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Abstract—In this article, we propose an original approach
for self-localization in mobile sensor networks. The proposed
approach is developed for low-anchors density networks. Based
on intervals theory, the presented method is an online tech-
nique yielding a bounded-cumulative error. The estimation of
the positions of mobile sensors is performed using multi-hop
observation model added to an a priori mobility model. One of
the contributions of this paper is that it uses the measurements
of all types of sensors, including those that do not have GPS,
denoted non-anchor nodes. Compared to the existing localization
techniques, this method leads to a higher accuracy with a low
computational cost.

Index Terms—Distributed estimation, interval analysis, mobile
sensors, nonlinear estimation, signal processing

I. INTRODUCTION

Recently, Wireless Sensor Networks (WSNs) have become

a growing and challenging research field of signal processing

domain. They are composed of a large number of tiny low-

cost wireless sensors [1]. These smart devices are limited in

computational capacities and memory resources. The major

constraint of these sensors is their low energy consumption

since they are equipped with non-renewable batteries. In order

to extend the lifetime of the networks, all built-in algorithms

must focus on energy conservation.

Sensor networks have been applied in different fields of

applications such as military and biomedical analysis [2], [3].

Due to the lack of a fixed infrastructure in these networks,

the sensors are able to move in an uncontrolled manner,

leading to Mobile Sensor Networks (MSNs). Since sensed

data are related to the location of the sensors in almost all

applications of MSNs, the localization problem has become a

fundamental issue. A direct way to obtain the nodes locations

is to equip all sensors with Global Positioning Systems (GPS)

[4]. However, this solution is not practical since GPS receivers

are high energy consuming. An alternative solution consists

of considering two types of sensors: anchors and non-anchor

nodes. Anchors are equipped with GPS receivers, and thus

know their locations. Non-anchor nodes, or simply nodes, have

unknown positions, and thus they are localized using location

information of anchors. Many anchor-based algorithms have

been proposed in literature, such as Monte Carlo-based ap-

proaches [5]. These techniques consist of generating particles

in order to cover the solution area. The main disadvantage of

these methods is their high consumption of memory resources.

Other methods based on intervals have been proposed.

For instance, in [6], Guaranteed Boxed Localization (GBL)

using anchors information is introduced. This method defines

the localization problem as a constraint satisfaction problem

set by mobility constraints and observations to anchors. The

observation model is set using proximity constraints. However,

the performance of GBL method is highly related to the

number of anchors in the network.

In this paper, we propose a dynamic Interval-based Local-

ization, using Anchors and Non-anchors information (ILAN).

Each node is assumed to collect multi-hop information from

all types of sensors. Nodes are thus able to communicate

information from sensors, located outside their sensing range.

With these properties, ILAN outperforms other techniques,

especially in low-anchors density networks. The localization

problem is resolved using interval analysis. Using this tech-

nique, the position estimation leads to rectangular areas, cov-

ering the real locations of the nodes. Compared to GBL, ILAN

method yields more accurate estimates with low computational

costs.

The rest of the paper is organized as follows. In Section II,

we introduce the localization problem. In Section III, we first

briefly present the theory of interval analysis. We then present

the interval-based localization algorithm. The effectiveness of

the method is illustrated in Section IV. Finally, Section V

concludes the paper.

II. PROBLEM STATEMENT

The localization problem consists of defining the nodes

positions at every time step. The proposed method considers

two types of sensors, anchors and non-anchor nodes. Anchors

are equipped with Global Positioning Systems (GPS) [4] and

thus they know their positions. The GPS-less sensors are called

non-anchor nodes or simply nodes. They do not know their po-

sitions and thus need to be localized. Assume that the network

is composed of Na anchors and Nx nodes. Their coordinates
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at time t are denoted respectively by ai(t) = (ai,1(t), ai,2(t))
and xj(t) = (xj,1(t), xj,2(t)), where i ∈ {1, ..., Na} and

j ∈ {1, ..., Nx}. Besides measurements, the proposed method
takes advantage of the mobility of the nodes, to estimate their

positions. In the following, we first introduce the mobility

model. We then present the observation model.

