ratio is obtained at instant 68, where

no anchors are located within the vicinity of the

considered node, whereas two of its neighbors detect

1 and 2 anchors, respectively.

C. Sensitivity to the Network Density

The effectiveness of the proposed method

compared with the anchor-based method depends on

the number of anchors and nodes deployed in the

Fig. 13. Ratios of average errors and boxes areas obtained with

proposed method (BL) over those obtained using anchor-based

method (MGBL) varying with number of anchors and nodes

deployed in the network.

network. In order to illustrate this dependence, we

first fix the number of nodes to 5 and we vary the

number of anchors in their vicinity from 2 to 10. The

top plot of Fig. 13 reports the variation of the average

errors and boxes areas obtained with the proposed

method over those obtained with the anchor-based

method. As expected, the figure shows that the relative

accuracy of the proposed method compared with the

anchor-based one increases with the decrease of the

anchor density in the network. This performance

varies with the variation of the number of nodes, as

well. Considering a fixed number of anchors equal

to 3, we vary the number of nodes from 2 to 10.

The bottom plot of Fig. 13 shows the ratio curves

of the average error and boxes area obtained with

the proposed method over those obtained with the

anchor-based one. The simulation results show that

the proposed method is more efficient in lower anchor

density networks with more nodes compared with the

anchor-based one.

V. CONCLUSION

In this paper we presented a dynamic model-free

method for localization in MANETs. The guaranteed

aspect of the method remains in the way that it

generates interval domains covering all possible

solutions of the problem. Involving both anchors

and nonanchor nodes, it becomes possible to achieve

the localization in low-anchor density networks.

While the performances of RSSI-based methods

are tightly related to the channel pathloss model,

the proposed method is robust under irregular radio

propagation patterns since it uses RSSI comparison.

The effectiveness of the method is evaluated using

simulations based on sensors moving using a group

mobility model. Experimental results show that our

method outperforms the anchor-based techniques in

terms of accuracy. In future works, we will analyze
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the localization problem under inaccurate environment

assumptions and sensor failure problems. The use of

belief functions represents a solution to handle more

consistently erroneous information communicated

between the sensors.
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France, all in electrical and computer engineering.

From 1999 to 2003, he was an associate professor at the University of

Technology of Troyes, France. From 2003 to 2009, he was a full professor at

the Institut Charles Delaunay (CNRS FRE 2848) at the UTT, and the supervisor

of a group consisting of 60 researchers and Ph.D. In winter 2009 and autumn

2010, he was a visiting researcher with the Department of Electrical Engineering,

Federal University of Santa Catarina (UFSC), Florianòpolis, Brazil. Since
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