A. Mobility model

Many mobility models have been proposed in literature to

simulate the motions of the sensors [9]. In this paper, the

localization method uses a general mobility model, where only

the maximal velocity of the nodes, vmax, is assumed to be

known. According to this model, the distance traveled by the

nodes between two following time steps remains less than

∆t.vmax, where ∆t is the localization period. This leads to

disk equations, centered on the previous positions of the nodes

and having ∆t.vmax as radius. Thus, the mobility model of a

node xj , j ∈ {1, ..., Nx}, is given by,

(xj,1(t)−xj,1(t−1))2 +(xj,2(t)−xj,2(t−1))2 ≤ ∆t2.v2
max.

(1)

Any additional information about nodes motions could be used

to refine the previous model.

B. Observation model

At time t, each mobile node xj receives signals from sets

Ia,j(t) ⊆ {1 . . .Na} of anchors and Ix,j(t) ⊆ {1 . . .Nx}
of non-anchor nodes with specific Received Signal Strengths

(RSSs), denoted respectively by ρj,i(t), i ∈ Ia,j(t), and

ρj,k(t), k ∈ Ix,j(t). These RSSs are assumed to follow the

Okumura-Hata model [10], given by,

{

ρj,i(t) = ρ0 − 10nP log10
d(xj(t),ai(t))

d0
,

ρj,k(t) = ρ0 − 10nP log10
d(xj(t),xk(t))

d0
.

(2)

In (2), ρj,i(t) and ρj,k(t) are in dBm, ρ0 is the power

measured (in dBm) at a reference distance d0, nP is the

path-loss exponent, d(xj(t), ai(t)) = ‖xj(t) − ai(t)‖ and

d(xj(t), xk(t)) = ‖xj(t)−xk(t)‖ are the Euclidian distances
between the considered node xj and the anchor ai or the node

xk respectively.

In connectivity-based techniques, such as GBL ([6]), the

RSSs are compared to a single threshold ρr, that is a function

of the sensing range r of the node. To enhance the performance

of the localization process in low-anchors density networks,

we propose to use a hop counting technique using RSSs.

For this reason, the RSSs are compared to several power

thresholds ρr, ρ2.r, ρ3.r, ..., that are functions of the multi-

ples of the sensing range r, 2.r, 3.r, ... The anchor i having

ρhi.r ≤ ρj,i < ρ(hi−1).r is assumed to be a hi-hop anchor. In

other words, (hi − 1).r < d(xj(t), ai(t)) ≤ hi.r. This leads

to a ring, centered on the anchor ai and having (hi − 1).r
and hi.r as internal and external radii. Similarly, the node

k is a hk-hop if ρhk.r ≤ ρj,k < ρ(hk−1).r. In such a case,

(hk − 1).r < d(xj(t), xk(t)) ≤ hk.r. Observation constraints

are thus given by,
{

(hi − 1)2.r2 < (xj,1(t) − ai,1(t))2 + (xj,2(t) − ai,2(t))2 ≤ h2

i .r2,

(hk − 1)2.r2 < (xj,1(t) − xk,1(t))
2 + (xj,2(t) − xk,2(t))

2 ≤ h2

k
.r2,
(3)

with i ∈ Ia,j(t) and k ∈ Ix,j(t).

III. INTERVAL-BASED LOCALIZATION

The localization problem is defined by both the mobility

model (1) and the multi-hop observation model (3),






(xj,1(t) − xj,1(t− 1))2 + (xj,2(t) − xj,2(t− 1))2 ≤ ∆t2.v2
max,

(hi − 1)2.r2 < (xj,1(t) − ai,1(t))2 + (xj,2(t) − ai,2(t))2 ≤ h2

i .r2,

(hk − 1)2.r2 < (xj,1(t) − xk,1(t))2 + (xj,2(t) − xk,2(t))
2 ≤ h2

k
.r2,
(4)

with i ∈ Ia,j(t) and k ∈ Ix,j(t). The resolution of this problem
is performed using interval analysis. In the following, we first

introduce the interval theory. We then develop the localization

algorithm.

A. Interval theory

The interval theory is a branch of mathematics that treats

intervals as a new kind of numbers [7]. A real interval, denoted

[x], is defined as a closed subset of IR as follows,

[x] = [x, x] = {x ∈ IR \ x ≤ x ≤ x}, (5)

where x and x are the lower and higher endpoints of the

interval. A box is a multidimensional interval defined by the

cartesian product of real intervals, [x] = [x1]× · · · × [xn].
An interval has a dual nature as both number and a set

of real numbers. The interval theory takes advantage of this

duality to extend set and arithmetic operations to intervals [7],

[8]. Consider an operator ⋆ ∈ {+,−, ∗,÷}. Then,

[x]⋆[y] = [min{x⋆y, x⋆y, x⋆y, x⋆y}, max{x⋆y, x⋆y, x⋆y, x⋆y}].
(6)

Using these tools, we are able to define numerical problems

in the interval framework. Solving these problems leads to

guaranteed domains of solution.

B. Localization algorithm

The main idea of the proposed method is to consider the

localization problem in the interval framework. The nodes

positions xj(t), j ∈ {1, ..., Nx}, are thus defined as two-

dimensional boxes [xj ](t) = [xj,1](t) × [xj,2](t). Using in-

terval coordinates, the localization problem is defined as a

Constraint Satisfaction Problem (CSP). Resolving the problem

consists of finding the minimal position boxes that satisfy all

constraints. The mobility and observation equations, given in

(1) and (3), are reformulated as follows,

([xj,1](t)−[xj,1](t−1))2+([xj,2](t)−[xj,2](t−1))2 = [0, ∆t
2
.v

2

max],
(7)

{

([xj,1](t)− ai,1(t))2 + ([xj,2](t)− ai,2(t))2 = [(hi − 1)2.r2, h2
i .r2],

([xj,1](t)− [xk,1](t))
2 + ([xj,2](t)− [xk,2](t))

2 = [(hk − 1)2.r2, h2
k.r2],
(8)

with j ∈ {1, ..., Nx}, i ∈ Ia,j(t) and k ∈ Ix,j(t).
In order to solve the localization problem, different algo-

rithms, called contractors, have been proposed [8]. Starting

from an initial domain, the contractors consist of reducing

its area in order to obtain the minimal box that encloses the
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t

∆t.vmax

[xj ](t − 1)

t

∆t.vmax

[xj ](t − 1)

[xj ]∗(t)

Fig. 1. Propagation phase.

solution. The contractor we are using in our method is the

forward-backward algorithm. It consists of a simple algorithm

that iterates all constraints, without any prior order, until no

contraction is possible.

The solution of the problem consists of two phases at each

time step, the propagation and the contraction phases. In the

propagation phase, the nodes use their mobility equations (7)

to propagate their previous boxes, [xj ](t−1). Fig. 1 shows the
first phase of the solution. The resulting boxes, [xj ]

∗(t), are
then contracted using equations (7) and (8) in the forward-

backward contractor. During each iteration of the forward-

backward algorithm, each node exchanges location informa-

tion with nodes and anchors within its communication range.

The proposed approach is given in Algorithm 1. Note that

since anchor positions are known, they are communicated to

nodes only once at each time step, whereas non-anchor nodes

exchange their coordinates at each iteration of the forward-

backward algorithm. Consider the localization problem of a

mobile node x1 detecting a 1-hop anchor a1, a 2-hop anchor

a2 and a 2-hop mobile node x2. Representing the anchors

constraints would lead to a disk centered on a1 and having

r as radius and a ring centered on a2 having r and 2r as

radii respectively. The propagation of the position box [x2]
of x2 using the ring equation having r and 2r as radii leads

graphically to an area having the shape of a distorted ring. This

area covers all the points obtained by the propagation of any

point of [x2] using the ring equation. In other words, the node
constraint leads graphically to the union of the rings centered

on all the points of [x2] and having r and 2r as radii. Fig. 2

shows this area. Using these constraints, in addition to the

mobility constraint, in the forward-backward algorithm would

lead to the minimal box covering the intersection area of all

domains, as shown in Fig. 3.

IV. SIMULATIONS

In order to evaluate the performance of our method, we

first deploy the sensors in a 100m × 100m square area. We

suppose that all sensors are able to communicate with each

others. The sensing range r of the sensors is fixed to 10m.

Sensors are assumed to move according to a group mobility

model. In other words, all sensors are moving according to

the same reference trajectory. Fig. 4 shows 10 nodes and 5

anchors moving around a sinusoidal trajectory according to

the reference point group mobility model given in [9]. The

maximal velocity vmax of the nodes is equal to 2.2719m.s−1,

whereas the localization period is set to 1s. In the following,

r

2r

Fig. 2. Propagation of a box using a ring equation.

r

r

2r

1-hop

2-hop

2-hop

[x1](t)

[x1]∗(t)

a1(t)

a2(t)

[x2](t)

Fig. 3. Contraction phase.

we first evaluate the proposed method (ILAN). We then com-

pare it to the interval-based technique GBL using connectivity

measurements to anchors. We finally compare our method to

a Monte Carlo-based approach. Note that all simulations are

performed on Matlab 6.1, installed on an Intel Core2 Duo

CPU.

A. Evaluation of the ILAN method

In this section, we evaluate the effectiveness of the proposed

method. We thus apply it to the network of Fig. 4. We assume

at first that all sensors are able to communicate with each

others, and that both nodes and anchors are considered in the
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Input: vmax, r, observations

for t ≤ T do

[xj,1](t) = [xj,1](t− 1) + [−∆t.vmax, ∆t.vmax];
[xj,2](t) = [xj,2](t− 1) + [−∆t.vmax, ∆t.vmax];
while contraction is positive do

for i ∈ Ia,j(t) do

[bj,i,1](t) =
√

h2
i .r

2 − ([xj,2](t)− ai,2(t))2;
[xj,1](t) = [xj,1](t) ∩ ((ai,1(t)− [bj,i,1](t)) ∪
(ai,1(t) + [bj,i,1](t)));
[bj,i,2](t) =

√

h2
i .r

2 − ([xj,1](t)− ai,1(t))2;
[xj,2](t) = [xj,2](t) ∩ ((ai,2(t)− [bj,i,2](t)) ∪
(ai,2(t) + [bj,i,2](t)));

end

for k ∈ Ix,j(t) do
xj և [xk](t);
[bj,k,1](t) =
√

h2
k.r2 − ([xj,2](t)− [xk,2](t))2;

[xj,1](t) = [xj,1](t) ∩ (([xk,1](t)−
[bj,k,1](t)) ∪ ([xk,1](t) + [bj,k,1](t)));
[bj,k,2](t) =
√

h2
k.r2 − ([xj,1](t)− [xk,1](t))2;

[xj,2](t) = [xj,2](t) ∩ (([xk,2](t)−
[bj,k,2](t)) ∪ ([xk,2](t) + [bj,k,2](t)));

end

[bj,1](t) =
√

∆t2.v2
max − ([xj,2](t)− [xj,2](t− 1))2;

[xj,1](t) = [xj,1](t) ∩ (([xj,1](t− 1)− [bj,1](t)) ∪
([xj,1](t− 1) + [bj,1](t)));
[bj,2](t) =
√

∆t2.v2
max − ([xj,1](t)− [xj,1](t− 1))2;

[xj,2](t) = [xj,2](t) ∩ (([xj,2](t− 1)− [bj,2](t)) ∪
([xj,2](t− 1) + [bj,2](t)));

end

end

Algorithm 1: Interval-based localization using anchors and

non-anchor nodes.

observation model. Fig. 5 shows the boxes obtained with our

method for the 9-th mobile node. The average computational

time per node per time step is equal to 0.027254s, whereas

the average boxes areas is equal to 675m2. Let the estimation

error be the distance between the center of the estimated box

and the real position, then the average estimation error is equal

to 11.8163m. Fig. 6 shows the average boxes areas in the top

plot and the average estimation errors in the bottom plot for

all the mobile nodes. The plot shows that the accuracy of the

method varies from a node to the other. Indeed, the estimation

accuracy depends on the distribution of other sensors around

the considered node.

In order to illustrate the effectiveness of the use of the

non-anchor nodes, we compare our method (ILAN) to an

equivalent method using only anchors (ILA). We thus use

deploy 5 anchors and 10 nodes in the network. All sensors are

then moved using the same reference trajectory as in Fig. 4.

Fig. 7 shows the boxes obtained with both methods for the 1-
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Fig. 4. A group mobility of 10 nodes and 5 anchors moving around a
common reference trajectory.
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Fig. 5. Position boxes obtained with ILAN for the 9-th mobile node.

st node. The plot shows that estimation is more accurate with

the ILAN method. Indeed, the average boxes area is equal to

273.419m2 with ILAN whereas it is equal to 340m2 with ILA;

and the average estimation errors are equal to 8.6053m and

11.0279m respectively. This difference depends as well on the

number and the disposition of the sensors in the network.

B. Comparison to the GBL method

In this section, we compare our method (ILAN) to the

Guaranteed Boxed Localization (GBL) technique proposed

in [6]. Using intervals, the GBL method uses connectivity

measurements of only anchors. In other words, each node

in GBL uses only position information of anchors located

within its sensing range to estimate its position. We first use

a network having 5 anchors and 10 nodes. Fig. 8 shows the

boxes obtained with ILAN and GBL method for the 9-th node.

The plot shows that our method is much more accurate than

GBL method in low-anchors density networks, at the cost

of the computational time which increases from 0.000483s
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Fig. 6. Average boxes areas (in the top plot) and average estimation errors
(in the bottom plot) for all the mobile nodes.
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Fig. 7. Position boxes obtained with both ILAN and ILA methods for the
1-st mobile node.

(GBL) to 0.0274s (ILAN). Fig. 9 shows the ratios of boxes

areas in the top plot and the ratios of estimation errors in the

bottom plot (ILAN over GBL).

Assume now that the network is composed of 30 anchors

and 10 nodes. Fig. 10 shows the boxes obtained with the GBL

and the ILAN methods. It is obvious that the accuracy of

the GBL method increases with more anchors. However, it

remains less accurate than our method, with less computation

time (0.001232s with GBL, 0.13265s with ILAN). The aver-

age ratios of boxes areas and estimation errors (ILAN/GBL)

are equal to 0.0994 and 0.3775 per node per time step,

respectively.

C. Comparison to the MCB method

The MCB method given in [5] is a Monte Carlo-based

approach. At each time step, it generates a given number

of positions, called particles, to cover the solution area. In

order to compare our method to MCB, we use 30 anchors

and the number of particles is set to 50. Fig. 11 shows the
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Fig. 8. Positions boxes obtained with both ILAN and GBL methods for the
9-th mobile node with 5 anchors.
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Fig. 9. Ratios of boxes areas (in the top plot) and ratios of estimation errors
(in the bottom plot) ILAN/GBL for all the mobile nodes.

position boxes of one of the nodes obtained with our method.

It shows the obtained particles with MCB, as well. The average

computational times are equal to 0.13646s with our method

and 1.5761s with MCB; whereas the average estimation errors

are equal to 3.12m and 11.8304m respectively. Note that the

boxes obtained with our method contain the real positions at

each time step while the MCB particles do not cover correctly

the solution areas at most of the steps. More particles are

needed in order to improve the accuracy of MCB results,

which leads to a higher consumption of energy, memory and

time.

V. CONCLUSION

In this contribution, we presented an online guaranteed

localization method for mobile sensor networks. The pro-

posed technique uses multi-hop measurements involving both

anchors and non-anchor nodes. The approach could thus be

implemented in low-anchors density networks. Using interval

analysis, this technique leads to location boxes where the real
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Fig. 10. Positions boxes obtained with both ILAN and GBL methods for
the 9-th mobile node with 30 anchors.
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Fig. 11. Comparison of our method (ILAN) to the MCB method.

positions surely exist. The simulation results show that the

proposed method overcomes the existing methods in terms

of accuracy with low computational costs. In future works,

we will deal with the localization problem under inaccurate

environment and sensor failure assumptions.
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